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THE REGULAR OPEN CONTINUOUS IMAGES
OF COMPLETE METRIC SPACES

HOWARD H. WICKE

This article characterizes the regular To open continuous
images of complete metric spaces. These images are shown
to be the regular TVspaces having monotonically complete
bases of countable order. This follows from a theorem of
Worrell and Wicke and a theorem below which shows that
every regular TΌ-space having a monotonically complete base
of countable order is an open continuous image of a complete
metric space.

The class of regular T0-spaces having monotonically complete bases
of countable order is equivalent to a class of spaces Aronszajn intro-
duced axiomatically in [4]. This class includes the complete metric
spaces and spaces satisfying R. L. Moore's Axiom 1 [9]. Theorem
2 provides contrast to the theorem of Ponomarev [10]: every To first
countable space is an open continuous image of a metric space. A
result related to Theorem 3 is ArhangeP skίϊ's characterization of the
T: open compact continuous images of metrizable spaces as the meta-
compact developable 7\-spaces [2]. In connection with this result, it
may be noted that an open compact continuous 2\ image of a regular
T0-space having a base of countable order also has a base of countable
order [11], and a T1 metacompact space having a base of countable
order is developable [12].

For notation and terminology the reader is referred to [7], [9],
and [12]. Space is used here to mean topological space. The null
set convention is not used. A base for the topology of a space S
will be referred to as a base for S. Recall that a collection of sets
is said to be perfectly decreasing [12], if and only if each of its
elements properly includes an element of the collection; and that a
base of countable order for a space [3], can be defined as a base B
for the space such that if P is a point common to the elements of a
perfectly decreasing subcollection K of B, any open set containing P
includes an element of K; i.e., the elements of K form a base at P.
By a monotonically complete base [11], is meant a base B such that
the closures of the elements of any monotonic subcollection of B have
a point in common. Recall also that regular TVspaces are T19 as
Koutsky remarked [5, p. 826].
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2* Regular spaces having monotonically complete bases of
countable order*

THEOREM 1. A regular TQ-space S has a monotonically complete
base of countable order if and only if there exists a sequence
Gi, G2, of bases for the topology of S such that if gly g2, is a
sequence such that, for each n, gn belongs to Gn and gn+1 is a subset
of gn, then there exists a point P in each gn such that the collection
of terms of gu g2i is a base at P.

Proof. Suppose 7 is a monotonically complete base of countable
order for S. There exists a sequence Hlf H2, of well-ordered sub-
collections of V covering S such that these conditions are satisfied:

(1) For each n and h in Hn there exists a point Pn,h belonging
to h such that no element of Hn precedes h and contains Pnth.

(2) If n < k, the closure of the first element h of Hk containing
the point P is a subset of the first element hf of Hn containing P;
and if P is in a proper subset of hr, h is a proper subset of h'. By
an argument similar to that used in the proof of Theorem 1 of [12],
it follows that the collections Gn = Hn + Hn+ί + are bases for S.
If ffi, 92i is a sequence as in the statement of Theorem 1, there
exists a first hn in Hn that includes a term of glf gZ9 •••. For each
n, there exists j > n + 1 such that gά is a subset of hn and hn.vi.
For some k ^ j , gά belongs to Hk. Let P denote the point Pktg5 If
h is the first element of Hn to contain P then h includes gά. Thus
h does not precede hn. Since hn contains P it follows that h = hn.
Similarly, hn+1 is the first element of Hn+1 to contain P and thus hnΛ1

is a subset of hn. If hn = hn+ι for some n, then hn = {P} for some
point P, and thus gk = {P} for some k, and {gk} is a base at P. If
ftΛ ^ hn+1J for any w, the terms of h19 h2, form a monotonic sub-
collection of V and thus there exists a point P common to each hn.
Since few+1 is a subset oΐ hn, P is in each fe%. If D is open and contains
P, there exists some feΛ which is a subset of D and thus some #&
is included in D. Hence P is in gk for all k, and since ^ is a subset
of grΛ_1 for all k > 1, it follows that P is in each gΛ. Since the /Cs
form a base at P so do the #w 's.

If Glf G2, is a sequence as in the statement of Theorem 1 there
exists a sequence Hu H2, of well-ordered collections covering S
such that for each n: (1) Hn is a subcollection of Gn. (2) Each element
fe of Hn contains a point belonging to no predecessor of h in Hn. (3)
If n < Zc and P is a point, the closure of the first element of Hk

containing P is a subset of the first element of Hn doing so. V —
Hι + H2 + is a base for S and can be shown to be a base of
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countable order by an argument used in Theorem 2 of [12]. A technique
similar to one employed there and also in the preceding paragraph,
shows that V is monotonically complete.

THEOREM 2. A regular Tospace having a monotonίcally complete
base of countable order is an open continuous image of a complete
metric space.

Proof. Let S denote a regular T0-space having a monotonically
complete base of countable order. By Theorem 1 there exists a sequence
Cπ, G2, of bases for S with the property stated in that theorem.
Form the Baire space M [6] over the collections Gl9 G2y •••. The
elements of M are sequences ξ — (gL1 g29 •) where gn belongs to Gn.
If ς = (gl9 g2y •) and ζ' = (g[, g'2f •) the distance ρ(ζ, £') is defined
to be I/A* if there exists a first positive integer k such that gkΦ g'k.
Otherwise p(ζ, ξf) = 0. Designate by Oβl...β the collection of all se-
quences (a[, ar

2, •) such that a{ — α , i — 1, , k. Let W denote
the collection of all elements in M of the form (gl9 g29 •••) where for
each n, gn^γ is a subset of gn. Then, by the condition on Gl9 G2, ,
there exists a unique point P common to the terms of g19 g2f . If
ί = (QU $2, •) is in W, define fζ to be the unique point P common
to the 0Λ's. If P is a point of S, by regularity there exists an
element ζ of W such that P is common to the terms of ζ. Hence /
is a mapping of W onto S. Suppose W intersects the set Ogi...gk.
Then gi^1 is a subset of g{ for all i g fc - 1. Clearly, f(W Ogi...g) is
a subset of gr̂ . If P is an element of gk, there exists gk+1, gk+2i

such that gk+n is a subset of gk+n_i for all n^l. Hence f(W O9l...gk) =
^A. Since the collection of all sets W Ogι...gk is a base for W and
by the property of Gu G2, , / is open and continuous on W. (This
argument is related to one used by Ponomarev [10].)

Suppose Pu P2, is a sequence of points of W satisfying the
Cauchy convergence criterion. For each n, there exists a positive
integer mn such that ρ{Pkf Ps) < 1/n, provided k,j ^ mn. It may be
assumed that mn+1 > mn for every n. Let α*, α?, * , α ; denote the
first n coordinates of Pm%. Let an denote an

n for each n. Then if
k ^ mn, the first w coordinates of Pfc are a19 , an. For if n = 1,
a, = a\ is the first coordinate of P m i . If & > m19 then ρ(Pk, Pmi) < 1,
and thus αx is the first coordinate of Pk. Suppose the statement is
true for n. If k ^ mw+1, then ^(P,, PWfl+1) < l/(w + 1). Since
wιn i l > mn, the first ^ coordinates of Pmn+1 are α l f , αw, by the as-
sumption, and the ( n + l) s t coordinate is an+1. Let P denote (alf a2, •)•
It follows that P is the sequential limit point of Pu P2, . Moreover,
since P m is in W, the coordinates a19 a2, « ,α Λ satisfy the condition
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that ak+1 is a subset of ak for all k ^ n — 1. Since this is true for
all n, it follows that P is in W, and thus W is complete with respect
to p.

REMARK. From the proof of the above theorem it may be seen
that the complete metric space of the theorem may be taken to be
of zero dimension and of the same weight as the image space. (The
weight of a topological space is the minimum cardinal number m such
that the space has a base of power m [1].)

3* The characterization theorem* In [11] Worrell and Wicke
define a λ-base for a topological space as a base B of countable order
for the space such that if K is a perfectly decreasing monotonic sub-
collection of B, there exists a point P such that any open set con-
taining P includes an element of K. A regular T0-space has a λ-base
if and only if it has a monotonically complete base of countable order
[11]. A principal theorem of [11] is that an open continuous (essen-
tially) Tί image of a space having a λ-base also has a λ-base.

THEOREM 3. A regular T0-space is an open continuous image
of a complete metric space if and only if it has a monotonically
complete base of countable order.

Proof. The sufficiency follows from Theorem 2. The necessity
is a consequence of the theorems cited in the paragraph preceding the
statement of Theorem 3, and the facts that a regular T0-space is TΊ
and that a complete metric space has a λ-base.

THEOREM 4. The following conditions on a regular T0-space are
equivalent.

(a) The space has a monotonically complete base of countable
order.

(b) The space satisfies Aronszajn's axiom [4, p. 231].
(c) The space has a X-base.
(d) The space is an open continuous image of a complete metric

space.

Proof. The equivalence of (a), (b), and (c) is stated in [11],
and may be established by methods used in the proof of Theorem 1
above. Theorem 3 above shows the equivalence of (a) and (d).

By using techniques similar to those used above, the following
theorem may be proved. (The sufficiency is a joint result of Worrell
and Wicke given in [11].)
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THEOREM 5. A Tγ-space S has a base of countable order if and
only if there exists a metric space (M, d) and an open continuous
mapping f of M onto S such that for each x in S, f~ι(x) is complete
with respect to the metric d.

This result and a theorem of Arhangel'skϊί [3] imply the following
theorem of Michael [8]:

If / is an open continuous mapping of a metric space E onto a
T2 paracompact space F such that f~\y) is complete for every y in
F9 then F is metrizable.
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