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MINIMAL RANGE THEOREMS FOR OPERATORS
WITH THIN SPECTRA

JOSEPH G. STAMPFLI

Let T be a bounded linear operator on a Hubert space H.
Let W(T) = {(Tx, x):xeH and 11 x \\ = 1} denote the numerical
range of T, and let Σ(T) designate the convex hull of <?(T),
the spectrum of T. It is well known that for an arbitrary
operator T, 2(T)cW(Tj. Moreover, if T is normal, then
W(T) = Σ(T). In general, if W(T) = Σ(T), one can not ex-
pect T to be normal. However, if the spectrum of T is suf-
ficiently thin, then relations of this sort do imply something
about the operator.

First it is shown that, for operators with spectrum on
certain "flat" convex curves, one can infer from the relations
W(T±X) c Σ(T±ι) alone that T is normal. Examples are pre-
sented which show that this inference can not be made for
arbitrary convex curves. However, the second result states
that if ΰ(T) lies on a smooth convex curve, and

(a) W(T)aΣ(T)
(b) W[(T - zl)-1] <z Σ[(T - zl)-1] for zφ<s(T\ then T is

normal.
Many conditions on T, short of normality, are known to

imply (a) or (b), and corollaries are stated to cover these
situations.

The results in this area to date are few. If W(T) lies on a
line, then T is obviously a scalar multiple of a self-adjoint operator.
Donoghue [2] has shown that if W(T) c {z: \ z \ £ 1} and || Γ"11 ^ 1,
then T is unitary. The two situations just cited are the cases where
σ(T) lies on a line or a circle. Meng [4] has considered the case
where σ(T) lies on a convex curve and W(T) cΣ(T). He obtains
results on the point and residual spectrum of the operator. This
appears to be the extent of previous efforts to obtain a converse to
the statement that T normal implies W(T)aΣ(T).

I* We begin with some preliminary material on curves in the
complex plane. We shall consider only compact connected curves
which may or may not separate the plane. Such a curve is convex
if it is contained in the boundary of its convex hull ([10] p. 105).
Thus, a curve is convex if and only if it has a support line at every
point ([10] p. 47).

We define a curve C to be convex at the point p e C if it has f
support line at p. Under this definition, a cusp could be a convex
point, which is disquieting. However, when we use this definition
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later in § II, we shall consider only the case where a curve is convex
at every point (on the curve) in a neighborhood, and then the defini-
tion agrees with intuition.

Let C be a convex curve. If, at every point peC, there exists
a support line such that the associated closed half plane which con-
tains C also contains the origin, then we say C is convex with respect
to the origin. (It is explicitly assumed that the curve does not contain
the origin.)

The curve CeίT, if
(1) C is given, in polar form, by a single valued continuous

function R = f(θ), where R > 0 for δλ ̂  θ < δ2,
(2) both C and C"1 (R = l//(-0)) are convex,
(3) both C and C"1 are convex with respect to the origin.
We will need a few elementary properties of curves in r^. The

proofs are not hard, but we sketch them for completeness. Note that
the definition of ^ is symmetric, that is, if C e ^ then C"1 e ̂ . It
follows from the continuity of f(θ) that C is compact. Even if we
did not assume f(θ) to be continuous, the other hypotheses on C G ^
imply that it is. (For continuity at an end point δif the symmetry of
<& is crucial.) A curve C e ̂  may or may not separate the plane.

LEMMA 1. Let peC e^. Then C has a tangent at p; that is,
the support line to C at p is unique, if p is not an end point.

Proof. Since C is convex, the right and left hand tangents at
p exist. The only difficulty is the possibility of a "corner" at p.
However, consider a support line L to p~x at C"1. Then L~ι is a
circle passing through p and the origin, which lies between the origin
and C. Thus, it is not possible for C to have a corner at p.

For Roe
iθ° on C e ^ , consider the angle between the ray reίθ° and

the tangent line S to C at this point. Set A(θ0) equal to the angle
between S and reiθ°, measured in the counter-clockwise sense. Thus,
A(θ) is defined for δλ rg θ <J δ2, where 0 <̂  A(θ) ^ π and the ambiguity
at 0 and π will not be a problem. In fact, the next lemma rules out
such occurrences.

LEMMA 2. Let C e ^ . Define

φ = sup {| A(θ) - π/2 |: δ1 ̂  θ ̂  δ2} .

Then 0 ̂  φ < π/2.

Proof. Assume φ = π/2. Then there exist zne^, with zn—>z{

and A(θn) -H> 0 or π, where zn — Rne
iθn. Consider the case A(θn) —> 0,

Ό
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by selecting a subsequence if necessary. An obvious argument shows
that by a further selection, the zn's must be increasing (as a function
of θ). We claim A(θ0) = 0. If not, choose A(θn) < A(θ0). Then the
tangent line Sn to C at zn divides the plane into two components
with z0 in one and the origin in the other, contrary to hypothesis.

Since A(θ0) = 0, for any ε, there exists a line Lε through zQ and
uεeC such that arg wx < arg uε < arg zOf and moreover, the angle
between the ray reiθ° and Lε is less than ε. This implies that the
angle between the circle Ljι and the ray re~iθ° (at z^1) is less than ε.
It should be clear that for ε sufficiently small, the point ur1 lines inside
the triangle with vertices sj"1, wf1, 0. Let S be the support line to C~ι

at uj1. Since C~λ is convex with respect to the origin, z^\ wr1, 0 all lie
on the same side of S, which is impossible. The proof is complete.

LEMMA 3. Let Xeίθ e C, where C e^7. If μ > λ, then distance
[μeiθ, C] > Kλ{μ — λ), for some Kx > 0, where Kλ is independent of θ.

Proof. Let S be the tangent line to C at Xeίθ. Then

dist [μeι\ C] ̂  dist [μeiθ, S] = (μ - λ) sin A(θ)

= (μ - λ) cos [A(θ) - π/2] ̂  (μ - λ) cos φ

which completes the proof, since 0 ̂  φ < π/2 and φ is independent
of θ.

We are now ready to state the first of our main results.

THEOREM 1. Let o(T) lie on a curve Cer^. Then T is normal
if and only if W{T±ι) (zΣ{T±λ).

Proof. Assume W{T±λ) c Σ{T±λ). Let T = BU be the polar decom-
position of T. Since T is invertible, U is unitary and B is invertible.

Let U = lβ2ιrίίίZ^(ί). We next divide the circle into N equal parts,
and define projections Pk - E([(k - l)/iV, k/N]) for k = 1, , N.
F o r x G P k H , s e t Ux — a x + b y , w h e r e (x, y) — 0 a n d \\x\\ = \\y\\ = 1 .
Thus a 2 + I b I2 - 1. But

ί
(&/2

( f c -

(&/2V)-0

hence a lies in the convex hull of the arc [e

2πί{k~1)IN

1 e

2πiklN] and so

1 — I a I <; π2/2N2. This ingenious observation is due to Donoghue [2]

and the order N~2 is crucial to the proof. I t is immediate t h a t

I b I ̂  π/iV.

For x G PkH, set ί ta = λx + βw, where again || a; || = \\w\\ = 1
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and (x, w) = 0. We will now show that β is O(l/N). For x e
note that

, a;) = (Ux, Bx) = (α# + %, λα; + j8w) = αλ

Let αλ0 be the point on C whose argument is arg α. If λ < λ0, we
may take λ = λ0 later, and dispense with the present estimate. If
λ ^ λ0, it follows from Lemma 3 that

dist [αλ, W(T)] ^ I a | (λ - X,)^ ,

where Kλ > 0. Since αλ + bβ(y, w) e W(T), we conclude that

l α K λ - λ o ) ^ ^ \bβ(y,w)\£ \bβ\,

and thus

where K2 is a constant independent of N. From here on, all constant
Ki are independent of N. Since Bx — Xx + βw, it follows that B"1^ ~
λ"1^ - βX^B-'w. Hence,

(T-'x, x) = (B-'x, Ux)

= (X-'x - β\~ιB-ιw, ax + by)

= αλ"1 - βX~\w, B~\ax + 62/))

= tfλ-1 + a\β\2X~\w, B'ιw) - βX~\w, B-ιby)

= a[X~ι + I β |2 λ- 2(J5-^, w)] - βλ-^B-'w, by) .

Observe that (αλo)"1 is the point on C - 1 whose argument is argα.
Let h = α[λ-χ + | β {^(B^w, w)]. We assume \h\^\ (αλo)-11; if not,
the estimate below follows easily and directly. We are in point of
fact doing the difficult case. By Lemma 3,

dist [h, W(T~1)] ^ [| h I - I (αλo)-1 [jK, .

Since h - βX~\B~ιw, by) e ^ ( T " 1 ) , we see that

[| fc I - I (αλo)-1 |]£i ^ I βX-\B~γw, by) \ ,

and hence

I h I - ! (αλo)-1 \^K3\bβ\,

or equivalently

I α I [(λ-1 - λo"1) + I β |2 λ- 2(J5-^, w)] + V ( l α I - I α |~ι) ^ ϋΓ3 I 6/8 | .

Thus,
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I a I I β |2 λ- 2 1 | B \r ^ K3 \ bβ | + K4[\ a \ \ X - λ01 + λo~7iV2]

^ KB I bβ I + K61 bβ I + KJN2 ,

which implies that

(1 - π2/2N2) \β\2^ K6(\ β \/N + 1/N2) .

From this, it follows that | β \ ̂  KJN for some constant K7 which is
independent of JV.

For x e PkH, observe that

BUx = aXx + aβw + bBy

and

UBx = aXx + bXy + βϋw .

Thus,

| | ^ | 6 | [ | λ | + | | B | | ] + \β\[\a\ + \\U\\]^KJN.

Now we are prepared to prove the theorem. For u e H with
|| % || = 1, let u == Σ f «*»*, where % e P,H. Thus, Σ f I % I2 = 1.
Accordingly,

- BU)u || ^ Σ I o* I || (l/B - BU)xk

S [ Σ \ak I2 Σ (^s/iV)2]1/2 ^

Since ΛΓ is arbitrary, we see that UB = BU, hence T is normal.
The other half of the theorem is well known for normal operators.

COROLLARY 1. If W(T±ι)a{\z\ ^ 1}, then T is unitary.

Proof. Since W(T)a{\z\ ^ 1}, it follows that σ(T)a{\z\ ^ 1}.
The same is true for T~\ and together these yield σ(T)a{\z\ = 1}.
The curve | s | = 1 is clearly in ^ . Thus, W(T±λ) czΣiC*1) for Ce &
and this is sufficient. See added in proof.

COROLLARY 2. (Donoghue's Theorem) If \\ T^\\ ̂  1 cmd
{| 2 I ̂  1}, then T is unitary.

Proof. Certainly || T~x \\ ̂  1 implies that WiT-1) c {| z \ ^ 1}.
The result now follows from Corollary 1.

COROLLARY 3. Let C e ^ . Assume
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|| (T - zl) || ^ 1/dist (z, Σ{T)) for z ί Σ(T) ,

and

11 (T-1 - zl)-111 ^ 1/dist (3, Σ( T"1)) /or 2; g Σ( T~ι) .

Then T is normal.

Proof. Orland has shown [6] that \\(T-zI)-ι\\ £ 1/dist (z, Σ{T))
if and only if W(T)aΣ(T). Thus the conditions above imply that
W{T±ι)(zΣ(T±ι), and the conclusion follows.

Actually, we could have made Corollary 3 more elaborate since
there are conditions, other than those given, which imply W(T) aΣ(T)
or WiT-^aΣiT"1). These are used later in Corollary 1 to Theorem 2,
and thus the reader may embellish this corollary himself by following
the schema there.

Next comes the question of relaxing the conditions on cέ?. This
is complicated by the fact that the conditions are not independent.
Thus, if one omits the requirement that C be given (in polar form)
by a single-valued function R = f(θ), then immediately one has ruled
out the possibility that C is convex with respect to the origin.

We could give a single example which indicates the necessity of
all three conditions on c^. However, it seems worthwhile to present
two essentially different examples.

First we define

Vφx = l / 2 0 2 a n d Vψi = φ i + 1 f o r i ^ l

where {φ4} for i = 0, ± 1 , ± 2 , ••• is an orthonormal basis for H.
Since V is similar to the bilateral shift, o(V) = {z: \ z \ = 1}. Clearly,
V is a contraction. Hence the disc D = {z: \ z | <£ 1} is a spectral set
for V, and W(V)czD. Let T = 3 I + V. Then W(T)aΣ(T). Now
^(Γ""1) is a circle, call it Γ. Since {3 + D) is a spectral set for T,
the image of {3 + D) under the map ζ = 1/z is a spectral set for
T~ι. The image of {3 + D} under this map is just the convex hull
of Γ. But the numerical range of an operator is contained in any
convex spectral set for the operator [8], hence W{T±ι) aΣ(T±ι).
However, T is clearly not a normal operator.

In our next example, we will construct an operator T where
(1) σ(T) is given (in polar form) as R = f(θ),
(2) both σ(T) and ^(T-1) are convex curves,
(3) (/(Γ"1) is convex with respect to the origin, and a reflection

of σ(T) is convex with respect to the origin.
Condition (3) states that the convexity orientation has flip-flopped, so
to speak, under the map ζ = 1/z. Moreover, for this Γ, W(T±ι)c
Σ(T±ι), but T is not normal.
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Let M be the broken line segment which joins 2 + Zi to 1 + i,
1 + i to 1 — i and 1 — i to 2 — Si. Clearly, M is given by R = f(θ)
and M and M~ι are both convex curves. Furthermore, both M~ι and
the reflection of M with respect to the line Re z = 1 are convex with
respect to the origin.

Define a normal operator N such that σ(N) = Λf. Let Q be the

Volterra operator on L2[0, 1], that is, {Qf}(s) = \8f(t)dt. It is well
Jo

known that Q is quasi-nilpotent and W(Q) lies in the right half plane.
Let R = 7 + δQ, where δ will be specified later. We define our
operator T as T = J V φ ί . It should be clear that σ(T) = M and
TΓ(T)c27(Γ) for δ sufficiently small (actually δ^l will do at this
stage).

Since W(T) a{Rez ^ 1}, the half plane Rez ^ 1 is a spectral set
for T. Hence the circle {| z — 1/21 <; 1/2}, which is the image of
{Re z ^ 1} under the map ζ = 1/z, is a spectral set for T~ι. But the
numerical range of an operator is contained in any convex spectral
set for the operator, and thus WiT"1) cz{\z - 1/2 | ^ 1/2}. Obviously,
T~ι = N-'ξ&R-1. The contribution to W{T~ι) made by N~L is not
going to cause any difficulties. Note that | | / — R^W ^ δ/(l — δ).
Hence, WiR*1) c {| z - 11 ^ δ(l - δ)}. This yields

W i R - 1 ) c { | s - 11 ^ δ/(l -δ)}n{\z- 1/2 I ^ 1/2} .

Thus for δ sufficiently small, it should be clear that WiR"1) c convex
hull Λf-1. This implies W{T~ι) (zΣ(T~ι) as claimed.

We have therefore produced a nonnormal operator T with all
the promised attributes. This example makes clear that the theorem
depends not only on the convexity of σ(T) and σ(T~ι), but also on
their convexity orientation being preserved under inversion. If the
curve σ(T) flips-flops under inversion, there is no hope of obtaining
normality without additional conditions.

I I . Let C be a simple curve in the complex plane with parametric
representation x = x(t), y = y(t) for 0 <̂  t ^ 1 (C is permitted to be
closed). If x and y have continuous second derivatives, we say that
C is smooth. The expression {C + z0} designates the curve C translated
by an amount zQ. Recall that a curve C is convex at the point p e C
if it has a support line at p.

LEMMA 4. Let qeC, where C is a smooth convex curve. Then
there exist zOy ε > 0, such that for

we{z:\z-(q- zoy
ι \^e}f][C - z,]-1 ,

the curve [C — zQ}~1 is convex at w.
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Proof. Let q e C be given. We will assume that the normal to
C at q passes through the origin, and q Φ 0. The general case
requires only obvious modifications.

Since C is smooth, the curvature K(p) is a continuous function
of p for peC. Let A = max{K(p): pe C}. Consider [C — pq], and
choose p real so that 0 < | q — pq | g 2/A. Then the circle through
(q — pq) and 0, tangent to [C — pq], lies inside [C — pq], or between
[C — pq] and the origin. Moreover, by continuity and the way in
which p was chosen, for ueC and u sufficiently near g, the circle
Γu through u — pq and 0, tangent to [C — pq], also lies between
[C — pq] and the origin. Under the map ζ = 1/z, the circle Γu goes
into the tangent Lu to [C — pq]~x at (u — pq)~\ But, since Γu lies
inside [C — pq], its image, the tangent Lu, lies on one side of
[C — pq]~\ and hence is the support line we promised.

Using this lemma, we obtain the following analogue to Lemma 3,
even though [C — z^"1 is not convex in general.

LEMMA 5. Let q, z0, ε > 0 be as above. Set

M={z:\z-(q- z,)-11 ^ ε} n [C - ^l" 1 .

Let Xeiθ e M and μ > λ, where μ and λ are real. Then dist [μeiθ,
convex hull [C — ZQ]"1] ^ K0(μ — λ) for some constant Ko > 0, which
depends only on [C — zQ] and e and not upon the point Xeiθ e M
selected.

Proof. By the previous lemma, we see that the tangent Sθ to
[C — zQγι at \eiθ is a support line if Xeiθ e M. Thus, dist [μeiθ, con-
vex hull [C - Zol"1] ^ dist [μeiθ, Sθ] = (μ - λ) sin A(θ), where A{θ) has
the same meaning as in § I. Since the tangent is a continuous func-
tion of θ and does not pass through the origin, the rest of the proof
is the same as in Lemma 3.

The analogue of Lemma 5 for the expression dist [μeiθ, [C — z0]]
is straight forward, since C is both smooth and convex.

THEOREM 2. Let o(T) lie on a smooth convex curve C. Then
T is normal if and only if

( 1 ) W(T)dΣ(T)
( 2 ) W[(T- zl)-1] czΣ[(T- zl)-1] for z£σ(T).

Proof. We first prove sufficiency. The plan of attack is the
following. We will show that T = 2\ φ T2, where Tλ is normal with
spectrum on an arc r, and T2 has its spectrum on closure [σ(T)\τ],
Repeating this argument yields the proof.
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Choose q, z0, ε > 0 such that [C — z^\~ι is convex at every point of

M={z:\z-(q- Zo)"11 ̂  ε} Π [C - Zo]"1 .

Set S = T - zol = BU, and let U = \eudE{t). This time we will
consider only yeE(y), where 7 is that part of the unit circle con-
tained in the sector from minargM"1 to maxargΛf"1

Subdivide 7 into N equal parts, and define Pk as before. Note
that Pk <̂  E(y). Then using Lemma 5 and the same argument, we
obtain as before BUx — aλx -f aβw + bBy and UBx — aXx + bXy + βUw,
for x e PkH, where | b \ ̂  π/N and | β \ ̂  ίΓ/N for a constant if which
is independent of N.

We will first show that E(y)H reduces T. Note that for x e PkH,
with \\x\\ = 1, Sx = u + v, where ueE(y)H, veE(y')H and \\v\\ ^
2K/N. Thus, for yeE(y)H, we set 1/ = YJ! akxk1 where xkePkH and
ΣΓ I α* i2 - II V II2. Then % - ΣΓ ^(w* + %), where ^ e ^(7) and
vfe e E(Y)H. Hence,

[ N N Hi/:

ΣI«J2Σ!KII2J

Letting iV tend to 00 y this implies Sy e E(y)H. The argument may
be repeated for S* - 5C7* to show that S*E{Ί)HCLE(Ί)H. One
need only observe that since, for # e PkH, Ux = ax + bw, it follows
that U*x — ax + 6^^ where again | &i | ^ π/ΛΓ and all other estimates
are as before.

Thus, E(Ί)H is a reducing subspace of S. By the estimates on
BU and UB given above, it follows that S is normal on E(y)H.
Hence S = SiφS 2 , where Si is normal with <τ(Si) c J = [ C - ^ ] ί l Mr1,
and <τ(S2) = closure [σ(S)\J].

Returning to T, we see that T = Tλ φ T2, where Tx is normal
and σ( ΓJ is a segment of the arc C. Using the obvious compactness
argument would finish the proof. However, because we have Corol-
lary 3 in mind, we reason as follows.

Consider T = Γ3 0 Γ4, where T3 is normal and T4 is completely
nonnormal, i.e., normal on no reducing subspace. By the above argu-
ment σ(T4) = 0 , and thus T is normal, which completes the proof of
the sufficiency. The necessity is clear.

It should be remarked that, although σ(T — zl) is a smooth con-
vex curve, in general σ[(T — zl)~ι] is not convex. Thus Σ[(T — zl)"1]
may engulf σ[(T — zl)~ι] at many points.
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COROLLARY 1. Let o(T) lie on a smooth convex curve. We list
the following conditions:

Al Rsp(T~zI) = \\T-zI\\
A2 \W(T ~ zI)\ = \\T - zl\\
A3 every disc containing σ(T) is a spectral set for T
A4 every disc containing W(T) is a spectral set for T
A5 || (T- zl)x\\ ^ \\x\\dist[z,Σ(T)]

for all z above;
Bl RSP[(T - wl)-1 - zl] = \\(T - wl)-' - zl\\
B2 I W[(T - wl)~ι - zl]\ = || (T - wl)~ι - zl\\
B3 every disc containing σ[(T — wiy1] is a spectral set for

(T - wl)-1

B4 every disc containing w[(T — wl)~ι] is a spectral set for
(T- wl)-1

B5 \\[(T- wl)-1 - zl]x || ^ || x || dist [z, Σ[(T - wl)-1]]
for w£σ(T) and all z above.

Given one condition from column A and one from column B,
then T is normal. Conversely, if T is normal, then all conditions
under A and B hold.

Proof. Each condition in column A implies W(T) <z.Σ(T) (see
[11] for 1-4 and [6] for 5). Each condition in column B implies
W[(T - wl )~1] c Σ[( T - wl )~1] for w g σ( T). This completes the
proof.

COROLLARY 2. If T is hyponormal and o(T) lies on a smooth
convex curve, then T is normal.

Proof. If T is hyponormal, then (T — wl)~ι is hyponormal for
wίσ{T). Thus T satisfies Al and Bl (see [9]).

This result has been obtained by both Putnam [7] and the author
[9]. In fact, both papers prove somewhat more general theorems.
However, in all three cases, the method of proof is radically different.
Moreover, no one approach covers all cases where normality is known
to hold.

COROLLARY 3. In Theorem 2 and both corollaries, one can replace
o(T) on a smooth convex curve by o(T) on a piecewise smooth convex
curve.

Proof. By the techniques of Theorem 2, it can be shown that
T = Tλ 0 T2 (on H = Hλ φ H2), where TΎ is normal, and σ(T2) consists
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of a finite number of points. It is not hard to show that T2 is also
normal. Indeed, since σ(T2) is a finite set of points, T2 is spectral.
The condition W[(T - ^/)±1]c2T[(T - zl)±ι] for z$σ(T) leads to the
growth condition || (T — zl)-1 || <̂  Λf/dist [z, σ(T)], for some constant
M. This implies T2 is scalar (see [1] or [3]). Hence T2 has a com-
plete set of eigenvectors which span H2. By the argument from the
finite dimensional case, the eigenvectors are orthogonal, which com-
pletes the proof.

REMARK. In Theorem 2, the condition

W[(T - zI)-ι]aΣ[{T - zl)-1] for z$σ(T)

may be weakened to

W[(T - zI)-ι}aΣ[{T - zl)-1] for ze U ,

and z$σ(T), where U is any open set containing σ(T).
It is well known that there is a close connection between the

numerical range and the rate of growth of the resolvent. Indeed,
W(T)aΣ(T) if and only if || (T - zl)~ι || ^ 1/dist [z, Σ(T)] for all
z$Σ(T), (see [6]).

This leads us to the following conjecture. Let σ(T) lie on a
smooth convex curve. Then T is normal if and only if

\\{T ~zl)~ι\\ £ 1/dist [z,σ(T)] for z$σ(T) .

This is known to be true if o(T) is a line segment [5], or if o(T)
is a circle [2],

Added in proof: The hypotheses of Theorem 1 may be weakened
from W{T±ι)dΣ{T±ι) to W(T±V) c convex hull (C±v) where σ(T) lies
on C. This may be seen in two ways. First, the proof uses only the
weaker assumption. Second, let S= T@A, where A is normal and
σ(A) — C. Then, Theorem 1, as it stands, implies S is normal, and
thus, so is T.
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