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SOME RESULTS ON AMPLENESS
AND DIVISORIAL SCHEMES

MARIO BORELLI

The purpose of this note is twofold. Part I consists of
an example of an algebraic scheme which is the union of two
closed, quasi-projective subscheme, but which is not itself quasi-
projective. The main result of Part II is a structure theorem
for coherent sheaves over divisorial schemes and, as an appli-
cation, the proof that Theorem 2 of Borel-Serre's paper "Le
Theorem de Riemann-Roch", which is stated only for quasi-
projective, nonsingular schemes, can be extended to arbitrary
nonsingular schemes. (See the Remark on page 108 of the
mentioned paper.)

The example given in Part I shows furthermore that, if Sf is an
invertible sheaf over a noncomplete scheme X, which induces ample
sheaves over the irreducible components of X, £/f need not be ample.
That Sf is ample if X is complete is shown by Grothendieck in Theorem
2.6.2., Chapter III of "Elements de Geometrie Algebrique". The ex-
ample we give consists of the union of two quasi-affine closed sub-
schemes (whence their respective sheaves of local rings are ample).
Since the union itself is not quasi-projective, its sheaf of local rings
is not ample.

The result obtained in Part II is but a first step towards Riemann-
Roch-type theorems for arbitrary nonsingular schemes. To the author's
knowledge, no suitable definition of a ring structure for equivalence
classes of sheaves (i.e. a satisfactory intersection theory for equiva-
lence classes of cycles) has been found as yet over an arbitrary non-
singular scheme. (See [3] and the remark on page 143 of [41 "On
ne peut pas . . .".)

The essential part of the proof of Theorem 3.3. in Part II was
communicated to the author by Steven Kleiman, to whom the author
is indebted for this and other conversations.

The notation and terminology we use are, unless otherwise spe-
cifically stated, those of [7] and [5]. We consider only algebraic
schemes, with an arbitrary, algebraically closed ground field. For
the sake of convenience we drop the adjective "algebraic" and speak
simply of schemes. Also, all rings we consider are understood to be
commutative and with unity, and all ring homomorphisms to be such
that 1-+1.

When we refer to, say, Lemma 2.3 without further identification
we mean Lemma 2.3 of the present work, to be found as the third
Lemma of §2.
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PART I.

1Φ We begin with some simple preliminary results which are
included here for completeness sake.

DEFINITION 1.1. Let c<^ be an arbitrary category, A, B, C three
objects of ^ , u e Horn (A, C), v e Horn (J3, C) two fixed morphisms.
The triplet (D, <p, φ), where De^,φe Horn (D, A),φe Horn (D, B) is
called a "fibre product" of A and £ with respect to u and v if the
following conditions are satisfied:

( 1 ) Uo φ = v o ψ

(2) For every D'e^7 the function

Horn (£>', D) > Horn (£', A)XP Horn (D', B)

given b y α - ^ ( ^ o α , f o α) is bijective, where Horn (D'f A)XP Horn (D',B)
denotes the subset of Horn (D', A)X Horn (Dr, B) consisting of those
pairs of morphisms (u',vf) such that uouf = v*>v'.

It is easy to see that the category of rings and ring homomor-
phisms has fibre products, and that fibre products are unique up to
isomorphisms.

If (X, 0x) is a reducible scheme, it is always possible to find two
distinct sheaves of ideals of Qx, say J?\ and ^ , such that, if (Xu 0Xj)
and (X2,0X2) denote the closed subschemes defined by *J\ and Jfζ
respectively, we have

(i) XiΦX, X= X1ΌX2

(ii) cJT Π ̂ A = 0.
This is obvious when (X, 0x) is reduced. Otherwise we use the

fact that, in a noetherian ring A, (0) is the intersection of sufficient
powers of the minimal prime ideals of A. Since conditions (i) and
(ii) are in fact local, and X is compact, we are done.

LEMMA 1.2. Let A be a ring, /:, I2 two ideals of A such that
/i Π /2 = 0. Let

u: A/I, > A/I, + J2 φλ\ A > A/I,

v: A/I2 > A/I, + I2 φ2: A > A/I,

be the canonical morphisms. Then (A, φu φ2) is the fibre product of
A/I, and A/I2 with respect to u and v.

Proof. We have the commutative diagram
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A/I1-ϋ->A/J1 + J 2

T ΐ

A > A/I2

which shows that the first property of a fibre product is satisfied by
(A, <pu φ2). As to the second, let a{ e A/Iι be such that u(aχ) = v(a2)
and let a{ e A such that φi(aζ) = a{. Clearly

(u o φJia! - a2) = (v o φ2){ax - α2)

= (u o φ^ia,) - (v o φ2)(a2) = 0 .

Therefore aλ ~ a2 e Ix + 72, whence there exist elements bl9 b2 in Ilf I2

respectively, such that a — ax + bx = a2 + b2. Clearly ^(α) = α ΐβ If
b e A is such that φ^b) = aif then a — b e Ix n I2 = 0. The lemma is
proved.

Let now (X, 0x) be an arbitrary scheme, and let j£f be an in-
vertible sheaf over X, i.e. a locally free sheaf of rank 1.

This means that we have a finite, open cover of X, say W —
(Uj)jej, and isomorphisms

uf. j&\Uj > 0x I Uj .

We may also assume that the U/s are affine. If (Y, 0F) is a closed
subscheme of X defined by a sheaf of ideals ^ of 0 x, the exact
sequence

0 > JF > 0Σ -^-> 0Y > 0

gives an exact sequence

0 > Sf®^ > £f - ^ Jέ? ® 0Γ > 0

whence a homomorphism

H°(X, J5f) > H°(Y, j& (g) 0Γ) .

The homomorphisms

< : ^ (8) oF i u3- n r — > oF i Uj n r

defined by

are easily seen to be 0F-isomorphisms, whence j£f 0 0F is an invertible
sheaf over Y. One can also immediately check that the diagram
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( 1 > J
H°(US ΓίY,£f<g> 0Y) > H\U0 Π Y, Or)

is commutative, where the vertical arrows are induced by φ and φ
respectively, and the horizontal ones by % and u' .

We now extend Lemma 1.2, which is of a local nature, to a
global situation.

THEOREM 1.3. Let (X, 0x) be a scheme, <_J\, ^ two sheaves of
ideals of 0x such that *J^ Π <yζ = 0. Let (Xi9 0x.) be the closed sub-
scheme of X defined by ^ , i — 1, 2, (F, 0r) the closed subscheme
defined by ^\ + _>f. Let £f be an invertίble sheaf over X. The
diagram

H\X, £f) > H\X, i

1 1
0x) > H°(X, JF ® 0r)

identifies H\X, ^) as the fibre product of the H\X, jSf ® 0x)
Js

over H\X, Sf ® 0F).

Proof. Let •%/ = (Uj) be an open affine cover of X such that
there exist isomorphisms

r. > O χ I u, .

We let

y}}λ' C/7 (5?) 0 I U • Π -X"- > 0 U Π -3Γi

#,-: J2^ ® 0F I Uj Π Γ > 0 F \UjΠY

be the induced isomorphisms, as was explained above.
We need to show that, given sections s< e H\X, j£f (g) 0Xi), i =

1,2, which induce the same section t e H°(X, £f ® 0F), there exists
a unique section s e iϊ°(X, ^f) which induces s1 and s2 respectively.

Let fiό = u?(Si) e H\Uά Π Xt, 0x.). From (1) we see that fu and
f2j induce the some element of H°(U3 Π F, 0F). Hence, by Lemma 1.2
(since C/̂  is affine and Uj — (Uj f] Xλ) U ί ^ fl X2)) there exists a unique
section fά e H°(Uj, 0x) which induces flά and f2j respectively. We shall
show that the family {wjι(fj)}jej defines an element s of H°(X,
Let

bjk - (Uj ouΰι)(l) e H°(Uj n Uk, 0x) .
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Then fά — bjkfk is an element of H\Uά Π Uk, 0x) and it induces the
zero element of H\Uj Π Uk Π Xi, 0x.), i = 1, 2. This is seen by ob-
serving that the family {/,}i6j induces the family {/^}jej over Xiy

i = 1, 2. By Lemma 1.2 we have fd — bjkfk = 0, which shows our
contention. It is now obvious that s induces sx and s2, and, by using
Lemma 1.2, that only one such s exists. The theorem is proved.

It is well knowτn that, if the X/s are affine, so is X. This is
in fact a consequence of a theorem of Chevalley's (See [5], Ch. II,
Th. 6.7.1 and corollaries). Combining Theorem 1.3, Lemma 1.2 and
the uniqueness of fibre products, we obtain the same result, without
using the heavy machinery involved in the proof of Chevally's theorem,
that is, Serre's characterization of affine schemes. ([5], Ch. II, Th. 5.2.1),
([8], Th. 1).

The above points out that, to obtain an example of a nonquasi-
projective scheme with quasi-projective irreducible components, one
must consider components which are neither protective nor affine.
We exhibit such example in the next section.

2* We recall some of the properties of one of Nagata's examples
of a nonquasi-projective surface, [6].

Let kr be the rational field, a and b two trascendentals over kr

such that α3 + 63 = 1, k the algebraic closure of k\a, b). We let A3

denote the affine, three-dimensional space over k, and let V be the
affine cone defined by

( 3) X3 + Ys + 3(αX2 + bY2)Z + 3(α2X + bΎ)Z2 - 0 .

We let S3 = k[x, y, z] be the coordinate ring of V, K = k(x, y, z) its
function field. The function σ:K—+K given by

t = σ(x) = (a2x + b2y)/b2x2

u = σ(y) = [tx - (a/b)2]t

v = σ(z) = {[tx - (α/ί>)2]3 + l}/362z

defines an involution of if, and the point (t,u,v) is the generic point
of a cone V° whose equation is again (3). For every closed subset
ί ί of 7 we denote by H° the closed subset of Vσ whose defining
ideal in σ(f8) is tf(Sί), Sί c S3 being the ideal defining H.

We denote by F the divisor of V associated to the ideal

© = x-ϊS + (y2 + Sbyz + 3δV) S3 ,

D the divisor of V associated to the ideal 3̂ = a>23 + # SS. In [6]
Nagata proves the following three statements:
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( i ) σ defines a birational, biregular isomorphism of the two

open subsets V — F, V° - Fσ of V, V respectively.

(4 ) (ii) k[x, y, z, ί, u, v] is the coordinate ring of the aίRne variety

V - F = Vσ - F\

(iii)

For every element feK and every open subset U of V (Uσ of V°)
we denote by (f)Uf ((/)^σ), the divisor of / on U (on Uσ). For ex-
ample, we have (x)r = F + D, (eτ)F_iP = JD. Also, when there is no
danger of confusion, we shall use the same symbol for an effective
divisor and its support. If feK we have

((f)vY - (σ(f))vo .

Having introduced all the necessary notations we prove

THEOREM 2.1. There exist two elements fuf2 of © such that
(i) / i ,/ 2 generate the unit ideal in k[x, y, z, t, u, v],
(ii) // H is any prime divisor of V — F the following holds

tf (ft) > 0 if, and only if ord^α (/J > 0, i = 1, 2.

Proof. Take fλ — x(a2x + b2y). In fact a2x + b2y = 6V£ whence

((α2£ + Vy))v_F = 2D + D°

and

(<z2x + b2y)v = 2D -{- Da .

Therefore

(x(α2α; + δ2τ/))F = W + Dσ + F.

To construct /2 we start with any element g e © such that

( a ) (g)v = nF + mD' n > 0, m > 0
( ( b) Df n Z? = D' Π D σ - the vertex of V .

For example, a simple computation shows that y2 + Sbyz + 36V satisfies
(a) and (b) above. Now we have

?£) =nD- mD'

= nD° - mDfσ
)

σ(g)/rσ

λ = nD° - mΏfa + qF qeZ .
σ(g)/ v
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Let

a = (a2x + b2y)n{glxn)\o(g)ltn) .

Then

(a)v = 2mZ>' + mDta - qF.

Let r be a positive integer such that rn — q > 0. Then

(agr)v = m(r + 2)/?' + mi?'σ + (rrc - q)F.

Since V is normal f2 = agr e ©, and part (b) of (5) shows that
fu fi generate the unit ideal in k[x, y, z, t, u, v\. The theorem is
proved.

COROLLARY 2.2. The elements σ(fi), i = 1, 2, of σ(®) also satisfy
the requirements of Theorem 2.1.

Proof. It suffices to observe that by (ii) of the theorem, the
varieties of zeros of ft and σ(fi) over V — F are the same, i = 1, 2.

We now proceed to construct a nonquasi-projective scheme which
has quasi-projective components.

We let Az, Al denote two copies of three-dimensional affine space
over k. We let

XI = A-F

XI - Al - F°

and identify, using σ, the two closed subsets V — F, V° — F° of
X/, XI respectively.

We obtain in this way a continuous mapping τ of the topological
space X[ Ji XI onto a topological space X which, in the usual quotient
topology, consists of two irreducible components, Xl9 X2, homeomor-
phic to X{, XI respectively, i.e.

XI iL XI - ^ X, U X2 = X.

THEOREM 2.3. X can be given the structure of a scheme in
such a way that Xu X2 have induced structures isomorphic to X[, X2

respectively, and Xλ π X2 ^ V — F ^ Vσ ~ Fσ.

Proof. Let gu g2 be elements of k[X, Y, Z] which induce on V
the functions fu f2 respectively. Similarly, let hu h2 be elements of
k[T, U, V] which induce tf(/i), σ{f2) on V\ Finally, let

gz = X 3 + F 3 + 3(αX2 + bY2)Z + 3(α2X + b2Y)Z2

hz = T3 + W + 3(αT2 + bU2)V + 3(α2Γ + b2U)V2 .
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It follows easily from Theorem 2.1 that the following are open
subsets of X, which form a cover of X

u, = τ[(x;y
U2 = τ[(Xi)it)

U3 = τ[(Xl)H U (Xi\]

U< = τ[(Xl),t U Xi)ht] .

Furthermore, τ\τ~\Ui) is a homeomorphism for i — 1,2 whence
UΊ(U2) can be given the structure of the affine scheme (Xl)g^,((Xϊ)hi).

We now show that Z73 and Z74 can be given affine structures in
such a way that X becomes a scheme. We do so for Z73, the procedure
for £74 being exactly the same. By Theorem 2.1 and Corollary 2.2 we
have that (V — F)fl = (V — F)σ{fi) and therefore the two rings

k[x, y, z, t, u, v]fl and k[x, y, z, t, u, v]σ{fl)

are identical. Furthermore (V — F)fi is a closed subset of {X()gi,
whence we have an epimorphism

k[X, Y, Z]gχ > k[x, y, z, t, u, v]fl

and similarly an epimorphism

k[T, U, V]hl > k[x, y, z, t, u, v]σifi) .

The afRne ring of Z73 is then the fibre product of k[X, Y, Z]βl and
k[T, U, V]h over k[x, y, z, t, u, v]fl.

One now easily sees that Z73 ΓΊ U4 has as aίϊine ring the fibre
product of k[X, Y, Z]βί.g2 and k(T, U, V)hl.hi over k[x, y, z, t, u, v]fl.f2

( = k[x, y, z, t, u, v\σ{fl)o(f2). Therefore, X is a scheme and the theorem
is proved.

THEOREM 2,4. X is not qnasί-projectίve.

Proof. Let φ: Xλ !L X2—>X be the canonical surjection, jϊ. Xi~+
Xλ M X2y i = 1, 2, j : Xλ n X2 —* X the canonical injections.

Assume that there exists on X an invertible ample sheaf jSf.
Let S^i = (φ°ji)*(j&f), i = l,2,J?= j*(^f). Then, as in Theorem
1.3, we have the commutative diagram

H\X, J2f®*) > H\XU

I I
H\Xt, Sf%

%n) > H\X, n Xit

Since every divisor of A3 — F, Aζ — F" is principal, we have
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®M <** 0x., whence (6) becomes

H\X, Sf®n) > H°(XU 0Xi)

H\Xt, 0X2) > H\XX
2 «

and, by Theorem 1.3, H°(X, ^®n) is the fibre product of H\Xi9 0x.)
over H\Xλ ΓΊ X2, 0Xχ Π X2). Now we have, with the notations of
Theorem 1.3,

H\X19 0Xl) = k[X, Y, Z]

H°(X1 ΓΊ X2, 0X l Π X 2) - fc[αj, y, z, t, u, v]

and, by (4, iii), a^H^Xu 0Xι)) Π a2(H°(X2, 0Xa)) - fc, which clearly con-
tradicts the ampleness of j ^ . Hence X is not quasi-projective.

REMARK. AS was mentioned in the introduction, the above ex-
ample shows that an invertible sheaf may induce ample sheaves over
every irreducible component of a noncomplete scheme X, and yet fail
to be ample. (See [4], Ch. Ill, Th. 2.6.2.)

PART II.

Let X be a scheme. As in [l]. we denote by F(X) the free
abelian group generated over by the coherent sheaves over X. In
F(X) we consider the subgroup H generated by all elements of the
form J ^ — ^ " ' — ^ f \ where ^ , j ^ ' , j ^ ~ " are sheaves over X
such that 0 -» jr> -> j r -> j r " -* o. We denote by K(X) the group
F(X)/H. We then repeat the above construction considering only
locally free sheaves, and we obtain another group, which we denote
by i£i(X), and a natural homomorphism ε: KX{X) —> K(X). ε is induced
by the injection x: Fλ{X) —• F(X), where FX(X) is the free abelian
group generated over Z by the locally free sheaves over X. In [i]
the following theorem is proved ([1], Th. 2).

THEOREM 3.1. If X is a nonsingular, irreducible, quasi-projective
scheme, then the homomorphism ε is an isomorphism.

REMARK. Throughout the proof, as is pointed out in the remark
on page 108 of [1], the hypothesis of the quasi-projectivity of X is
used only in the proof of the following statement: If X is quasi-
projective, every coherent is a quotient of a locally free sheaf. To
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extend Theorem 3.1 to arbitrary nonsingular schemes it is then
sufficient to prove that, if X is a nonsingular scheme, every coherent
sheaf over X is a quotient of a locally free sheaf. More generally,
we shall prove that the above statement holds when X is a divisorial
scheme.

The essential steps of the proof of Theorem 3.3 are due to
S. Kleiman.

We review first the notion of a divisorial scheme. Let X be a
schme, £f an invertible sheaf over X. For any element s of
H°(X, jSf) we define

Xs = {xeX\s(X)$nx}

where nx denotes the unique maximal submodule of Sfx. In [2] the
author proved that Xs is an open subset of X. ([2], Prop. 2.1)

DEFINITION 3.1. The scheme X is called divisorial if, for every
xe X there exists an invertible sheaf Jίf, an element s e H%X, j5f)
such that Xs is affine and x e Xs. Let

X& = {x e X\ x e Xs, s e H°(X, J2f®»), affine, n = 1, 2, . .}

Then X is divisorial if, and only if, there exists a finite number
jSίϊ, , Sft of invertible sheaves over X such that

X=(jXsr.. (See [2], Corollary 3.1).
ΐ = l %

We now prove

LEMMA 3.2. Let X be a scheme, J^ a coherent sheaf over X,
Sf an invertible sheaf voer X. For a sufficiently high integer n,
the sheaf ά^ ® ̂ f®n | X^ is generated by a finite number of ele-
ments of H\X,

Proof. Since X is compact, there exists an integer d and sections
su , st e H°(X, £f®d) such that

( i ) Xs. is affine
(ii) X* = \JUX8.
(iii) j&\Xai~Qx\Xs..

Let Mi = H°(XSi, jr)t A, = H°(Xδi, 0x). The Armodule Mt is finitely
generated, and we let sij9 j = 1, •• , ί ί be a set of generators. By
(9.3.1) of Chapter I of [5], there exists a sufficiently high integer n such
that the sections siό®sfn extend to sections sfj of H°(X, S^ ®
Since Sf I X3. = 0 x | Xa., the ̂ .-modules M{ and H°(Xa., J^ ®
are canonically isomorphic. Hence the sections sf^j = 1,
generate t^

r(x),Sf<8)% over X5.. The theorem is proved.
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We are now in the position of proving our main result.

THEOREM 3.3. Let X be a dίvisorial scheme, j^~ a coherent
sheaf over X. Then ^ is ίsomorphic to the quotient of a locally
free sheaf over X.

Proof. Since X is divisorial, there exist a finite number of
invertible sheaves Sfu * ,£fp such that X— U?=i-^v B ^ Theorem
3.2. there exist integers n, mί? ί = 1, , p, and exact sequences

0;* ^

with Supp J ^ c J - X&i Hence we have exact sequences

SA%~n ® 0χ* > ^ > £fi®~n <g) 3?l > 0 .

Since (J?=i (X ~ X^) = 0 we obtain an exact sequence

Σ ^Pi%~n ® 05* > ^ > 0
i

which proves the theorem, since J^®~n 0 ϋψ are obviously locally
free sheaves.

For completeness' sake we state as a theorem the now immediate
generalization of Theorem 3.1.

THEOREM 3.4. Let X be a nonsingular scheme. Then the homo-
morphism e: Kλ(X) —> K(X) is an isomorphism.

Proof. Apply Theorem 4.2 of [2].
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