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INTEGRAL KERNEL FOR ONE-PART
FUNCTION SPACES

H. S. BEAR and BERTRAM WALSH

Let X be a separable compact Hausdorff space, and let B
be a linear space of continuous real functions on X, where
1 e B and B separates the points of X. Let Γ denote the Silov
boundary of B in X, and assume that Δ — X ~ Γ Φ 0. Further
assumptions on B are made which are in the nature of axioms
for an abstract potential theory. These assumptions are more
global than is usual, and in particular a sheaf axiom is not
assumed, nor is the existence of a base of regular neighborhoods.
Instead the assumptions are concerned with equicontinuity
properties of B on Δ9 and the consequences of Δ being a single
Gleason part of X. With suitable hypotheses on B and Δ there
is an integral kernel representation of the following sort:
u(x) = I u(Θ)Q(x, θ)dμ(θ), where Q is a jointly measurable

function on Δ x Γ which is "in B" (i.e., abstractly harmonic)
as a function of x for each fixed θ e Γ.

2* Topologies on Δ. Let $ denote the given compact topology
of X, usually considered as relativized to Δ. Since X is compact, $
is the weak topology induced by B. Let ||a?|l* be the norm of ΰ *
transferred to points of Δ by considering them as evaluation functionals.
Let $* be the metric topology on Δ obtained from the norm || ||* of
I?*. Clearly £5* ID £5, We will later introduce other topologies on Δ
which are germane in the presence of additional assumptions on B.

Let ball B = {u e B: || u || ^ 1}, and let

B+(z) = {u I Δ: u e B, u > 0, u(z) = 1}

be the section of B+ normalized at somezeΔ. We will be concerned
with conditions implying the equicontinuity of ball B and B+(z). We
remark that Loeb and Walsh [7] have recently shown that equiconti-
nuity of B+(z) can be taken as the convergence axiom of Brelot's
axiomatic potential theory.

THEOREM 1. // B+(z) is equicontinuous on Δ, then ball B is
equicontinuous on Δ. Ball B is equicontinuous on Δ if and only if

3f = S* on Δ.

Proof. Suppose that B+(z) is equicontinuous on Δ (with respect
to 3f) and that || u \\ ̂  1. Then v = (u + 2)f(u(z) + 2) e B+(z). Given
ε > 0 and x e Δ there is a neighborhood U of x such that
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I w(y) — w(x) I < ε for all w e B+(z) and all y e U. In particular

u(y) + 2 _ u(x) + 2
u(z) u(z)

< e

for all yeU, and consequently | u(y) — u(x) | < 3ε if y e U and \\u\\ ^ 1.
Hence ball B is equicontinuous.

We have already observed that ^ c ^ * . If xn —>x implies that
u(xn)—+u(x) uniformly for \\u\\ ^ 1 (equicontinuity of ball B), then
certainly \\xn — x \\* —+ 0. That is, equicontinuity of ball B implies
$ = $*. The converse is clear.

We recall (see [1]) that X is decomposed into parts by the
equivalence relation x ~ y if and only if I/a ^ u(x)/u(y) ^ a for some
a ^ 1 and all positive ue B. If x ~ y, let R(x, y) be the inίimum of
the numbers a which satisfy the inequality. Then log R(x, y) — d(x, y)
is a metric on each part. We call d the "part metric", and let ^sd be
the part metric topology. It will simplify the exposition without any
real loss of generality to assume that Δ is a single part. Otherwise
the statements below would hold for individual parts within Δ.

THEOREM 2. If Δ is a part, then
equicontinuous if and only if $ = $ d .

z> 3»* and B+(z) is

Proof. Suppose xn, xe Δ and d(xn, x) —* 0; i.e., R(xn, x) —> 1. Given
ε > 0 there is N such that

u(xn)

u(x)
- 1

u(xn) - u(x)

u(x)
<

for all u > 0, if u ^ N. If || v \\ ^ 1, and u = v + 2, then 1 ^ u ^ 3,
fl?) = v(ίcn) — v(x), a n d

- v(x)

v(x) + 2
< ε

if n ^ N. Therefore | v(xn) — v(x) | < 3ε if n ^ N and \\v\\ ^ 1, and
xn — x II* —> 0 if d(xn, x) —> 0.

It is shown in [2, Th. 1] that d(xn, x) —> 0 if and only if u(xn)—>
uniformly for all tt e -B+(z). If B+(z) is equicontinuous on z/, then

by definition we have such convergence uniformly over B+iz) whenever
xn—+x (in $) . Hence 3 f 3 ^ d if i5+(2;) is equicontinuous.

We will say that B is a (ί7)-space if for each a e J the evaluation
functional exeB* has a unique maximal (in the sense of [9, §§4, 6])
representing probability measure μx on Γ; recall that this measure is
in an appropriate sense supported by the Choquet boundary bX of X
with respect to B. Clearly B is a (Z7)-space whenever the base
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{F FeB*, \\F\\ = 1 = F(l)} of the positive cone in 5 * is a simplex
[9, §9], since that means that every positive linear functional on B
has a unique maximal representing measure. It is known (see [6, p.
63, (14b)]) that this occurs if B has the Riesz decomposition property
and if and only if its uniform closure does, so B is a (C/)-space
whenever it is a Dirichlet space [2, p. 294], If B is a (£7)-space and
Δ is a part, then the maximal representing measures for the point of
Δ are all mutually absolutely continuous with bounded derivatives
both ways; for in the argument in [4] in which representing measures
are constructed, there would be no loss in generality in taking the
measures a and β to be maximal, whence (since the maximal measures
form a cone [9, p. 65]) μx and μy as constructed there would also be
maximal—but uniqueness guarantees that those are our μx and μy.
Let μ = μz represent the point z e Δ, and write dμx = gxdμ for x e A.
We then have A identified with a subset {gx:xeΔ} of LJ^μ) so that
u(x) — \ ugxdμ for all ueB and all xeΔ. Let || |U be the L^{μ)

norm, and write \\x — y\U = \\gx — gy\U to transfer this norm-metric
to Δ. Let 3L be the resulting topology on Δ.

THEOREM 3. If A is a part and B is a (U)-space, then $«, =
Z$d Z)$* D $ . // in addition B+(z) is equicontinuous on A, then $ =

Proof. If ueB+(z), then

I u(xn) - u(x) I = I \u(xn - x)dμ

^ \\x» - α | |

= | |a?Λ - x\Uu{z) .

Since u(z) = 1 for ^6e5+(^), t6(α;w) —>u(x) uniformly for ueB+(z) if
|| a5Λ — a? Moo —> 0. Hence d(αΛ, aj) -> 0 if \\Xn-x\\~—>0 by Theorem 1
of [2].

Now we show that d-convergence implies L^ convergence. Since
B is a (ΪJ)-space and R(x, y) is the infimum of the constants c usable
in the proof of [4, Th. 1], any two Radon-Nikodym derivatives gz, gy

must satisfy

J g i± ^ R(Xj y)
, y)

almost everywhere with respect to μ. We also have, comparing
and gz = 1 in the inequality above, that 0 <̂  gx ^ it!(a;, «) = expcZ(x,
holds a.e, μ. For x,y e Δ, we have
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\gx- gy\£ gy[R(χ, v) - 1] ^ R(y, z)[R(x, y) - 1]

holding a.e. μ. Since d(x,y)—*Q is equivalent to R(x, y) —>1, and
R(y,z) is fixed, we have that \\gx — gy\\oo—*0 if #—>τ/ in $ d . Hence
& - 3U on J .

The final statement of the theorem follows from the equivalence
of $ = 3fd with equicontinuity of J3+(£).

3* An integral kernel for B. The second half of the proof of
Theorem 3 is a modification of that used by Nakai [8j in the case that
B consists of all harmonic functions on a Riemann surface with an
ideal boundary which makes B a Dirichlet space. The results below
include those obtained by Nakai, and the proof of Theorem 4 is
essentially a modification of Nakai's technique to our general situation.

THEOREM 4. // Δ is a part, B+(z) is equicontinuous, and B is
a (U)-space, then there is a positive measure μ — μz and a jointly
measurable function Q(x, θ) on Δ x Γ such that Q( ,θ) is continuous
on Δ for each θ e Γ, 0 ^ Q(x, θ) <̂  R(x, z) for all (x, θ) e Δ x Γ, and

u(x) = u(θ)Q(x, θ)dμ(θ)

for all ueB, all x e Δ.

Proof. Let μ represent z and let D be a countable dense subset
of Δ containing z. For each fixed x e D pick a measurable function
Q(x, •) on Γ such that Q(x, )dμ( ) represents x. Then the inequalities

I Q(x, •) - Q(y, •) I g R(y, z)[R(x, y) - 1]

and

0 ^ Q(x, •) £ R(x,z)

hold a.e. μ for all x,y eD. Let E be the union of the countably
many μ-null subsets of Γ where the inequalities above fail. Then
μ{E) - 0 and

I Q(x, θ) - Q(y, 0) I ̂  R(y, z)[R(x, y) - 1] ,

0 ^ Q(x, θ) < R(x, z) ,

hold for all x,y eD and all θ e Γ ~ E. If {xn}, {x'n} are two sequences
in D both approaching xeΔ, then \Q(xn, •) — Q(x'n, )\ converges
uniformly to zero on Γ - £ . For any xe Δ, pick any sequence xneD
with xn -»x, and define Q(x, θ) = lim Q(xn, θ) for Θ$E, and Q(x, θ) = 1
for θ e E. The function Q is well defined on Δ x Γ and satisfies the
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desired inequalities. Moreover, Q is measurable in θ and continuous
in x by its definition. Therefore (see [5, p. 285]) Q is jointly measurable.
By the bounded convergence theorem, if u e B then

u(x) = lim u(xn)

= lim [ u(θ)Q(xn, θ)dμ(θ)

= \riι(θ)Q(x, θ)dμ(θ) ,

and hence Q(x, )dμ(') represents x.
The kernel obtained by Nakai [8] by the sort of argument above

is harmonic in x for each fixed θ. Walsh and Loeb [10] have a
generalization of this result in the setting of the abstract potential
theory of Brelot. Nakai's result can also be obtained by specializing
the results of [3]. We show below that our kernel can be taken to
be " in B" as a function of x with no local hypotheses whatsoever.

Let B denote the closure, in the topology of uniform convergence
on compact subsets of Δ, of B\Δ. This space B is our abstract
replacement for the space of all harmonic functions on the open
set Δ.

LEMMA 5. If Δ is a part, B+(z) is equicontinuous, and B is a
(U)-space, then the mapping T:B\Γ—>B\A given by

T(u)(x) = [ u(θ)Q(x, θ)dμ(θ)

extends to a mapping T: Lλ(μ) —> B which is continuous ivith respect
to the Lx norm and the u.c.c. topology of ΰ .

Proof. Q(x, θ) is uniformly bounded on K x Γ for each compact
K S Δ. The uniqueness of the maximal representing measure μz = μ
implies that B\Γ is dense in Lλ{μ), for if g e L^μ) has the property
that g μ annihilates B \ Γ, then (assuming without loss of generality
that | | ^ | | O O < 1 ) the measure (l + g) μ is also maximal (since by
[9, p. 65] the cone of maximal measures is hereditary) and also
represents z, so that g = 0. Thus the mapping T can be extended
by denseness and continuity to all of Lλ(μ), and the images will
remain in B.

LEMMA 6. If A is a part and B+(z) is equicontinuous, then Δ
is σ-compact.

Proof. Since A is open in X and X is separable, A is also
separable. Since Qf = !$d with our hypotheses, A is a metric space.
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Let {yk} be a countable dense subset of Δ, and let

Rk = sup {r: S(yk, r) n Γ = 0}

where S(yk,r) is the r-sphere about τ//c. If some i2Λ = co, then the

sets S(yk, n) are compact subsets of A whose union is all of A, and

we are done. Otherwise each Rk < co and the spheres S(yk, r), where

r runs through all rationals <Rk, exhaust A. To see this, notice

that for any xe A there is a rational p > 0 such that S(aj, |θ) c J .

If 2/Λ e S(α, <o/2), then x e S(yk, ρ/2) c A and ^ 2 < Rk.

THEOREM 7. If A is a part, B+(z) is equicontinuous, and B is
a {Uyspace, then there is a function Q(x, θ) as in Theorem 4 such
that Q(-,θ)eB for each θeΓ.

Proof. We give C(A) the locally convex topology of uniform
convergence on compact sets. Since Δ is ^-compact, C(Δ) is metrizable.
If A = U Kn where each Kn is a compact (and metric) subset of Δ,
then C(Kn) is separable in the uniform topology, and hence C(Δ) is
separable in the u.c.c. topology. Since C(Δ) has a countable base of
convex open sets, the open set C(A) ~ B can be written as a countable
union of open convex sets, and we can take each such set U to have
its closure disjoint from B.

If E = {θ e Γ: Q( , θ) ί B) has zero ^-measure, then we can redefine
Q to be one on A x E and the resulting function will still satisfy
Theorem 4 and will be in B as a function of x for each ΘeΓ.
Assume on the contrary that μ(E) > 0. By the countable additivity
of μ, there is some U such that Eπ = {θ e Γ: Q( , θ) e U) has positive
//-measure, provided these sets are /^-measurable subsets of Γ9 To
show the measurability of Eπ, it suffices to consider Eu for a basic
open set U = {g e C(A): | g(x) — v(x) \ < ε for x e K) where ε > 0 and
K is compact. If {xn} is a dense sequence in K, and θ is a fixed
point of Γ, then | Q(x, θ) — v{x) \ ̂  ε' for all α? e K if and only if

, θ) — v(xn) I ̂  ε; for all n, since Q is continuous in x. The set
{θ: I Q(ccw, 5) — v(xn) I g ε'} is measurable since Q is measurable in θ,
and hence the intersection {θ: \ Q(x, θ) — v{x) \ ̂  ε' all x e J5Γ} is measur-
able. Finally, {̂ : | Q(x, θ) — v(a?) | < ε} is a countable union of sets
corresponding to values of ε' < ε.

By the Hahn-Banach theorem we can separate U from the closed
subspace B, and there is a functional FeC(A)* such that F = 0 on
B and F(w) > 0 for u e U. In particular, F(Q( ,Θ)) > 0 for θeEπ.
For some ε > 0, the set S = {θ: F(Q( , θ)) ^ ε} must have positive
//-measure. The dual space of C(Δ) can be represented by the space
of regular Borel measures with compact support in Δf and we let λ
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be the measure corresponding to F. Define v on Δ by

v(x) = \rXs(0)Q(%, 0)dμ{θ) .

By Lemma 5, v e B and hence F(v) = 0:

0 = F(v) = ( v(x)d\(x)

- \rF(Q( ,θ))χa(θ)dμ(θ)

r
> 0 .

The interchange of integrals in justified because Q is jointly measu-
able and bounded for x in the compact support λ. The contradiction
completes the proof.
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