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UNITARY INVARIANTS FOR NESTS

J. A. ERDOS

A set of subspaces of a Hubert space is called a nest if
it is totally ordered by inclusion. The aim of this paper is to
obtain a complete set of unitary invariants for a class of
nests satisfying certain conditions. The conditions imposed
are a countability condition, (satisfied by all nests of subspaces
of a separable Hubert space), and a simple completeness
condition.

As the orthogonal projections onto the members of a nest form
a set of commuting projections, the problem has much in common
with the invariant theory of self-adjoint operators on Hubert space
and a considerable part of this paper consists of reworking standard
multiplicity theory to suit the new situation.

However there is a major difference between the two theories.
The spectral projections of a self-adjoint operator can be indexed in
a unique way by the real numbers belonging to its spectrum but for
nests there is no such indexing that is in any sense canonical. This
difficulty is overcome by dispensing with numerical indexing and
using instead the set of subspaces of the nest considered as a topo-
logical space under its order topology. In this way the order
structure of nests is fitted into the invariants.

The problem has been solved for a special case, (nests which have
uniform multiplicity one), by R. V. Kadison and I. M. Singer ([4)
§3.4). Here the above difficulty was overcome by considering a class
of subsets of the real line which can be used to index the projections
and the order isomorphisms between members of this class which
carry sets of zero Lebesgue measure onto these sets of the image.
It is felt that this would prove rather cumbersome in the general
case.

1* Preliminaries and notation• Throughout this paper, the
terms Hίlbert space, subspace and projection will be used to mean
complex Hubert space, closed subspace and orthogonal projection
respectively. The set of all bounded linear operators on a Hubert
space H will be denoted by j*f(H). The orthogonal complement of
a subspace N of H will be denoted by HQN. The symbol φ will
always denote orthogonal direct sum. If N is a subspace of H and
E is the projection onto N, then for any A e Jϊf(H) the operator of
J*f(N) formed by restricting the domain of EA to N will be denoted
by Ajsr or by AE. If Szf is any subset of ^f(H)f the set {AE: A e ,^}
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will be written as sfE or as sfN. If Ssf is a self-ad joint subset of
(that is, Aej^f implies that A*ejy), then the set

): AΆ = AA! for all Ae.szf} is called the commutant of
and will be denoted by j&". We note that a self-adjoint

subalgebra j ^ of ^{H) is a maximal abelian subalgebra of J£f(H)
if and only if όzf — Sz?'. A separating vector for j y is a vector of
i ϊ which is annihilated by no operator of tszf other than the zero
operator. A generating vector for j y is a vector x of H such that
the set {Aίc: A e s^f) is dense in Zf.

The topologies on j£f(H) induced by the sets of seminorms
A—>\(Ax, xy\ and A—>\\Ax\\ for all x e H, are called the weak and

strong operator topologies respectively. A weakly closed self-ad joint
subalgebra of J5f(H) is called a W*-algebra. A well known result
due to von Neumann (see e.g. [1] Chapter I, §§3,4) shows that if
j^f is a self-adjoint subset of Jzf(H) containing the identity operator
then the J7*-algebra generated by ,s>f is sf". If sZ is a W*-
algebra and every set of mutually orthogonal projections of s/ is
countable, then ,5/ is said to be countably decomposable. Clearly if
H is separable, every W*-subalgebra of ^f(H) is countably de-
composable. The following results are stated for reference. Proofs
may be found in [1] (for (i), p. 6 and p. 20, and for (ii), p. 89)β

THEOREM 1.1. Suppose sf is an abelian W* subalgebra of
£f(H). Then

(i) S^ is countably decomposable if and only if j>f has a
separating vector.

(ii) If there exists a generating vector for ,_§/ then s$? is
maximal abelian.

In measure theory we shall follow the definitions and terminology
given in [2]. However, as we shall be concerned with compact spaces,
we note that in this case the Borel sets are the elements of the er-
ring generated by all closed (or all open) subsets, and all Borel
measures are finite. We use the symbol "gΞ" for set inclusion, α c "
being reserved for proper inclusion. The symbol " \ " denotes set
theoretic difference and the characteristic function of a set S will be
denoted by χs.

A set %Ar of subspaces of a Hubert space H is called a complete
nest if:

( i) it is totally ordered by inclusion,
(ii) (0) and H are members of .̂ f,
(iii) given any subset Λl of _yK, the subspaces Π {N: NeΛ^},

cl [\J {N: N e Λ^}] are both members of x>γ
%.

If ^ is a complete nest and ΛΓe^^, N' Φ (0), we define ΛΓ_ by



UNITARY INVARIANTS FOR NESTS 231

N- -cl[(J{M:M€^r, MciN}] .

Then N_ e ̂ y. If N_ Φ N, we call iV_ the immediate predecessor
of N(in <yy). (The above definitions are reproduced from [8].)

Let g7 be the set of projections onto the members of a complete
nest ,yy. If F is a projection and F e g7 ', then gv is a totally
ordered set of projections whose ranges clearly form a complete nest
of subspaces of the range of F. We shall denote this nest by Λr

F.
The weak closure of the algebra generated by gf (that is, g7"), will
be called the core of < /̂̂ (cf. [4]). A nest Λ^ is defined to be
countably decomposable if its core is countably decomposable.

We obtain a complete set of unitary invariants for countably
decomposable complete nests. It is a trivial consequence of results
in [8] (Lemma 3.2 and Theorem 3.4) that this will also be a complete
set of invariants for the corresponding nest algebras.

2Φ Complete nests as ordered sets* An ordered set {ω, <} is
a set of elements ω — {α, &, •} which are totally ordered by the
relation < . When the relation is understood we shall speak of ω as
an ordered set. The relation g is defined in the natural way. The
subsets of ω defined by {x: a < x < 6}, {x: a ̂  x < 6}, {x: a < x ^ b}
and {x: a ̂  x ^ 6} will be denoted by (α, 6), [α, δ), (α, 6] and [α, b]
respectively. We establish terminology for ordered sets following
Kamke [5] and Kelley [6] (p. 58 problem I). If there exists an
element α0 in ω such that α0 < a for all a e ω\a0 then α0 is called the
first element of ω. Similarly if a < a± for all a e ω\ax then ax is
called the last element of ω.

Two ordered sets {α>, <}, {fl, <} are order isomorphic if there
exists a one to one map φ from ω onto 42 such that a < 6 if and
only if φ(α) -< <p(δ). Such a map <p is called an order isomorphism.
A subset η of ω is called order dense if, for arbitrary a,beω with
α < 6, there exists an element c of η such that α < c < δ. A subset
α: of ω is said to be order bounded if there exist elements b, c of ω
such that, for all α e α, 6 ̂  α ̂  c. If every order bounded subset of
an ordered set ω has a supremum and an infimum then ω is said to
be order complete. If ω is order complete, for each element aeω
(except for the first element of ω if it exists) we denote by α_ the
element sup {x: x < a}. If α_ is distinct from α, it is called the
immediate predecessor of a. The following theorem follows easily
from the theory of ordered sets.

THEOREM 2.1. If {ω, <} is an ordered set such that
( i ) ω has a first and a last element,
(ii) ω is order complete,
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(iii) ω has a countable order dense subset.
Then ω is order isomorphic to the real numbers of the closed interval
[0, 1] ordered by the natural ordering.

Proof. Note that the property of being order complete is
equivalent (in the terminology used e.g. in [5]) to the property of
having no gaps. The theorem is then a trivial deduction from
Theorem 3 p. 77 of [5].

If {ω, <} is an ordered set, the sets (α, b) for all a,heω form
a base for a topology on ω. This topology is called the order
topology. If two ordered sets are order isomorphic then their order
topologies are homeomorphic.

From the definition of a complete nest ^K, it is clear that {^", c }
is an order complete ordered set with a first and a last element, and
is homeomorphic under the order topology to {g*, <} where & is the
set of projections onto the members of

THEOREM 2.2. The following statements are equivalent.
( i ) The ordered set ω is order isomorphic to some countably

decomposable complete nest ̂ A^.
(ii) The ordered set ω is compact and metrisable in the order

topology.
(iii) The ordered set ω is order isomorphic to the points of

some closed subset S of [0,1] containing 0 and 1 and ordered by the
natural ordering.

Proof, ( i )^( i i ) . If ω is order isomorphic to the nest ^V9 it
follows, from the completeness of <yK, as in [6] (p. 162 problem C),
that Λ" is compact under the order topology. Since ^V~ is countably
decomposable, there exists a vector x that is separating for the set
£? of projections onto the members of ^V. It is easy to verify that
the metric defined by

d(EuE2) = W^-E^xW

defines the order topology on g 7 . Hence ^K is metrisable.
(ii) => (iii). If o) is compact and metrisable then it has a countable

base {Ίi'.i = 1, 2, •}. Let αx be the last element of ω and let

a = {a: a e ω, a_ Φ α} .

Then for each a e a, [α, α j = (α_, αx] is an open subset of ω containing
a. Hence there exists an integer n(a) such that

a e Ίnu) S [α, α j .
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Since a = min ynia), distinct members of a give rise to distinct members
of the base. Hence a is a countable set.

Let / be a function defined on ω into ω x [0,1] by

f(a) = (α, 0) for a e ω\a .

f(a) = (α, 1) for a e a .

Let α>' be the set

{(α, 0): α e ω\α} u {(α, r): α e α , r e ( 0 , 1 ] }

ordered by the dictionary ordering of ω x [0,1], It is easy to see
that ωf is order complete and has a first and a last element. Since
ω is compact and metrisable, it is separable and thus contains a
countable subset η which is dense in the order topology. Let yf be
the union of the image of η under / and the subset of ω' defined by

{(α, r): aea,r rational, r e (0,1]} .

Then it is easily verified that η' is a countable order dense subset of
ω\ Hence by Theorem 2.1, ω' is order isomorphic to the closed
interval [0,1]. Let g be the map effecting this order isomorphism.
As / is order preserving, we have that gf is an order isomorphism of
ω onto a subset S of [0,1] and as the extreme elements of ωf are in
the range of /, S contains 0 and 1. The complement of S in [0, 1]
consists of the set

which is a countable union of open intervals. Hence S is a closed
subset of [0,1],

(iii)=>(i). Let S be a closed subset of [0,1] and consider the
projections of _2f(L2[0,1]) corresponding to multiplication of elements
of L2[0,1] by χ[0,λ] for λ e S. Then, the ranges of these projections
form a complete nest in L2[0,1] and are order isomorphic to the points
of S. Since L2[0,1] is separable this nest is countably decomposable.

The preceding theorem characterises the ordered sets that are
order isomorphic to some complete countably decomposable nest. It
is, however, an open question whether every nest which is compact
and metrisable in the order topology is necessarily countably decom-
posable.

THEOREM 2.3. // ω is an ordered set, order isomorphic to a
closed subset S of [0,1] then the order isomorphism is a homeomor-
phism when ω has the order topology and S has the relative topology
induced on it by the usual topology of the real line.
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Proof. This is equivalent to proving that the order topology of
S and the usual induced topology coincide. Since S is closed, it is
easy to show that for arbitrary real numbers α, b the set (α, b) Π S
can be written as (p, q) Π S where p and q are points of S. The
theorem then follows from the fact that the sets {(a, b) Π S: a,b real}
and {(p, q) Π S: p, q e S} form bases for the induced topology and the
order topology respectively.

COROLLARY 2.4. // ω is as in Theorem 2.3, any subset of ω
which is open in the order topology can be written as a countable
disjoint union of open order intervals.

Proof. Using Theorem 2.3, this is an immediate consequence of
the similar result for the open subsets of the real line.

3* T h e measures associated with a nest* For the whole of
this section, ^K shall denote a complete nest of subspaces of a Hubert
space H such that ^Γ is metrisable in the order topology. Let R be
the ring of subsets of <yΓ generated by all open order intervals of Λ*.
Then it is clear that any member R of R can be written as a finite
disjoint union, \Jΐ=1Ri, where each R{ is either an open order interval
(Nlf N2) or a single point {N^. Let x be any vector of H and define
the set function μx on R as follows. For open order intervals and
single points let

μx((Nu N2)) = <CEL - Ex)x, x>

where Eiy E^ are the projections onto the subspaces Ni9 Ni_, (i = 1,2),
and for a general member R of R

where U Rι is the representation of R as above.

LEMMA 3.1. μx is a countably additive set function on R*

Proof. This proof is a modification of the similar result for the
real line, (see e.g. [2] pp. 32-35). Suppose {R^. i = 1, 2, ..} is a
countable disjoint set of members of R and suppose (JΓR% = ReR.
It is required to prove that



UNITARY INVARIANTS FOR NESTS 235

Clearly, it is sufficient to consider the case where R and each Ri are
either single points or open order intervals. The result is obvious
if R is a single point.

Suppose R = (Nu N2) and Eu E2 are the projections onto Nl9 N2.
As the supremum of an ordered set of projections is a strong limit
point of the set, if N2- = N2 then for any ε > 0, there exists Nζ c ΛΓ2

such that Ni e Λ^ and

μx{(Nζ, N2)) < e/3 .

If N2- Φ N2, let N2

f = iV2_. Similarly there exists N( D JVΊ such that

μx((Nu Nl)) < ε/3 .

Thus there is a closed interval [N(, N2'] included in (Nl9 N2) such that

μx((Nu N2)) - μκ([N{, Ni]) < 2ε/3 .

Similar considerations show that if Ri is a single point, it is contained
in an open order interval RI such that

μΛ(R'%) - μx{Rd < 6/3.2* .

If Ri is an open interval, let JB/ = Rit Then the set {^: i = 1, 2, - •}
is an open cover of [N[, N£] and by picking a finite subcover, it fol-
lows easily that

μx((Nu N2)) £ Σ μx(Rt) .
1

As the opposite inequality is easy to prove, the lemma follows.
Standard measure theory (see e.g. [2] p. 41 et seq.) shows that

μx may be extended to a measure on some σ-τing Sx. It should cause
no confusion if this measure is denoted by μx. As for each xeH,
Sx contains all open intervals, and hence by Corollary 2.4, all open
sets, it follows from the compactness of ^V that each Sx contains
the Borel sets of ^V. Hence, for all xeH, as μx is clearly finite,
μx is a Borel measure on %Ar. We shall denote the set of Borel sets
of ^T by &.

THEOREM 3.2. // f(N) and g(N) are bounded, Borel measurable
functions defined on ^4^, there exists a bounded linear operator Tf

belonging to the core ^ of ^Y*, such that

Also,
( i ) kTf = Tkf (k a complex number)
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(ii) Tf+Tβ=Tf+β

(iii) TrTβ=Tf.β

(iv) <2>, 2 » = \ fgdμx

(v) TfX = Tgx if and only if f — g μx-almost everywhere.

Proof. Define the complex valued measure vXtV by

^x,y ~ f^x+y f^x—y ' ΊfAx+iy ^f^x—iy

Then, from the definition of μx, it is clear that for any open order
interval (Nlf N2), vx,y({Nu N2)) is a bilinear form on H. But the rela-
tions expressing this bilinearity are equations between linear combina-
tions of measures and therefore they hold on a σ-rmg. As this σ-ήng
contains the open intervals, it follows, using Corollary 2.4, that for
all Borel sets δ of Λ", vx,y(δ) is a bilinear form on H. It is now
easy to show that in the equation

<Tfx,y>= \ fdvx,y

the right hand side is a bounded bilinear form on H and hence defines
the operator Tf.

We show that TfG<jf(= <£"'). If Aeίf ' , the relation

is easily verified if δ is an open interval and hence holds for all δ e
Therefore, for all x, y e H,

= \ fdvΛx,y

= <Tfx,A*y>

= <ATfx, y>

and so Tfe
 c<^.

The properties of Tf are easily proved using approximations to /
and g by simple functions. The details are omitted.

If δ is a Borel set of *sK, we denote the operator Tu by E(o).
From Theorem 3.2(iii), E(δ) is a projection and, if δ, δ'e^?,
E(δ (Ί δ') = E(δ)-E(δ'). As <#(•)&, x> = μx(-), it is clear that E( )
is countably additive on & in the strong operator topology. We call
E( ) the projection valued measure for the nest ,yK. We shall denote
the range of E(δ) by N(δ).

For each x e H we define the subspace M(x) of H by

M(x) = cl[span {E(δ)x: δ e
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where & is the set of Borel sets of ^ ^ .

LEMMA 3.3. ( i ) Mix) = M(kx) (k a complex number).

(ii) M(E(δ)x) = N(δ) Π M(x).
(iii) If E{δ, (Ί δ2) = 0 and x, e N{δi) (i = 1, 2,) ίfeew

Λ f ^ + x2) = ΛΓ(α?0 © Λf(a?2).

(iv) T%β projection onto M(x) belongs to the commutant (g5" of
the core cέ? of ^V.

Proof, (i), (ii) and (iii) are simple consequences of the definition
of M(x). To prove (iv), we note that if g" is the set of projections
onto the members of *sK, M(x) is invariant under each member of
if. Hence, if P is the projection onto M(x), for all Ee g7,

EP = PEP

= (PEP)*

= PE

and hence P e g " = r .

If μ is a measure on «̂ f, we denote by L\^Γ, μ) the Hubert

space of functions / defined on ^V such that I \f\2dμ exists and is

finite.

THEOREM 3.4. There exists a unitary transformation U taking
M(x) onto L\^V', μx), such that for any Borel subset δ of ^V\
UE(δ)U* is the operator on U(^K, μx) which multiplies the functions
of U(^Γ, μx) by χδ.

Proof. Using the notation of Theorem 3.2,

M{x) = cl {TfXif a simple function} .

The transformation Tfx—»f, by Theorem 3.2, (i), (ii), (iv) and (v), is
a linear, isometric and one to one transformation from a dense subset
of M(x) onto a dense subset of L 2 (^^, μx). Hence it may be extended
by continuity to a unitary transformation.

If / is a bounded, Borel measurable function,

UE(δ)U*f=

But E(δ) is a bounded operator and the bounded, Borel measurable
functions form a dense subset of Ui^Γ, μx). Therefore the above
relation holds for all fe L2(<yK, μx).

COROLLARY 3.5. M(x) is separable.
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Proof. As ^Ϋ~ is compact and metrisable, it is separable and
therefore, if {JV4: i = 1, 2, —} is a countable dense subset of ^ , it
is easy to see that the smallest σ-ring containing all intervals of the
form (Ni9 Nj) consists of the Borel sets of Λ". The fact that
L\<yK 9μx) is separable now follows from [2], (Theorem B, p. 168 and
Problem (1) p. 177).

As in [2], we write μ1 ~ μ2 if μ1 and μλ are equivalent measures,
and μ1 < μ2 if μ1 is absolutely continuous with respect to μz.

THEOREM 3.6. If μ is a Borel measure on <yK and, for some
xeH, μ < μx, then there exists a vector y e H such μ = μy. If
μ ~ μx then y may be chosen so that M(x) = M(y).

Proof. As μ < μx1 by the Radon-Nikodym Theorem (see e.g. [2]
p. 128), there is a real valued, positive function h defined on ̂ K such that

μ(S) =

for all δe&. As μ is a Borel measure, μ is finite and hence
(h(N))ll2e L\^Y*, μx). Let U be the unitary transformation found in
Theorem 3.4. Then if y = £7*Λ1/2, using the properties of U,

μy(δ) = <E(δ)y, yy

= \ hdμ
J δ

- μ(δ) .

With y as chosen, y e M(x) and thus M(y) S M(x). Suppose the
inclusion is proper and let z e M(x) Q M(y) and put / = Uz. Then
for all δ € ^ ,

- <JE{δ)y, zy

= 0 .

Now if μ ~ μx then h(N) > 0 /valmost everywhere and hence / = 0.
Thus in this case, M(x) = M(y).

We now prove a result which shows that f̂" is a countably
decomposable nest if and only if there exists a separating vector for
the set of projections {E(δ): δ

THEOREM 3.7. If x is a separating vector for {E(δ): δe &} then
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it is separating for the core ^ of the nest Λ^.

Proof. Suppose x is not separating for <g?. Then for some
nonzero operator F G ^ 7 , FX = 0. As ^ is a commutative * algebra,
F is normal. By the spectral theorem, the spectral projections of F
commute with {F}r and hence with ^ ' , and thus belong to ^f = <£"'.
Hence we may assume that F is a projection.

Let y be a nonzero vector in the range of F, and let Px, Py be
the projections onto M(x) and M(y) respectively. Since FE(d)y —
E(δ)Fy = E(δ)y, and FE(δ)x = E(δ)Fx = 0 for all δe&, we have
that FPy - Py and FPβ - 0. By Lemma 3.3 (iv), Pβ, Py e ΐf'. Then,
for all Teζf', as Fe^,

PyTPx = FPyTPx

= PyTFPx

= 0 .

Similarly PxTPy = 0. Also as ^Mix) has a; as a generating vector, by
Theorem 1.1, it is maximal abelian and hence if Γ, S e ^ ' ,

PXSPX.PXTPX = PXTPX.PXSPX .

Similar relations hold for Ptf.

Now let P = Pβ + P y. Clearly the range of P is M(x) 0 M(τ/).

Then if TfSe^'9 from the previous paragraph it follows that

p Op — Op lp

and hence (^?r)P( = (^?

Pγ) is abelian. Hence ^ P is a maximal abelian
algebra of operators on M(x)®M(y). As by Corollary 3.5, M{x)®M{y)
is separable, ^P is countably decomposable, and hence by Theorem 1.1
there exists a separating vector z for ^P. Considering ^as a vector
of H, we have that M(z) = M(x) 0 M(y) for the projection onto the
orthogonal complement of M(z) in M(x) 0 M(y) is a member of
^p( = ̂ p)(Lemma 3.3 (iv)), annihilates «, and so must be zero.
Therefore M(x) S M(a;). But

^ β (g) = 0 — £7(5) = 0

~ μ.(δ) = o

and so μx ~ μz. By considering the unitary transformation of M(z)
onto lίifΛ'', //β), an argument identical to that in the proof of Theorem
3.6 shows that M(z) = M(x). This contradicts the fact that y Φ 0
and thus the theorem is proved.

We shall sometimes refer to a vector that is separating for the
core of a nest as a separating vector for the nest.
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If ω is any ordered set which is compact and metrisable in the
order topology, by a basal measure for ω we mean a Borel measure
μ on ω such that, if a, beω

(i) μ((a, b)) = 0 if and only if (a, b) is empty,
(ii) μ(a) = 0 if and only if a = α_.

LEMMA 3.8. // ^ ~ is α countably decomposable, complete nest
with core ^, then the class of measures {μx: x is separating for
is an equivalence class of basal measures for

Proof. If x is separating for ^ and μ ~ μx then by Theorem
3.6 μ = μy for some y. Let E(-) be the projection valued measure
of Λ^, and let & be the set of Borel sets of ^ ^ . Then for all

= 0<=>μy(δ) = 0

<=> μ.(δ) = 0

~ E(δ)x = 0

- 0 .

Therefore y is separating for {E(δ): δ e &}, and thus by Theorem 3.7,
y is separating for <^m Conversely if x and y are separating for <g=%

μx(δ) = 0<=> E(δ) = 0

~ J",(δ) - 0

and thus j ^ , . : x separating for ^ } is an equivalence class of Borel
measures. The fact that these measures are basal follow easily from
the definition of μx and the fact that x is separating for <g=\

4* Order measure multiplicity types* For the remainder of
this paper, the term nest shall be used to mean complete, countably
decomposable nest, unless the contrary is explicitly stated. If ^V is
a nest of subspaces of a Hubert space H with projection valued
measure E( ), and δ is a Borel subset of Λ~, then we shall write ^ J
for the nest «Λ^(δ).

Two vectors x, y of if are said to be very orthogonal (with
respect to the nest <yK) if M(x) and M(y) are orthogonal subspaces
of H. This is equivalent to the statement that for all Borel subsets
δ, δ' of ^V, <E(δ)x, E{δr)y> = 0, or to the statement that x is
orthogonal to M(y). Note that this definition of very orthogonality
differs from that used in [3]. If x and y are very orthogonal with
respect to <yV" then E(δ)x, E(δ)y are very orthogonal with respect to

Conversely, if x and y are very orthogonal with respect to
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then, (considered as vectors of H) they are very orthogonal with
respect to ^V.

If ^Ϋ~ is a countably decomposable nest, by Theorem 1.1 the set
of vectors separating for (the core oi)Λ" is nonempty. A simple
application of Zorn's Lemma yields a set of separating vectors for <yK
which is maximal with respect to the property that any two members
are very orthogonal. Such a set will be called a maximal set of
very orthogonal separating vectors for .yΓ.

LEMMA 4.1. If Φ is a maximal set of very orthogonal separating
vectors for a nest ^V*, then there exists a Borel set δ of ^4^ such
that E(δ) Φ 0 and

N(δ) = 0 {M(E(δ)x): x e Φ) ,

where E( ) is the projection valued measure of <yV" and N(δ) is the
range of E(δ).

Proof. Let P be the projection onto the subspace ®{M(x): x e Φ}.
Then from Lemma 3.3, Pe<^' and thus ^K{1_P) is a nest. Let z be
a separating vector for ^Ylι^P). Then z (considered as a vector of H)
is very orthogonal to each member of Φ and by the maximality of Φ,
z is not separating for ^V. Hence, using Theorem 3.7, there exists
a Borel set δ of Λ" such that

E(δ) Φ 0 and

E(δ)z = E(δ)(I- P)z

= 0 .

But as z is separating for ^V[ι^P) and Pz^' this implies that
( I - P)E(δ) = 0 and hence

N(δ) = N(δ) 0®{M(x):xeΦ}

= Θ W ) Π M(x):xeΦ}

= ®{M(E(δ)x):xeΦ} ,

using Lemma 3.3 for the last step. This completes the proof.
If Φ is any set, we denote the cardinality (or power) of Φ by

m
THEOREM 4.2. // Φ and Θ are two maximal sets of very orthogonal

separating vectors for a nest ^K then

\Φ\ =

Proof. The method of this proof is identical to that in [3], p.
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99. We divide the proof into two cases.
(i) If \θ\, \Φ\ are both infinite.

For any vector x of if, let Px be the projection onto M(x). For
each xeθ let

Kx = {y:yeΦ,PyxΦθ}.

By the maximality of Φ, no member of Θ is very orthogonal to each
member of Φ. Thus for each y eΦ, there exists some x e Θ such
that Pyx Φ 0 or equivalently such that y e Kz. Thus Φ is a subset
of (J {Kx: x e Θ}. But since

II2 > V II P
yβΦ

for each xeΘ, Kx is an at most countable subset of Φ. Therefore,
as Θ I is an infinite cardinal, | JJ {Kx: x e Θ} | ^ | Θ |. So we have that
\Φ ^ I Θ I and by symmetry, equality must hold.

(ii) If \θ\, \Φ\ are not both infinite.
Suppose I Θ \ — n is finite. We shall prove that \Φ\ ^ n and the

result will then follow by symmetry. Let δ be the Borel subset of
provided by Lemma 4.1 such that E(δ) Φ 0 and

N(δ) = ®{M(E(d)x):xeΘ} ,

and let the set of vectors {E(δ)x: xeΘ} be {x^ 1 ^ i ^ n}. Then as
Θ is a set of separating vectors it follows that the measures {μx.} are
equivalent. If μXχ = μ, from Theorem 3.6 there exist vectors
{Zii 1 ^ i ^ n) such that //βί — μ and Aί^i) = M{Xi). Then

Let Ui be the unitary transformation, provided by Theorem 3.4, of
M(z{) onto Ui^Γ, μ) and let U = 0 ^ . Then [7 takes JV(δ) onto

Now suppose that \Φ\> n and let {#<: 1 ^ i ^ w + 1} be a subset
of n + 1 elements of {E(δ)y: yeΦ}. For all Borel sets 7 of ^ such
that E(d n 7) ^ 0, as Φ is a very orthogonal set of separating vectors,
we have that ζE(y)yi9 E{i)y3^ = 0 if and only if i Φ j . Hence

<JJE(Ί)U*Uyu UE(y)U*Uy3> = 0

if and only if i Φ j . Now 9^ = Uy{ is an ordered set (fil9 , /<Λ) of
n functions of L2(^4^, μ) and it follows from the above relations and
the properties of U that
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if and only if i ΦJ. Hence at all points Neδ except possibly for a
μ-mύ\ set, the ordered sets of complex numbers (f^N), •• ,/i*(JV))
form an orthogonal set of n + 1 nonzero vectors of an ^-dimensional
Hubert space. This contradiction shows that | Φ | ^ n and the theorem
follows.

For a given nest ^V, we define a function m( ) with domain the
Borel sets of <yγ" and range the cardinal numbers as follows. Let
E( ) be the projection valued measure of ,Ar and suppose δ is a Borel
subset of <sV. If E(δ) Φ 0, then we define m(δ) to be the cardinality
of a maximal orthogonal set of separating vectors for the nest Λϊ.
If E(δ) = 0, m(δ) is defined to be zero. Theorem 4.2 shows that m( )
is uniquely defined.

Let ω be any ordered set that is compact and metrisable in the
order topology and let [μ] be some equivalence class of basal
measures for ω. Then a function p( ) with domain the Borel sets of
ω and range the cardinal numbers, satisfying

(i) p(δ) = 0 if and only if μ(δ) = 0 for μ e [μ].
(ii) If Δ is any countable set of Borel subsets of ω such that

\J{δ:δeΔ} is not μ-null for μe[μ], then

e 4 ) = m i n

is called a multiplicity function for (α>,

LEMMA 4.3. If ^K is a nest and [μ] is the set of measures
{μx: x separating for ^K} then the function m( ) defined above is a
"multiplicity function for {^V', [μ]).

Proof. Properly (i) is obvious from the definition. If Δ is a
countable set of Borel subsets of ^V let p = (J {δ: δe Δ} and suppose
that μ(|θ) Φ 0 for some ^ e [μ]. Let Φ be a maximal set of very
orthogonal separating vectors for ^V?. Then for each δ e Δ such that
μ(δ) Φ 0, {E(δ)x: x e Φ} is a set of very orthogonal separating vectors
for .Λϊ. Hence from the definition of m( ), if μ(δ) Φ 0,

m(^) ^ m(δ) .

But from Lemma 4.1, there exists a Borel set 7 S ^ such that

N(y) - φ {AΓ(£?(7)ίc): xeΦ} .

We then have that m(y) = m(δ). Now for some member Sx of zί,
μ(δ1 n 7) ^ 0 and clearly
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m(δ1 Π 7) =

By an argument similar to that above,

m(5i) ^ m(δ1 n 7) =

and the lemma follows.
By an order measure multiplicity set (abbreviated to o.m.m. set

in the sequel), we mean a set {*sK, [μ], m( )} whose members satisfy
the following.

I. ^V is an ordered set which is compact and metrisable in
the order topology.

II. [μ] is an equivalence class of basal measures for Λ".
III. m( ) is a multiplicity function for {^V,[μ\)-

If {*yKΊ [/^],^( )} is an o.m.m. set and δ is a Borel subset of ^yK*, we
call the cardinal number m(δ) the multiplicity of δ. If δ has the
property that for every Borel subset 7 of δ such that μ(j) Φ 0 we
have m(δ) = m(7), we say that δ has uniform multiplicity.

If <p is an order isomorphism of ^ Γ onto another ordered set ^/ί
then it is a homeomorphism with respect to the order topologies of
Λ" and ^/έ. If δ is any subset of Λ" we write φ(δ) = {φ(N): Ne δ}.
It is easy to see that if & denotes the Borel sets of Λf, the set
{φ(δ)\ δe 32} is the set of Borel sets of ΛZ. If {^V, [μ], m( )} is an
o.m.m. set we define

where [v] is the class of measures such that v e [î ] if for some μ e

and p( ) is the function defined by

p(φ(-)) = m(') .

A simple verification shows that {^f, [v], p(-)} is an o.m.m. set.
Two o.m.m. sets {<yf^, [μ\,m{ )}Λ^Avλ,V{-)} are said to be

equivalent if there exists an order isomorphism φ: Λ^ —> ^€ such
that

It is clear that this is a genuine equivalence relation. The order
isomorphism φ is said to implement the equivalence. We call an
equivalence class of o.m.m. sets an order measure multiplicity type
(o.m.m. type).

The preceding results shows that every nest gives rise to a
unique o.m.m. type. We shall prove that the o.m.m. type of a nest
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is a complete unitary invariant.

THEOREM 4.4. If two nests are unitarily equivalent, they
determine the same o.m.m. type.

Proof. Let the two nests be ^V and ^ and let V be the
unitary transformation taking ^V onto ^ . Then U clearly induces
an order isomorphism φ: Λf —> ^ where <p(N) is the image of the
subspace N under U. If E(>), F(>) are the projection valued measures
of ^/Γ and ^/f respectively, then

UE([0,N])U* = F([0,φ(N)])

and hence for all Borel sets δ of Λ^ ,

UE(δ)U* - F(φ(δ)) .

A routine verification shows that Φ is a maximal set of very orthogonal
separating vectors for Λ\ if and onlf if Θ = {Ux: x e Φ) is a similar
set for ^£φ{D. Also if x is separating for the core of Λ", then
C7& = y is separating for the core of ^ and

&, a;> - <UE(-)U*Ux, Ux>

Therefore ^ implements an equivalence between the o.m.m. sets of
and ^ and hence ^A^ and . ^ determine the same o.m.m. type.

5* Nests of uniform multiplicity. Let {.yK, [μ], m( )} be the
o.m.m. set of a nest ^K of subspaces of a Hubert space H. We say
that the nest is of uniform multiplicity if the Borel set <yV" is of
uniform multiplicity for the function m( ). In this section we prove
the converse of Theorem 4.4 for nests of uniform multiplicity. If
<sV~ is nest of uniform multiplicity, we take A as an index set with
typical member a such that m(^V) = \ A |.

Before we prove the next lemma, it is of interest to show by an
example that it does not hold trivially. If r e [0,1], let Vr be the
subspace of L2[0,1], (Lebesgue measure), consisting of functions /
such that f(t) = 0 almost everywhere for t > r. Now let Vrl = Vr

for r < i and Vrl = V1}1 for r ^ J and for integers ΐ ^ 2 let Vrί = Vr.
Then if

CO

iVr = ζp V ri ,

the set {Nr: re [0,1]} forms a complete nest ^4^ of subspaces of H —
£2[0,ί]ΘΘ~2L2[0,1],, (where for each i ^ 2, L2[0,1], - L2[0,1]).
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If δ is a Borel subset of [0,1] let %δL
2[0,1] denote the subspace of

L2[0,1] consisting of functions vanishing almost everywhere outside
δ. For convenience we identify a Borel set δ of [0,1] with the Borel
set of Λ" defined by {Nr: reδ}. Then if J57( ) is the projection valued
measure of *sf, it is easily verified that E(δ) is the projection onto

' 2

Let βi be the unit function in L2[0, l] f and zero elsewhere. Then the
set {βii i = 2, 3, •} is a maximal set of very orthogonal separating
vectors for ^K, as no vector of L2[0, J] is separating for ^K and no
vector of L2[0,1]^ is very orthogonal to ei9 Also, if S is any Borel
set of [0,1], either the set {£r(δ)βί: i = 2, 3, •} or this set together
with E(δ)e1 (where e1 is the unit function in L2[0, i] and zero elsewhere)
forms a countable maximal set of very orthogonal separating vectors
for o^J. Hence, Λ^ is of uniform multiplicity. However it is easy
to see that

Therefore not every maximal set Φ of very orthogonal separating
vectors for a nest Λ" of uniform multiplicity generates the Hubert
space H of ^V in the sense that

H= ®{M(x):xeΦ} .

However we have the following result.

LEMMA 5.1. If ^K is a nest of subspaces of H having uniform
multiplicity \A\(A an index set), then there exists a set {xa:aeA}
of very orthogonal separating vectors such that

H=® M(xa) .
aβA

Proof. Let μ = μx for some vector x that is separating for ^V.
Consider the set Δ of Borel sets of ^/K with the properties;

( i ) members of Δ are disjoint,
(ii) for each δeΔ, μ(δ) Φ 0,
(iii) for each δeΔ, there exists a set {x8

a: a e A} of very orthogonal
vectors such that

N(δ) = 0 M(xi) .

Lemma 4.1 shows that such sets exist and hence, by a Zorn's lemma
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argument there exists a maximal set Δm with the above properties.
As μ is a finite measure, properties (i) and (ii) imply that Δm is an at
most countable set, say, Δm = {δ{\ ί = 1, 2, •}. Now if M-^ΛUΓ^)^
0 then, as <sK is of uniform multiplicity, an application of Lemma
4.1 to *yKi where 7 — ~^\UΓ# contradicts the maximality of Δm.

It is clear that we may assume that the sets {xi} satisfying (iii)
for δ{ consist of unit vectors. Let

It is easy to see that {*«} is a set of very orthogonal separating
vectors. Then, using Lemma 3.3,

θ M(xa) = θ θ M(E(δi)Xa)
aβA aβA 1

= 0 0 M(xi)
a£A 1

- H .

If δ is any Borel subset of Λ^, we denote the subspace of
U(tyK1 μ) consisting of all functions vanishing ^-almost everywhere
on the complement of δ by the symbol χδL

2(«^^, μ).

THEOREM 5.2. // ̂ " is a nest of uniform multiplicity \ A \ then
for any vector x that is separating for Λ^, there exists a unitary
transformation from H onto

where μa = μx for all aeA. The image of a member N of ^K
under this transformation is

01[o^2(^,ft) .

Proof. From Lemma 5.1,

H = <B^M(xa)

where {xa: aeA} is a set of very orthogonal separating vectors. Then
for each aeA, μXa ~ μx and by Theorem 3.6 there exists a vector
za such that M(za) = M(xa) and μZ(ύ = μx. Hence

H = φ M(za) .

Let Ua be the unitary transformation found in Theorem 3.4 taking
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M(za) onto L\Λr, μa) and let

U = 0 Ua .
ocQA

Then U is a unitary transformation taking H onto

where μa — μx for all ae A.
If ϋ/ is the projection onto the member N of ^ " , in the notation

of §3, E = TXiQNV Hence, by Theorem 3.4, for each aeA the
operator UaEU* acts on L2(Λ^,μa) by multiplying the functions by
£[o,2N. Therefore, as the image of ΛΓ is the range of UEU*, the
theorem follows.

THEOREM 5.3. // two nests, both of uniform multiplicity,
determine the same o.m.m. type then they are unitarily equivalent.

Proof. Let the nests be Λ^ and ^f with o.m.m. sets
{-^> L"L m ( )L {-^, M, 2>( )} These o.m.m. sets belong to the same
o.m.m. type and hence there exists an order isomorphism φ implement-
ing an equivalence between them. From the definition of equivalence
m(^i^) = p(^f) = \A\ where A is some index set and if μe[μ],
there exists v e [v] such that

Since Λ" and ̂ J€ are of uniform multiplicity, Theorem 5.2 shows
that they are unitarily equivalent to the nests

ίi
A

where μa = μ, va = v for all ae A and μ and i; satisfy the relation
above. Hence it is sufficient to establish the unitary equivalence of
the nests

{X^MM^»: Me ^T} .

Define a transformation £7 from L\^£, v) to L\^K', μ) by

As φ is a homeomorphism from ^/^ to ^ # , this transformation is
well defined and is clearly one to one and linear. Also if
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g» gt e L\^, v) and Ug, = fu Ug2 = f2,

\ gi(M)gAM)dv(M) = ί gi(φ(N))gAφ(N)) dvφ(N)

and hence U is a unitary transformation. If Ug = f we have that
f(N) — 0 μ-almost everywhere for N > No if and only if g(M) = 0
/ -̂almost everywhere for M > φ(N0). Hence the two nests are
unitarily equivalent under the transformation U.

COROLLARY 5.4. If ^Ϋ" and ^/ί are two nests of uniform
multiplicity and φ implements an equivalence between their o.m.m.
sets then there exists a unitary transformation U taking ^K" onto

such that for each N e

UN = φ(N) .

Proof. The implementing order isomorphism was chosen arbitrarily
and the unitary transformation found satisfies the required condition.

6* The general case. In order to use the results for the case
of uniform multiplicity to prove the general case, it is necessary to
extract from a general o.m.m. set certain Borel sets of uniform
multiplicity. We do this in the two lemmas which follow.

LEMMA 6.1. If {^/rAlA, m ( )} is anV o.m.m. set and 3 is a
Borel set of <yK such that m(δ) Φ 0, then there exists a Borel subset
7 of δ such that

(i) 7 has uniform multiplicity m(§).
(ii) Either m(δ\j) = 0 or m(δ\y) > m(δ).

Proof. Consider the set Δ of Borel subsets of δ defined by

Δ = {p: m(ρ) > m(δ)} .

If A is empty then δ has uniform multiplicity and by taking 7 — δ,
the lemma follows for this case. If Δ is not empty, pick some member
μ of [μ] and let

a = sup {μ(ρ):pe A} .

Now let {pi', i = 1, 2, •} be a sequence of members of A such that

lim [μ(Pi)] = a .
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Put p — \J pi and let 7 = δ\p. Then as p{eJ for all i, using the
properties of the multiplicity function,

m(δ\γ) = m(p)

= min [m(^)J > m(δ) .

This shows that 7 satisfies condition (ii). Also since m(δ) Φ m(p), 7
is not μ-null and so

m(δ) — min [m(7), m(p)] = m(i) .

Now if 7X is any Borel subset of 7 with μ{id =£ 0, then m(7) =
min[m(7i), m(7\7i)] and so m(7i) ̂  m(7). But if m(7i) > m(7) then
^ U 7i e ^ and μ(<o U 7i) > α contradicting the definition of α. Thus
m(7i) = m(γ) and so 7 has uniform multiplicity m(<5).

LEMMA 6.2. // {<yK,[μ],m(-)} is any o.m.m. set then there
exists an at most countable set {̂ : i = 1, 2, •} of Borel sets of
such that if μe [μ]

( i ) Λr = \juK
(ii) δι has uniform multiplicity,
(iii) m(δi)< m(δi+1),
(iv) μ(δi Π δj) = 0 for %Φ j .

Proof. For any nonzero cardinal c in the range of m( ), by
Lemma 6.1 there exists a Borel set of Λ^ that has uniform multiplicity
c. It is clear that for any μe[μ], any two sets of differing uniform
multiplicities intersect in a μ-null set. Thus the finiteness of μ implies
that the range of m( ) is an at most countable set of cardinals
{Cii i = 1, 2, •}. As the set of all cardinals is well ordered, we may
index this set so that <̂  < ci+1.

From the properties of multiplicity functions, it is clear that
m(^K) = c2. We define inductively a sequence of Borel sets of c ^ \
Let <?! be a set of uniform multiplicity cx obtained from ^/~ as in
Lemma 6.1, and for each integer fc, let δk be a set obtained in the
same way from Λ^WJΪ^δi providing this set is not of uniform
multiplicity, and let δk = ,̂ K\U?=i1 ̂  if this set is of uniform
multiplicity. In the latter case the process terminates with δk. That
the set {δiiί = 1,2, •••} has properties (ii) and (iii) follow directly
from properties (i) and (ii) of Lemma 6.1 and the indexing of the
range of m( ). Property (iv) is obvious from the construction, as the
sets are disjoint.

If the process terminates, property (i) follows from the construc-
tion. If the process does not terminate, we prove that
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= o .

For if this is false, then for some integer k,

From the construction and property (ii) of Lemma 6.1, m(ίyf^\\Jί δ{) =
cfc+1. But

\U δ* = f-^\ϋ sλ u ϋ
1 \ 1 / Jfc + 1

and so as m( ) is a multiplicity function we also have that

Therefore μMΛUΓ δ<) = 0 and putting δ, u MΛUΓ S;) in place of
<?! in the set {δ{: i = 1,2, •••} does not destroy properties (i), (iii) or
(iv). The set then also satisfies (i).

LEMMA 6.3. Suppose two nests Λr and Λ? determine equivalent
o.m.m. sets {Λs*,[μ],m( )}, {^[v],p( )} and φ implements this
equivalence. Let δ be a Borel set of ^i^ having uniform multiplicity.
Then if φ(8) = 7, the nests ^Vs, Λ?Ί determine equivalent o.m.m.
sets.

Proof. The difficulties of this proof are largely notational. Let
£?(•) be the projection valued measure of ^4^ and for each Ne^yK,
denote by Nh the range of #([0, N] Π δ) regarded as a subspace of
the range of E(δ). For each Me ^-/f, we define My in a similar way.
Then the nests Λl, ^£Ί are {N8:NeιyΓ} and {My: Me ^f} re-
spectively. Let ψ be a map from ^Yi onto ^/fΊ defined by

= [φ(N)]y .

This map is clearly order preserving. Also, if Nδ, JVδ' are distinct
members of Λl then E((N, N'] Π δ) Φ 0 and hence for μ e [μ],
μ((N, N'] Π δ) Φ 0. Therefore, as for each ve[v], %(•)) = μ(-) for
some μ e [μ], if <p(N) - M, φ(N') - M\ v((M, M'] n 7) Φ 0. Hence
if F( ) is the projection valued measure of ^f, F((M, M'] Π 7) Φ 0 and
thus My, My are distinct. Therefore ψ is an order isomorphism
between ^ J and ^ty.

Let ^ be the set of Borel sets of Λ ~ . If βe & let β' be the
subset of ^Π defined by {N5:Neβ}. The set {β':βe&} is clearly
a o -ring containing the open order intervals of ^Yi and hence contains
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the Borel sets of ^ . Now if i?'( ) is the projection valued measure
of Λl, a routine verification shows that

E'(β') = E(β)E{B) .

If x is separating for ^r then E(δ)x is separating for ^Vl and thus,
by Lemma 3.8, the set of measures [μf] of the o.m.m. set of ^V\ is
the equivalence class of μ'x where

μ'x(β') = <E'(β')E(δ)x, W)x>

= μx($ n β).

Therefore, for each μ' e [μ'] there exists μ e [μ] such that μ'(β') = μ(δ Π β).
A similar result holds for ^/ίΊ. Hence, if [i/] is the set of measures
of the o.m.m. set of ^ ^ ,

μ\β') = μ(β Π δ)

= V(φ(β) Π 7)

= V'(φ(β)f)

where φ(β)' = {My: Me φ(β)}. But then

φ(β)' = {f(Nδ): N e β}

= ψ(β')

and thus for each μre[μ'] there exists v'e[y'] with μ'( ) = v'(ψ(')).
As δ is a set of uniform multiplicity it is easy to see that ^ J

is a nest of uniform multiplicity and as m( ) = p(φ( )), ̂ /fy is a nest
of the same uniform multiplicity. Hence the o.m.m. sets of Λ^ and
^-//Ί are equivalent.

THEOREM 6.4. // two nests ^j^ and ^/S determine the same
o.m.m. type then they are unitarily equivalent.

Proof. Let φ be the order isomorphism implementing the
equivalence of the o.m.m. sets of ^V and ̂ //έ and let {δ{\ i — 1, 2, •}
be Borel sets of /̂/~ of uniform multiplicity, obtained from the o.m.m.
set of Λ" as in Lemma 6.2. Then if y{ = φ(δi), {jii i = 1, 2, •} are
Borel sets of ^€ having similar properties. By Lemma 6.3, for each
i the o.m.m. sets of ^Viv ~^Ίi are equivalent and as these nests are
of uniform multiplicity, by Theorem 5.3 there exists a unitary trans-
formation Ui taking <yl/li onto ^€Ίi.

Let E(') be the projection valued measure of <yy~ and for each
NeΛ~ let Ni be the range of E([0,N] Π δ<). Define Mi similarly
for each Me^/f. Then from the proof of Lemma 6.3, the map ψ{

from ^Yί. onto ^/ίΊi defined by ψi(Ni) = φ(N)i implements the
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equivalence between the o.m.m. sets of «^. and ^/ίΊi. Hence by
Corollary 5.4 we may suppose that UiNi = M{ where M — φ(N).

As ^ = UΓδ», for each

If U = φΓ Uit we have that if φ(N) = M,

UN = 0 E/ ^
1

1

- M

and hence the nests ^/K and ^ are unitarily equivalent.
In the theorem below we complete the proof that the class of

o.m.m. types form a complete set of invariants by constructing, for
an arbitrary o.m.m. type a (complete and countably decomposable)
nest which gives rise to it. We then also have a typical member of
each unitary equivalence class of nests. This typical nest, as it
depends on the choice of an o.m.m. set from the given o.m.m. type,
is not unique. It follows from Theorem 2.2 that it is possible to
choose, from any o.m.m. type, an o.m.m. set whose ordered set is a
closed subset of [0,1]. The typical nest corresponding to this o.m.m.
set may be useful in applications.

THEOREM 6.5. For any o.m.m. type, there exists a nest which
gives rise to it.

Proof. Let {̂ ~, [/*], w( )} be some member of the given o.m.m.
type and let {d{: i = 1, 2, •} be a set of Borel sets obtained from
{Λr, [μ], m( )} as in Lemma 6.2. Define a set {β{: i = 1,2, •••} of
Borel sets of ^ by β1 = ^V and βi+i = βi\δim Let μι e [μ] and define
μι by

μi(8) = μ,(δ n β{)

for all Borel sets δ of ^Γ. From Lemma 6.2 (iii), {m(^): i = 1, 2, •}
is a set of cardinals increasing with i and we may thus pick suitable
index sets A{ with typical members a{ such that | A11 = m ^ ) and
\At\ = m(δi) ~ m(δi^). For each Ne^/~ define N' by

where //α. = μi for all ^ e ^ . Consider the set {Nf: Ne^K}. We
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shall prove that this is a complete and countably decomposable nest
and gives rise to the given o.m.m. type.

It is clear that %yγ
%t is a totally ordered set of subspaces of a

Hubert space. We first show that it is order isomorphic to ^//\ Let
φ be the map from ^ir onto Λrf defined by φ(N) = Nf. Then φ is
order preserving. Also if Nx and N2 are distinct members of ^//",
say Ni < N2, then as μx is a basal measure for <sV, μ1{{N11 N2]) Φ 0
for either Nx = N2~ or the interval (Nu N2) is nonvoid. Hence

Ni ΘM' = Θ Θ Xι*v*iL\^r, μa%)

is nonzero and φ is thus an order isomorphism.
We now show that the nest <yV~f is complete. Let A! be any

subset of %Arf and let A be the corresponding subset of Λ^. Suppose
that

NQ =

If the supremum is attained, it is clear that

Ni = U W- N' e A'} .

If the supremum is not attained, then NQ = No- and as μx is a basal
measure, /̂ ({iVo}) = 0. Since Λ" is metrisable in the order topology,
there exists an increasing sequence {Nk} of points of Λ^ such that
sup, (Nk) = NQ. For any fe l^λL\^, μx) let fk = χ^J. Then

since μ({N0}) = 0. But X(N]c,No) tends to zero pointwise, and

X(tfVtfo>l/l2 ^ \f\\ hence by the dominated convergence theorem (see

e.g. [2] p. 110)

I I / - Λ I Γ — o .

Therefore it is easy to see that

cl [U {NΊ N' e A'}} = Ni .

A routine verification shows that the intersection of any set of members
of ^v' is also a member of Λ~'m

As Λ^' is complete and is metrisable in the order topology, the
projection valued measure i£"( ) of ^ ^ ' can be set up as in §3. It is
easy to see that if δ is a Borel set of Λ~, the range of E'(φ(3)) is
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Let x1 be the vector that is the unit function in L2(^/~, μa) for some
ax G A1 and zero elsewhere. Since Ef(φ{δ))x1 is the function χδ in
L\Λr,μa^ and zero elsewhere, it is easy to see that x1 is separating
for the set of projections {E'(φ(δ)): δ a Borel set of ^K}. Hence, as
φ is a homeomorphism, using Theorems 1.1 and 3.7 it follows that
^V*f is countably decomposable. Also for each Borel set δ of Λ" y

<E\φ{δ))xu x,y = μi(δ)

and therefore the class of measures of the o.m.m. set of Λ"' is an
equivalence class [v] such that for each ye[v], there exists μe[μ]
with

» M 0 ) = /<(•)•

Let p( ) be the multiplicity function of ^//"'. It remains to prove
that p(φ(-)) — m( ). For each integer k let j k = φ(δk), where
{δi'.i = 1,2, •••} are the sets introduced previously. We show first
that m(δk) = 2>(7fc). Let a?α be the vector that is the unit function
in I/2(^/^, μa.) and zero elsewhere. Put za. = Ef(jk)xa.. Then || ^α. ||2 =
μaftk) — μi(δi Π δfc), and thus from the definition of 7*, z^ = 0 for
i > k. Clearly the set Φ = {̂ αί: ar4 e Aί, i = 1, 2, •} is a very
orthogonal set for ^Y^f

k. It is easy to verify that each member of is
olso separating for ^A^'k. As the range of E'(yk) is

0 θ XhL
2(^T, μai)

and M(za.) = χ δ / ,L 2 (^r, μa.), Φ is a maximal set of very orthogonal
separating vectors. This also shows that yk is a set of uniform
multiplicity. Now

ΐ = 2

Thus m(δΛ) = p(7fc).
Now if δ is any Borel set of ^//", as the range of m( ) is

{m(δi): i = 1, 2, •••}, for some fe, m(δ) = m(δk). By property (ii) of
multiplicity functions, if μλ(δ Π δj Φ 0,

m(δ) ^ m(δ ΓΊ δi) = m(δ,)
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and hence for i < k, μx(δ Π δt) = 0. Also if μ^δ f] dk) = 0y by
properties (i) and (iii) of Lemma 6.2,

m(δ) = min {m(<? Π δ<): i > fc}

Hence μΛδnδ*) ^ 0. Now if 7 = φ(δ) and if ^( ) = μ1{φ{-))J ^(
0 for i < A; and 1̂ (7 fl 7*) ^ 0. Hence, since 1̂  is a measure of the
o.m.m. set of Λ^' and ^/^ = U~7;,

= m i n {p(γ (Ί 7<): ^ ( 7 Π 7*) =£ 0}

( Π 7Λ)

- m(δk)

- m(δ) ,

using the fact that j k is of uniform multiplicity. This completes the
proof.

I wish to thank Professor J. R. Ringrose for his encouragement
and for many helpful suggestions during the preparation of this paper.

Added February 2 1967: The question referred to at the end of
Theorem 2.2 has been settled by J. R. Ringrose who has constructed
a nest which is metrisable in the order topology but is not countably
decomposable.
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