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INTEGRAL EQUIVALENCE OF VECTORS
OVER LOCAL MODULAR LATTICES

JOHN S. HSIA

Let F be a local field with characteristic unequal to two,
and in which the element 2 is not unitary. Let V be a regular
quadratic space over F, L a lattice on V. The group of units
of L is the subgroup

O(L) = {σeO(V)\σL = L}

of the orthogonal group 0(V). Two vectors u and v in L are
defined to be integrally equivalent if there exists an isometry
a e 0(L) mapping one onto the other. This paper gives neces-
sary and sufficient conditions for integral equivalence of vectors
when the underlying lattice L is modular.

A very fundamental theorem in all studies of quadratic forms is
the well-known Witt's Theorem. Yet, integral versions of it come
scarce. However, there has been some stirring signs of interest and
activity of late along this direction. The solution for integral equiv-
alence of vectors would, of course, constitute an one-dimensional in-
tegral extension of this classic theorem. Recent works by James [3],
Knebusch [4], Rosenzweig [8], Trojan [9], and Wall [10] may be
consulted for the few known special cases. Earlier in [2] the author
had extended Trojan's unramiίied modular solution to the special case
of the so-called depleted modular lattices over any dyadic local field.
This paper removes the restriction to the size of the weight ideal as-
sociated with the lattice and thereby completes the solution for arbi-
trary modular lattices over dyadic local fields.

The technicalities involved when dealing with an arbitrary lattice
are substantial and not all of which we have been able to overcome.
Here again special cases have been solved and they are included in
the author's doctoral dissertation [1],

1* Preliminaries* We shall freely make use of the results and
terminologies of [6]. We do, however, wish to emphasize a few im-
portant relevant facts.

The ground field F is a fixed dyadic local field that is a finite
(ramified or unramified) extension of the usual 2-adic number field Q
(including Q2). We let & stand for the ring of integers in F, ^ for
the group of units, & for the unique maximal ideal, π for a prime
element generating ^* ord for the ordinal function, and | | for the
normalized multiplicative valuation in prime spot ^ . The residue
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class field is a finite field of characteristic 2 and is therefore perfect.
This means, in particular, that every unit e = μ2 mod & for some unit
μ. The quadratic defect 2$(a) of a field element a is the ideal
generated by the element β where a — β is a square and | β | is
minimal. If sell, then

(i ) ^ ( ε ) is one of the ideals: 0, 4 ^ , 4^5~1 , ̂ 3 , &\
(ii) £$(£) — 4 ^ if and only if F{Vε )/F is a quadratic unramified

extension;
(iii) suppose ε = rf + a with | 4 | < | a | < 1 and ord a is odd,

we have &(ε) = a&'.
Hensel's Lemma will frequently be applied, and usually we refer

to it as the Local Square Theorem which states: "For any integer
α e ^ , l + Aπa is a square."

If a, β are nonzero field elements, then aβ ~ 1 (or a ~ β) means
ord a = ord β mod 2; otherwise, aβ ~ π.

A quadratic space V over a field F is simply a finite dimensional
vector space endowed with a symmetric bilinear form B (and its as-
sociated quadratic form Q). A lattice L on V is a finitely generated
^-module in V such that the subspace FL spanned by L equals V.
The coefficient ideal of a vector α; in F with respect to L is

Sϊί = {αeFlααeL} .

Vector x is called maximal (primitive) in L if 3ί£ = ^ . A sublattice
M of L splits if ikf is an orthogonal direct summand, i.e. L = M±N
for some ΛΓ. The ^-modules generated by the sets 5(L, L) and Q(L)
in JP are called the scale S^L and the norm ideal ^"L respectively.
Let SI be a fractional ideal, lattice L is said to be Si-modular if and
only if B(x, L) = §1 for every primitive vector x e L. The norm group
&L of L is the additive subgroup of F generated by Q(L). This
object is usually much finer than the norm ideal and it was first in-
troduced by O'Meara to characterize completely isometric modular
lattices. Theorem (O'Meara): Two modular lattices on the same
quadratic space are isometric if and only if their scales and norm
groups are equal. Hence, in particular, they are isometric if and
only if they represent the same numbers in F. We shall obtain a
result very analogous to this. We note here that even if L is modular
Q(L) needs not equal ^L. O'Meara has shown [6] that if L is
modular with dim L ^ 5, then Q(L) — &L. This was improved by
Riehm (see [7], Th. 7.4) to dimL ^ 4. Notice that if Fis unramified
(over Q2) then the concepts of norm groups and norm ideals coincide
since the maximal ideal ^fL contained in 5fL has always the same
order parity as Λ~L. This reveals an important point as to why the
unramified theory is very much simpler because Λ^L is a far easier
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creature to contend with than 5f L. A norm generator of L is an
element ae &L such that a& = ^ f L . The object ^(^L) + 2 ^ L
is called the weight ideal W~L of L, and a scalar 6 is called a weight
generator if and only if b& = <WL. An element b e &L such that
ab ~ π and | b | is the largest in S?L is called a δαsβ generator of L
(following Riehm). It is well-known that ^L — α ^ 2 + bέ? where b
is either a base or a weight generator and a is a norm generator. A
base generator is often also a weight generator (e.g. when ^"Lz)2 tp

ί 7L)
and we shall use this letter b indiscriminately. L is a depleted
modular lattice if ^ ~ L = 2S^L. It was precisely this restriction to
the size of W^L that enabled the norm ideal to play a more dominant
role and thereby facilitating us in our earlier solution of the integral
equivalence problem over such lattices.

The symbol A(a, β) denotes a two dimensional unimodular (scale = έ?)
lattice having basis {x, y} such that Q(x) = a, Q(y) — β, B(x, y) = 1.
Similarly, the symbol <W> stands for an one dimensional lattice with
a basis vector {x} whose length is Q(x) = a.

The set of all isometries of V leaving L stable is a subgroup
O(L) of the orthogonal group O(V). Vectors u,veL are integrally
equivalent (symbolically u ~ v) if there exists an isometry σ e O(L)
such that σ(u) = v. Our task is to determine necessary and sufficient
conditions for integral equivalence when lattice L is modular. Since
the coefficient ideals and the lengths of u and v must clearly be the
same for necessity, we shall henceforth take these vectors as being
primitive in L with common length δ. By scaling (see [6]), we may
assume L is unimodular. Furthermore, since the depleted case has
been settled we may assume, whenever necessary, that ^ L D 2 ^
which implies, in particular, ord (Λ^L) + ord (WL) is odd. Also, if
dim L ^ 3, then L represents every weight (base) generator.

Finally, we associate to every maximal vector x e L its charac-
teristic set

(mx = {zeL\ B(x, z) = 1} .

The numbers represented by this set will be an important invariant
needed to classify integrally equivalent vectors.

2* Binary case*

DEFINITION. Let L be binary unimodular and u, ve L. We say
Uj v are of the same parity if and only if for all pairs (ϋ, v) of vec-
tors in L such that ΰeWlu, veWlυ we have

Q(u) =

where ω = max {2, <5}. (Of course, maximum is taken in the sense of
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their valuations.)
We have proved in [2] the following result.

THEOREM 2.1. Let L be any binary unimodular lattice. Then,
u ~ v if and only if they are of the same parity.

PROPOSITION 2.2. Suppose L is binary unimodular with ^Lz)2έ?f

then u ~ v always.

Proof. By ([6], 93:10) we have L ~ A(a, b) where a and b are
norm and weight generator respectively. Hence, O(L) = O(FL) by
([7], Lemma 3.5). Now u ~ v by Witt's Theorem.

3* Classification of vectors*

DEFINITIONS. A maximal (primitive) vector x in L is Λ^regular
(resp. ^-regular) if and only if ^{ζx}1) = Λ^L (resp. ^«^> 1 ) = S^L),
where

<x>L = {zeL\ B{x, z) = 0} .

Otherwise, x is ^Λ^irregular (resp. ^-irregular).
Again, putting ω = max {2, §}, we call u a vector of Type I if

>1) gΞ ω ^ ; otherwise, w is of Type II.

REMARK. If JP is unramified, then the concepts of
and ^"-regularity coincide.

DEFINITION. Suppose L is unimodular with dimL = 2n, n ^ 1.
Then, there exists a splitting

L - Lx 1 1 Ln

where L{ = A(aiy 7<) with α ^ = ^ L , τ< e ^"L^ S ^ ^ L for i =
1, ' *,n. Such a splitting is called a quasi-canonical splitting1.

It is quite clear that if Q(%) = δ ί ^ and dim L is odd, then %
is .^regular always. Also, w is ^^regular whenever δ is a norm
generator and dim L is even. The .x^irregular vectors are charac-
terized as follows: (i) Assume dim L ;> 3. If u is .^irregular, then
for every ΰ e 3Jitt, Q(ΰ) is a norm generator. The converse is true
provided L is not totally improper (i.e. Λ^L Φ ΊS^L = 2 ^ ) . (ii) Let
dim L = 2w, ^ ^ 1. For every quasi-canonical splitting

L = 1 Lif L{ ^ A(α<, 7<) = ^a?* + ^yi91 ^ i £ n ,

1 The existence is seen by applying ([6], 93:12 and 93:18) and O'Meara's op-trans-
formations (see [5]).
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we put

w = Σ (a&i + βiVi), ai9 βi e & .

Then, u is <^irregular implies all the β/s are unitary. Again, the
converse holds for L not totally improper.

CONDITION (D). (Assume d i m L ^ 3 , and F ' L D 2 ^ ) . An ele-
ment a in &L is said to satisfy condition (D) provided the quadratic
defect satisfies the inequality

for every norm generator α e 5f L.

LEMMA 3.1. Suppose δe 5fL and δ^ Φ Λ^L. Then, if there
exists one norm generator ar such that ^ί(δar)c:ιyp^LW^L, we have
δ satisfying condition (D).

Proof. Write S^L = a'^2 + b& for the given ar and an arbitrary
base generator 6. δ^ Φ ̂ L implies δ — a't2 + ba has 11 \ < 1. Since
α'δ — π we see | a\ < 1 by the assumption that ^(δaf)d^i^LW^L.
The rest is computational.

PROPOSITION 3.2. Let u be an ^f^regular vector with length δ
satisfying condition (D). Then u is also ^-regular if and only if
there exists a vector ΰ e JJΪW such that Q(ΰ) e & W^L.

Proof. Since δ satisfies condition (D), we have the implicit as-
sumptions of dimL ^ 3 and W^Lz)2^. Therefore, δ is not a norm
generator since otherwise 8 + b is a norm generator also (here b is
any base generator) and

jgr(δ(δ + 6)) - δί>^ - Λ/"LW~L ,

implying that <5 does not satisfy condition (D). Putting L = K±M
where

K = &u + 6?ΰ ~ A(8, Q(u)) with Q(ΰ) e

it is quite clear that <A^M = Λ^L. Write

gf ΛΓ - α w ^ 2 + bmέ? and gf ίΓ -

But,

where 7 runs through the set {δm, α*, 6̂ } (see page 31, [7]). Now,
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since δ satisfies condition (D) and Q(ΰ) e
If \δ\ ^ \WL\, then

On the other hand, δe^'WL implies bk#
>cze%^L since L is not de-

pleted by hypothesis. Thus, "W^L — "y/^M proving u is G-regular.
Conversely, assume &((u}L = &L. Suppose the contrary is true,

i.e. every u'eWlu is such that Q(u')$ ^ΎJ^L. Putting L =
(<^u + έ?v/)± T, we see that Λ^T = Λ^L since u is .^regular with
δ not being a norm generator. We also have,

ί<α>±..

U ( α , . . . ) ±

Suppose Q(u') is already a norm generator, we apply op(uf) — uflex
where ε is an unit such that

Q(εx) = Q(uf) mod

Now, Q{op(uf)) lies in ^ ^ L . On the other hand, if \Q(u')\ <
by applying op(u') — vl\_x we have made opiyi!) a norm generator and
furthermore,

L =

Therefore, in either case we know that by applying op-transforma-
tions, at most twice if necessary, there exists a vector u e Ύ/^u with
ordQ(^) = ord(^^L). Let Q(ΰ) = b and write

L = KlM

again as above. Then, <yΓM = ^/^L and

where dK is the discriminant of K. Now, writing αm = a, it is easy
to see that &{aδ)aab^ implies also that ^{aδdK)aab^. Hence,
^ M = &L. This means, in particular, that M represents every
weight (base) generator of GL whenever dim M ^ 3. By applying
op-transformations, if necessary, and by the perfectness of the residue
class field, we can find an ΰeWlu with Q(ΰ)e ^"W^L and so we are
done except for dim M = 1,2. But dim M = 1 is not possible since
L is not depleted. (Referring to (*) above, one sees immediately that
since δ does not satisfy condition (D)—nor does δdK—dim M = 1 would
imply u is ^"-irregular contradicting hypothesis.) Finally, suppose
dim M = 2. We express

M = A(α, — αα"1)
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where | -aa~x\ = \<Wh\, (see [6], 93:10 & 93:17). Again, it is not
difficult to see that there is a suitable op-transformation such that
op(ΰ)e%Jlu with length contained in ^V^L, contradicting the initial
assumption.

COROLLARY 3.3. If u is a ^-regular vector with length Q(u) = δ
satisfying condition (D), then (i) dim L ^ 4, and (ii) for every ΰ e 3JΪ*,

= gf L.

PROPOSITION 3.4. Let dim L ^ 3 and δ not satisfying condition
(D). Then, u ~ v if and only if O ) 1 ^ <V>\

Proof. We may assume S is not a norm generator by Proposition
2 in [2]. Therefore, 3t(δo!) = Λ^LΎ/^h for each norm generator
α' e ^ L . Putting gf L = α ' ^ 2 + 6 ^ for some base generator 6, we
have

δ = α'ί2 + δε, | e | = l , | ί | < 1 .

Case I. Suppose both u and i; are .^regular , then there is
% e ^SJlu with Q(ΰ) e bέ?. Let JBΓW = έ?u + ^i6, Mw = Kί. Then,
Λ^MU = Λ^L. Since α'δ — π, ord δ ^ ord 6. Let σ: <u>x —> </y>1 be
the given isometry and σ(Mu) = Afv Then M,, splits.

L = KvlMv with if, - £PV +

for some ^GΛίv. We claim

Q(v) e δέ? .

Suppose not. Put

Q(v) = α's2 + br with 1 α's21 > | & | .

Then,

δQ(y) = (a'ts)2 + α's2δε + δ2εr + αί2δr

Clearly, we may assume that ord s < ord ί. But,

dKu ~

Now, —dKu has quadratic defect contained in δbέ?. On the other
hand, by direct computations, we see

This is a contradiction so the claim is true. Hence,
and we see readily that &KU = ^ϋΓ^. By Witt's Theorem and
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O'Meara's Theorem on isometry of modular lattices, Ku = Kv. Finally,
u ~ v follows from another application of Proposition 2, [2].

Case II. Suppose both are ^/^irregular. Let u e ^Jtu be arbitrary
and Ku, Mu, Mv, Kv = ^v + &v for some ve%Jlv as before. But now,
Q(ΰ) and Q(v) are norm generators for SfL. FKU is isometric to
FKV by Witt. It is an easy computation to check that the sublattices
Ku and Kv are not depleted; indeed, &KU = g?Kv = %?L. Hence,
u ~ v by Proposition 2.2.

REMARK. It can be shown that when dim L = 3 and if δ does
not satisfy condition (D), then u ~ v always provided δ g ̂ \ In prov-
ing this fact, we show that (u}L ~ <(/^)>L by using O'Meara's Theorem
93:28, [6].

PROPOSITION 3.5. Suppose dim L >̂ 3 and both u and v are Type
I vectors. Then, u ~ v if and only if (i) u, v are of the same parity,
and (ii) <ιι>L ~ <y>\

Proof. The case of δ being an unit is obvious. So, let δ g ^ .
Hence, choose any ΰ e <jSlu and put

Ku = &u + <ί?ΰ, Tu = Ki .

Suppose σ: (u)L —><v>1 is the given isometry. Then, σ(Tr

w) = Tv splits
and we have

L = KV±TV

where iΓv = ^ v + έ7v for some veaW,,. If | δ | ̂  | 2 | , then (i) im-
plies &KV = gf iΓtt so t h a t iΓπ ̂  Kv by Witt and O'Meara and there-
fore u ^ v follows from Theorem 2.1. Otherwise, define the mapping
φ: FKU —> FKV by: ψ(u) = v, φ{u — δΰ) = μ(v — δv) where

2 _ 1 - δQ(ΰ)
μ 1 - δQ(v) '

Now, again condition (i) implies that

μ2 = 1 mod δ2έ? .

It is easily checked that φ, in fact, maps Ku onto Kv and we are done.

4* Main results* We recall that to every maximal vector x in
L, there is associated with it a characteristic subset % of the lattice

mx = {z e L I B(α>, s) = 1} .
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A central result given below states that u is integrally equivalent
to v if and only if 2Ji% and Wlυ represent the same field elements when
the dimension of the given lattice is sufficiently large. This theorem
may be viewed (for dimL large enough) as an analogue to the well-
known theorem on the integral classification of modular quadratic
forms over local fields.

THEOREM 4.1. Let L be an unίmodular lattice over a dyadic
local field of characteristic zero, and that dim L ψ 4, 5, 6. Then,
two maximal vectors u and v in L are integrally equivalent if and
only if Q{u) = 3 = Q(v) and Q(%Jlu) = Q(Wlv).

Proof. Necessity is obvious. As for sufficiency we proceed in
several steps.

1. Pick any ΰeW,u, veWlυ such that Q(ΰ) = Q(v). Then,

- δΰ)L Tu = ΰ + <¥>x

= v + έ?(v - ov) 1 Tv = v + <v>L .

Hence, Q«X>X) = Qiζv}1) mod 2 ^ . (i.e. for every ze^u}L,lw eζv}L

such that Q(z) = Q(w) mod 2έ?) Therefore, the norm groups are equal

It is also clear that F<u)L ~ F<v}L and FTU ~ FTV.
2. Suppose dim L ^ 9 so that dim Tu = dim Tv ^ 7. Then, it is

well-known (see [6], 93:18) that

TU^A(O, 0)±A(0,0)±... .

Take a norm generator a' and a base (weight) generator b for
L). So, ϊfiζu}1) = α ' ^ 2 + bέ?. Therefore,

<μy = A(0, 0 ) l i ( 0 , 0)1 if.

for some Ku. But now,

+ 5f (#0 = Sf K

so that a',b lie in &(Kζ). (Here if f = {x e Ku \ B(x, Ku) e
Hence, by ([6], 93:13), we have

6, 0)1 if. .

This means there exists a Jordan decomposition

where gf WΊ = ^ K ^ ) 1 ) and W2 ^ ^(w - δΰ).
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3. Let dimL >̂ 7. Just adjoin an hyperbolic plane H to L, H ~
A(0, 0). Now, apply step (2) and we have

<u}t±H= Wf±Wί

with &WΪ = &{<u)L) and Wt ~ &(u - δΰ). But, dim Wf ^ 7 here
so that W* admits a splitting

Wί = A(0, 0)1 A(0, 0)1 W[.

Clearly, &W[ = &Wf = 5s((u)L). Upon cancelling the hyperbolic
plane, we obtain

Similarly for ζyy. Hence, {u}1 = ̂ X
4. By (2) and (3), we put LU±PU = L = LV±PV, where Pu ~ Pv

have norm groups equal to ^ , and Lu = ̂ u + έ?vf, Lv — ̂ v +
Let v̂ eSDΐ̂  such that Q(v*) = Q(^;). Hence, we have

Therefore,

Q(u') = Q(v') + α: , for some α in gΌ

On the other hand, we have

Pv ~ A(0, 0) 1 Rv where %?RV = gf still!

By ([6], 93 : 13),

Pv ^ A(α, 0) ± Λv = (^2/ + ) 1 S , .

Applying the op-transformation: v' —• op(ΐ/) = v' ± 2/, we see that

L'v = ̂ v + ^(op(^')) splits L

with PJ as its orthogonal complement and furthermore, S^PJ still equals
5^. Now, u ~ v is clear.

5. When dim L is less than 4, the proof of the theorem is
entirely trivial.

COROLLARY 4.2. Let L be an unimodular lattice with arbitrary
dimension, u and v be to two maximal vectors in L having the same
length. If Q(ΪOlu) = QίSϋi,), then, <V>L ~ O ) 1 .

Proof0 By adjoining a suitable number of A(0, 0)'s and calling
the enlarged lattice L', we have u integrally equivalent to v over L'.
Hence,
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<μy(mL') = <yy(mLf) .

But,

<u}λ(m U) = ζu}L(in L) 1 A(0, 0) 1 . _l_ A(0, 0)

and similarly for (v}1. Now, cancel out the ̂ 4(0, 0)'s .

COROLLARY 4.3. Let L be unimodular having arbitrary dimension,
, and Q(2ftJ = Q(2JU. TΛerc, w ~ v always.

Proof. Choose any ΰeίίJlu and ve2Jiw such that Q(ΰ) = Q(v),
and put

Lu = ^u + έ?u, Pu = Li, Lv =

Then, FPW = FPV. Since δ lies in 2 ^ , it is clear that
The rest is obvious.

THEOREM 4.4. Let dim L - 4, 5 cmd Q(2JiJ = Q(Wlv). If there
exists a vector ΰe($lu such that (<^u + έ?ΰ)L is isotropic, then u~v.

We shall first prove a lemma.

LEMMA 4.5. Under the same hypothesis as in the theorem except
dimL may be 6, there exist then vectors xueϊΰluy xυe

(S3lv such that
Q(xu) = Q(xv) and moreover, by denoting Lu — έ?u -1- &xu and Lv —

+ έ?xv, we will have FLi = FLi are isotropic spaces, and

Proof. The case of δ e ̂  is quite obvious. Let ΰ be the given
vector, we put Ku = &u + ̂ ΰ. If u is a Type II vector (hence so
is v), then ^(K^) already equals ^((uyL) and everything is clear.
So let both be Type I vectors. By a suitable op-transformation, we
may assume Λ~{K£) = <yy\<u)L). Pick v from 2Jlv with Q(v) = Q(ΰ),
and denote Kv = &v + &v. By Witt's Theorem, FKi is isotropic.
Hence, KV

L has a splitting of the form

KV

L = A(s, 0) 1 = (έ?x +

We know that

O ) 1 = KV

L 1 <?(v - dv) .

Apply op(x) = xl(v-δv), then if,1 becomes (έ?(op(x)) +
and call this Ti where Tv = ^ v + ^ ^ for some w e W,v. In fact,

w = v + <z(v — δv) + βx + 7«, a,
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Using the fact that w is orthogonal to both z and op(x), one deduces
β = 0 and 7 = (1 — aδ)D, where D is the discriminant of Kυ.
Consequently,

Q(w) = Q(v) + a2δD - 2aD .

Here, a can be quite arbitrary so that by choosing order of a to be
sufficiently large, we see that Tυ ~ Kv. But now, Tυ

L is easily seen
to have its norm ideal equals to ^(ζv)1) = ^{(uy^), because if
δ\ < \~4/~(£y}L) I then Kυ

L already has norm equal to ^ « V > X ) . The
existence of such vectors xu and xυ is now clear.

Proof of the theorem. Let Lu = έ?u + έ?xu and Lv = έ?v +
enjoy the properties as stated in the lemma. We put D = dLu — dLv.
Suppose, for the moment, that L is quarternary. Then, we write

Li = A(au, 0) , L,1 = έ?x + έ?z = A(av, 0)

where αw and aυ are norm generators for &{(u}L). If (
, then it is easy to see that Li = L^ and so u ~ v. Therefore,

D) must equal a M ^ ^ ^ « ^ 1 ) ! As in the lemma, since
au e Q(<Cv)L) we have

au = A2aυ + B2δD + 2A' , | A | = 1, B, A! e & .

Applying the op-transform, op(x) — x ± BA~\v — δxυ) one sees by
direct computations that

L = (έ?v + <S?(xψ 1 DBA-'z)) 1 (έ?(op(x)) + <?z) .

(The choice of xυ _L DBA"ιz corresponds to the choice of a equals zero
in the proof of the lemma.) Now, observe that the first term on
the right-hand-side is isometric to Lu and the second term is isometric
to L^ because

Q(op(x)) = auA
2mod2^, with 4 G ^ .

Hence, u ~ v.
Now, let dim L = 5. By proving a result similar to Lemma 4.5,

we may assume (&U + ^xu)
L has norm group equal to ^{^u}L). But,

(^v + t^XvY will not, in general, simultaneously enjoy this same
property.

Let us call Pu - Li, Pυ = Lv\ ^ « u > x ) = ^ = α^5 2 + 6 ^ ; the
discriminant of Pu we denote by d and therefore by ([6], 93 :18)

P w ^<-d>_L A(δ,0)
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where br is a weight generator for &PV, which we may assume to
be of having larger order than that of b because otherwise, Pu ~ Pυ

already.
Suppose the component A(b', 0) is adapted to a basis <^x + ^z

again. Take op(x) = x 1 (v — dxv). If D still denotes the discriminant
of Lυ = ^v + έ?xv, it is readily seen that

L = {^v + έ?(xv JL Dz)) 1 <-d> _L (έ?(op(x)) +

where the first term on the right side again is isometric to Lu. Because
of the assumption that | 6 ' | < | δ | , we must have £&( — d(b'+ dD))
equal to ^ « V > X ) . Hence,

The rest is obvious.

REMARKS, (i) It follows from the proofs of the theorem and
the lemma that if either de^«u>λ)^ or W~«u>L) Φ 2 ^ , then
u ~ v regardless of the dimension and the existence of the vector ΰ
with the stated property.

(ii) A 4-dimensional unimodular lattice with given discriminant
assumes two possible forms (either J or K in 93 :18 of [6]). By a
result of Riehm (Theorem 7.4, [7]) it is known that such a lattice
represents every element of its norm group. Now, employing the same
notations as in the proof of the last theorem, it is readily seen that
we may assume when dim L = 6 (as in the dim L — 5 case) that
(^u + ^xuy has norm group equal to & already. Hence, the proof
of Theorem 4.4 still goes through if Pu takes the "/-form". (It is
easily seen that Pu takes the "J-form" if and only if Pv does so since
the spaces on which they sit are isometric.)

(iii) Theorem 4.4 also goes through when dim L = 6 and when
both u and v are .x^-irregular vectors.

(iv) Finally, we remark that Theorem 4.1 remains valid if and
only if the characteristic sets satisfy the somewhat weaker property:
For each ΰe^Jlu, there is a vector ve^v with

Q(ΰ) = Q(v) mod 2 ^ .

DEFINITION. Let & be an additive subgroup of F. We say u
and v are of the same parity mod & if Q(u) = Q(v) mod & for all

We have then the immediate consequence which we mention here
only because it is generally slightly easier to apply than Theorem 4.1
itself.
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PROPOSITION 4.6. Let dim L :> 7. Then, two maximal vectors v,
and v having the same lengths are integrally equivalent if and only
if (\) g^<uy) = & = &{<?y), and (\i) u and Ή are of the same
parity mod G.

We wish to make the conjecture here that both Theorem 4.1 and
Proposition 4.6 hold for dim L = 4, 5, 6 in the general situation as
well.

5. Ternary case*

PROPOSITION 5.1. Let L be ternary unimodular. Then, u ~ v if
and only if. (i) there exist vectors xue$Jlu, xve$fbυ such that
Q(xu) = Q(xv)mod2<? when δe2<^; Q{xu) = Q(xv) mod 4S~\^ when
I 2 ] ̂  I δ I < 1; (ii) otherwise, Sf (<u>r) - Sf K ^ 1 ) .

Proof. Necessity is obvious. As for sufficiency, we put L =
L. i ^ W w = Lv JL ^w,, where LM - έ?u + ̂ ^ & Lυ = έ?v + ̂ ^ .
But, dLu = dLv by the Local Square Theorem. Therefore, by Witt
Q{wu) = Q{wυ) and FLU = FLV.

It is not difficult to see that Lu ^ Lv so that u - v by Theorem
2.1 since u, v are of the same parity over isometric binary components.
(These statements are true provided 8(£%f. But, then if δe^S,
condition (ii) finishes the proof immediately.)

6. dimL = 4,5,6. Let us put

2Ji? = {w e mx I ^T(^x

We shall write ^T(L) = ^T(K>modJ^ (here s>/ denotes any
fractional ideal in F) to mean that there exist respective norm
generators aLeQ(L), aκeQ(K) such that aL = α^mod J ^ for some
unit ξ.

PROPOSITION 6.1. Let L be quarternary unimodular. Then, U~Ό

if and only if conditions (i) and (ii) in Proposition 5.1 hold, and also
mod 2

Proof. Sufficiency follows closely to the proof of last proposition.
Denote Lu and Lυ as before. Again, Lu ~ Lv by direct computation
of the norm groups. Condition

{^v + έυY m o d

together with 93 :17 of [6] give us
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Li ^ A{au, -aa~ι) , Li ~ A(aυ, ~aa~ι)

for the suitable norm generators aUί av of Li, Li respectively. Now,
it is easy to see that Ύ/^{Li) = Ύ/^(Li) = (say <W). Thus, au ^
aυmod W, so that Sf(Lί) = &(Li) and Li ~ Li by Witt and
O'Meara.

Direct computations again shows that u, v are of the same parity
over isometric binary components and so apply Theorem 2.1. Again,
the case of 3 being unitary is trivial.

PROPOSITION 6.2. Suppose dim L = 5. Then, u ~ v if and only
if: (i) there are vectors xueWy\xveίΰl{

υ

βtt) for some t^O such
that Q(xu) = Q(α?,) mod 4δ-\^* when <5g2^; and Q(α?J = Q(xv)mod2<S?
when S e 2 ^ (ii) ^{<n}L) = ^{<vY) if δ e ^ . (Here, e denotes
ord 2.)

Proof, Using the same Lu and Lυ, one proves that they are again
isometric. So, FLU s JPL,, by Witt. But now, dim Li = dim L^ = 3
so that Li represents every weight (base) generator; similarly for
Li. Put Ύ/^(Li) - r W ) = δ ^

If ^ r ( L ί ) ^ ^ ( L ί ) - 1, (i.e. if t is even) then

L^ ^ A(0, 0) l < - d > ^ L υ

L ,

where d ~ dLu. Thus, u ~ v by Theorem 2.1.

If ί is odd, then 93 :18 of [6] shows that Li ~ A(b, 0) _L <-cί>
if FLU is isotropic, and Li ~ A(b, Apb*1) 1 <-d(l - 4^)) if FLtt

anistropic. Similarly, we write out for Li. Thus, Li = L̂ 1 always.
Apply Theorem 2.1.

PROPOSITION 6.3. Suppose dimL — 6. Then, ^ ~ v if and only
if: (i) there are vectors xueWl{

u

S}t\ xveWυ

s>t) for some s, t ^ 0 such
that Q(xu) Ξ Q(xυ)mod2<^ for δ e 2 ^ ; and congruence modulo 4S~\^
if δ£2^; (ii) . ^ r ^ ^ + ̂ a J 1 ~ Λ^(ό?v + ^xv)

λ mod 2 ^ - ' ; and
(iii) %?«u>L) equals g^K^)1) if δe^.
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