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EXISTENCE OF LEVI FACTORS IN CERTAIN
ALGEBRAIC GROUPS

J. E. HUMPHREYS

If G is a connected algebraic linear group with unipotent
radical U, Borel and Tits define a Levi factor of G to be any
connected reductive subgroup L of G such that G = L.U (semi-
direct product in the sense of algebraic groups). This differs
from the usual notion of Levi decomposition in Lie theory but
leads to equivalent results at characteristic 0. The existence
of Levi factors at characteristic p is problematic, in view of
an example of a group having no Levi factor constructed by
Chevalley (unpublished). In this note sufficient conditions are
given for a Levi factor to exist, based on the structure of
the Lie algebra of G.

THEOREM. Let G be a connected algebraic linear group defined
over a field of characteristic p > 2, with unipotent radical U. Denote
by ®, U the respective Lie algebras, and suppose the following con-
ditions are satisfied:

(a) & =2+ U, where % is a reductive subalgebra (definition
below).

(b) If T is a maximal torus of G whose Lie algebra is included
in &, then Ad T stabilizes & (where Ad: G — Aut (®) 1s the adjoint
representation of G).

(¢) Distinct maximal tori of G have distinct Lie algebras. Then
G has a Levi factor L, whose Lie algebra is L.

It should be observed that, in the presence of (c¢), conditions (a)
and (b) are mecessary for the existence of a Levi factor [3, § 11].
Condition (c) is far from necessary, as easy examples show, but it is
satisfied in certain cases of interest. In fact (c) is equivalent to the
requirement that the Lie algebra of a Cartan subgroup of G be a
Cartan subalgebra of .

We begin by summarizing some facts [3, § 9, 11] about the Lie
algebra & of a connected algebraic linear group G defined over a field
of characteristic p > 2. This restriction on p will be assumed through-
out the paper. Using a Jordan decomposition theorem of Borel and
Springer [1, Prop. 1.3] we define & (or a subalgebra of &) to be
reductive if it has no nontrivial nil ideal (= ideal consisting of nil-
potent elements). A maximal torus of & is a subalgebra of maximal
dimension consisting of commuting semisimple elements. Then:

(1) The Lie algebra 1l of U is the largest nil ideal of &. In
particular, G is reductive if and only if ® is reductive.
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(2) If L is a reductive subgroup of G such that G = L.U is a semi-
direct product of abstract groups, then the product is semi-direct in
the sense of algebraic groups, i.e. ® = 8 4+ U is a semi-direct sum,
where 2 is the Lie algebra of L.

(8) If G is reductive, maximal tori of G and & correspond one-to-
one, In any case, a maximal torus of & is the Lie algebra of at least

one maximal torus of G.
(4) If G is reductive, maximal tori of & are Cartan subalgebras.

LEMMA. Let G be a connected reductive algebraic group, with
Lie algebra &. Then G (resp. ®) is generated by its maximal tori.

Proof. The assertion for G follows from the fact that the semi-
simple elements of G form a dense subset (see [5, 2.14]: this extends
at once from semisimple to reductive groups). The assertion for ® is
immediate if ® is a three-dimensional simple algebra and follows in
the general case because & is generated by any maximal torus along
with certain three-dimensional simple subalgebras [3, 3.9 and 11.9].

Proof of theorem. We proceed by induction on dim G, the one-
dimensional case being trivial. In view of (1) and (2) above, it will
suffice to find a connected reductive subgroup L of G whose Lie alge-
bra is & (for L is then automatically a Levi factor). For purposes of
induction, observe that: (*) if H is a closed connected subgroup of G
whose Lie algebra includes ¥, then H satisfies conditions (a)-(c). For
let f:G— G = G/U be the canonical map; the differential df maps &
isomorphically onto the Lie algebra & of G. Since in any case df (2)
is included in the Lie algebra of f(H), it follows that f(H) = G. Now
HNU lies in the unipotent radical of H, so by comparison of di-
mensions we have the decomposition of the Lie algebra © of H required
for (a): & = & + W, W the Lie algebra of H N U. Since H has maximal
rank in G, (b) and (¢) are obviously satisfied and (*) is valid.

Next, let H be the subgroup of G generated by all maximal
tori whose Lie algebras lie in 2, Then H is a closed connected subgroup
(all tori are connected). The Lemma along with (8) above implies that
8 lies in the Lie algebra of H, so (*) applies and we can appeal to
the induction hypothesis if H #= G.

This leaves the case H = G. We will produce the desired Levi
factor, which in view of (¢) will contain all maximal tori whose Lie
algebras lie in £ (so in this case G itself will turn out to be reductive).
By (b) we have that Ad T stabilizes & for each maximal torus T with
Lie algebra contained in £; since these tori generate G, Ad G stabilizes
L. As is well known, this implies [®, €] € 2. In particular, [U, &] =
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0 since U is also an ideal. Let x be any semisimple element of 2, £
some maximal torus of £ (hence of ®) containing x. By (8) above, &
is the Lie algebra of a maximal torus T of G. Applying a result of
Borel and Springer [1, Prop. 1.5] to the group 7T.U and its Lie algebra
% + U, we see that the group in question centralizes x because the
algebra does. In view of the lemma, U centralizes all of &.

Let we U, and let T be any maximal torus of G with Lie algebra
€ included in ¥. Then it is easy to see that w*Tu has Lie algebra
w'Su = . By assumption (¢), v'Tu = T. But T normalizes U, so
it follows that T and U commute elementwise. In particular, U
centralizes a set of generators of G and thus U is central in G.

In order to apply a theorem of Steinberg on central extensions of
finite type, a further reduction is needed. Let f: G— G =G/U be the
canonical map. G is reductive and can be written as the product of
its derived group G’ and a central torus Z. Let S = f~(Z), so S is
the ordinary (solvable) radical of G. Since U is central, S is clearly
nilpotent and contains a unique maximal torus S;. If se S, and 2z ¢ G,
we have f(s~zs) = f(x), so s7'wsx'eKer (f) = U. But then zsx™ =
su, with the left side semisimple and the right side a product of
commuting semisimple and unipotent elements. Thus # =1, and S
is central in G because S = S,.U. If S, is nontrivial, observe that
H, = f~(G’) and its Lie algebra satisfy conditions (a)-(c). The veri-
fication is straightforward for (a) and (b), using the Cartan decompo-
sition of € along with facts summarized above. For (c) observe that
the centrality of U implies that maximal tori of H, correspond one-to-
one with maximal tori of G’ under f. But now dim H, < dim G, so
the induction hypothesis yields a semisimple subgroup R of H, with
Lie algebra included in &, such that the product L = R.S, is the
desired Levi factor of G.

We can therefore assume without loss of generality that G is
semisimple. Thus G is a product of certain normal subgroups of simple
type. By imitating the procedure of the preceding paragraph (with
recourse to the Lemma) one reduces readily to the case where G itself
is of simple type. (Alternatively one can extend Steinberg’s results
discussed below from the simple to the semisimple case.) Since G is
now its own derived group, and maximal tori of G correspond to
maximal tori of G under f, it follows (since U is central) that all
maximal tori of G lie in the derived group G’. But these tori generate
G, 50 G=G.

In [4] Steinberg constructs a simply connected covering group I”
for each simple type (by a uniform procedure involving generators and
relations). In particular, there is a canonical epimorphism z: 7" — G.
We will apply Theorem 5.2 of [4] to the situation
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It must be observed that the indicated extension of G is central and
of finite type, i.e. u* =1 for some fixed n and all we U. This is
easy to check, using a composition series for U with factors isomorphic
to the additive group of the universal domain. Therefore a homo-
morphism (of abstract groups) =,: 7" — G exists, with 7= = fr,. Let
L = w(I"). Since I" has finite center [4, 3.2] and f is surjective, the
relation 7= = fr, implies G is generated by L and U, while LN U is
finite. But U is central, so G = G’ = L' and U € L. Thus U is finite
(and connected), hence trivial. We conclude in this case that G is
already reductive, which completes the proof.

REMARKS. (1) In case G is a subgroup of maximal rank in some
reductive group H, condition (¢) holds for G because of statement (3)
above. Thus our theorem may be viewed as a partial generalization
of [2, 3.14].

(2) The theorem reduces in some measure the problem of Levi
decompositions in algebraic groups to the corresponding problem in
algebraic Lie algebras. The latter problem may be simpler to handle,
but little seems to be known. The ‘¢ classical >’ notion of Levi decom-
position (semisimple plus solvable) fails for rather unimportant reasons
in such cases as the Lie algebra of SL (p,K), and it may be hoped
that the notion developed by Borel and Tits will prove to be more
manageable when applied to Lie algebras. (Cf. the paper by H. E.
Campbell, Pacific J. Math. 7(1957), 1325-1331.)

(3) An example is constructed in [2, 3.15] to show that Levi
factors need not be conjugate. It can be verified that this example
satisfies our conditions (a)-(c), which suggests that conjugacy may be
a rather delicate question in prime characteristic.
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