POLYNOMIALS IN CENTRAL ENDOMORPHISMS

Franklin Haimo

Let λ be a central endomorphism of a group G in the sense that λ induces the identity map on the inner automorphism group of G. Despite the nearness of the situation to commutativity, it is not necessarily true that the central endomorphisms of G form a ring or even that the subset generated by λ be a ring. The displacement map τ, given by $\tau(g)=$ $g^{-1} \lambda(g)$ for each $g \in G$, is an endomorphism with central values. We shall show (Theorem 1) that if τ satisfies a certain pair of simultaneous equations then λ or λ^{2} is idempotent. Let P be a formal polynomial with integral coefficients, and let t be the sum of these coefficients. Then (Theorem 2) $P(\lambda)$ is an endomorphism if and only if t induces an integral endomorphism on G. If G is nilpotent of class 2 then (Theorem 3) $P(\lambda)$ is an endomorphism if and only if $t(t-1) / 2$ is an exponent for the commutator subgroup Q of G.

Theorem 3 gives us an alternate proof of an older (essentially equivalent) result [2, Th. 7, Corollary]. If α and β are two maps in G^{G}, then $\gamma=\alpha+\beta$ is to mean the map given by $\gamma(g)=\alpha(g) \beta(g)$ for all $g \in G$. The symbol c will be reserved for the identity map on G. By $\operatorname{diag}_{m} x$ we mean the m-by- m matrix with x repeated down the main diagonal and with zeros elsewhere. If 1_{G} is the unity of the group G, we say that an integer m is an exponent of G if $g^{m}=1_{G}$ for each $g \in G$. An integer m is said to induce an integral endomorphism on a group G if $(x y)^{m}=x^{m} y^{m}$ for all $x, y \in G$.

1. Preliminaries. Let τ be a center-endomorphism of a group G. That is, τ is an endomorphism of G, and $\operatorname{Im} \tau \leqq Z$, the center of G. The map $\lambda \in G^{G}$ given by $\lambda(x)=x \tau(x)$ for each $x \in G$ is a normal endomorphism of G in that it commutes with each inner automorphism of G. It is a central endomorphism in that $\lambda=\iota+\tau$ where τ is a center-endomorphism. See [3]. Each center-endomorphism of G is likewise a normal endomorphism; but if G is nonabelian, no such endomorphism is a central endomorphism. The central endomorphism $\lambda=\iota+\tau$ is said to be related to the center-endomorphism τ. The set of all center-endomorphisms of a group G is a ring $C(G)$ under endomorphism addition and composition.

If τ is a center-endomorphism of G with related central endomorphism λ, then, with multiplication proceeding from left to right with increasing i and with $C(n, i)$ as the usual binomial coefficient, we have
$\left(A_{n}\right)$

$$
\lambda^{n}(x)=x \prod_{i=1}^{n} \tau^{i}\left(x^{C(n, i)}\right)
$$

and

$$
\begin{equation*}
\tau^{n}(x)=\left[x \prod_{i=1}^{n} \lambda^{i}\left(x^{(-1)^{i}{ }_{C(n, i)}}\right)\right]^{(-1)^{n}} \tag{n}
\end{equation*}
$$

for each $x \in G$ and for each positive integer n. From $\left(A_{n}\right)$, each λ^{n} is a central endomorphism related to $\sum_{i=1}^{n} C(n, i) \tau^{i} \in C(G)$ where λ is related to τ. One readily sees that λ is idempotent if and only if $-\tau$ is idempotent. Under this assumption, $\tau^{2 j+1}=\tau=-\tau^{2 j}$ for each positive integer j.

Observe that the 2^{n} factors on the right of $\left(B_{n}\right)$ can be rearranged at will. In fact, if one considers the mapping $P(\lambda)=\sum_{i=0}^{n} a_{i} \lambda^{i}$ where the a_{i} are integers with $a_{n} \neq 0$, where $\lambda^{0}=\iota$, and where $P(\lambda) x=$ $\prod_{i=0}^{n} \lambda^{i}\left(x^{a_{i}}\right)$ for each $x \in G$, then the terms of $P(\lambda)$ can be rearranged in any way. Nevertheless, $P(\lambda)$ need not be an endomorphism. If, however, it is an endomorphism, then it is normal. Call n the degree of P.

THEOREM 1. Let τ be a center-endomorphism with related central endomorphism λ on a group G.
(a) Suppose that there exist integers $m>0$ and $k \geqq 0$ such that $\tau^{2 m+k}+\tau^{m}=0$. Then there exists a formal polynomial P with integral coefficients and of degree $2 m+2 k$ for which λ is a zero.
(b) If there exists an integer $n \geqq 3$ such that $\tau+\tau^{n-1}=0=$ $\tau^{2}+\tau^{n-2}$, then λ is idempotent if n is odd; while if n is even, $\operatorname{Im} \tau$ is elementary 2-abelian, $\lambda^{3}=\lambda^{2}$, and λ^{2} is idempotent.

Proof. (a) From $\tau^{2 m+2 k}+\tau^{m+k}=0$ and the above remark on idempotents, the central endomorphism σ related to τ^{m+k} must be idempotent. From $\left(B_{m+k}\right), \sigma$ must be of degree $m+k$ as a polynomial in λ. Let T be the formal polynomial corresponding to σ. Let $P=$ $T^{2}-T$.
(b) $\tau=\tau^{3}$ so that $\tau^{2}=\tau^{4}$, all odd powers reducing to τ, even to τ^{2}. If n is odd, then $\tau^{n-1}=\tau^{2}$ while $\tau^{n-2}=\tau$, from which $\tau^{2}=-\tau$ and $\lambda^{2}=\lambda$. If n is even, $\tau^{n-1}=\tau$ whence $\tau^{n-1}+\tau=0$ yields $\tau\left(x^{2}\right)=1_{\theta}$ for every $x \in G$. At once, $\operatorname{Im} \tau$ is elementary 2 -abelian. Now, $\left(A_{2}\right)$ leads to $\lambda^{2}(x)=x \tau^{2}(x)$ in this case. Applying $\lambda, \lambda^{3}(x)=x \tau\left(x^{2}\right) \tau^{2}(x)=\lambda^{2}(x)$. Thus, $\lambda^{3}=\lambda^{2}$, all higher powers reducing to λ^{2}. In particular, λ^{2} is idempotent.

As an example of (b), take G to be the group of m-by- m nonsingular real matrices, and, for each matrix A therein, let $\tau(A)=$ $\operatorname{diag}_{m}\left(|\operatorname{det} A|^{-1 / m}\right)$. It is clear that τ is a center-endomorphism of G and that $\tau^{2}+\tau=0$. If we take $n=3$, we have the situation in (b).
2. The sum of the coefficients. If P is a polynomial with integral coefficients, let $t(P)$ denote the sum of these coefficients.

Lemma. Let α be a center-endomorphism of a group G, and let β be a member of G^{G}. Then $\alpha+\beta$ is an endomorphism of G if and only if β is an endomorphism.

Proof. $(\alpha+\beta)(x y)=\alpha(x) \alpha(y) \beta(x y)$ while $(\alpha+\beta)(x)(\alpha+\beta)(y)=$ $\alpha(x) \beta(x) \alpha(y) \beta(y)$. Since $\alpha(y)$ is in the center, the result is clear.

If k is an integer, let [k] be that member of G^{G} which is given by $[k] x=x^{k}$ for each $x \in G$. Observe that if τ is a center-endomorphism of G, then τ generates a subring $\{\tau\}$ of $C(G)$.

THEOREM 2. Let τ be a center-endomorphism of a group G, and let λ be its related central endomorphism. Let P be a polynomial with integral coefficients.
(a) If $t(P)=0$, then $P(\lambda)$ is a center-endomorphism, a member of $\{\tau\}$.
(b) If $t(P)=1$, then $P(\lambda)$ is a central endomorphism related to some member of $\{\tau\}$.
(c) If G is noncommutative and if $t(P)=2$, then $P(\lambda)$ is no endomorphism.
(d) If $t(P) \neq 0,1,2$, then $P(\lambda)$ is: (1) an endomorphism if and only, if $[t(P)]$ is an endomorphism on G; (2) a center-endomorphism if and only if $[t(P)]$ is a center-endomorphism on G; (3) a central endomorphism if and only if $[t(P)-1]$ is a center-endomorphism on G.

Proof. Suppose that $P(\lambda)=\sum_{i=0}^{n} a_{i} \lambda^{i}$ for integers a_{i}. Note that $\lambda^{0}=\iota$ and that, from $\left(A_{i}\right), \lambda^{i}=\iota+\sum_{j=1}^{i} C(i, j) \tau^{j}$ if $i>0$. Upon substitution, $P(\lambda)=\sum_{i=0}^{n} a_{i}\left(\iota+\sum_{j=1}^{i} C(i, j) \tau^{j}\right)=t(P) \iota+\sum_{i=1}^{n} q_{i} \tau^{i}$ for suitable integers q_{i}. (a) and (b) are now immediate. If $t(P)=2$, the lemma says that $2 \iota=$ [2] is an endomorphism of G if and only if $P(\lambda)$ is an endomorphism. But [2] is an endomorphism if and only if G is abelian, establishing (c). For $t(P) \neq 0,1,2$, the lemma gives (d), (1) and (2), directly. Now $P(\lambda)$ is central and related to a centerendomorphism if and only if $P(\lambda)=\iota+\sigma$ for some center-endomorphism σ. Equivalently, $(t(P)-1) \iota+\sum_{i=1}^{n} q_{i} \tau^{i}-\sigma=0$; that is, $(t(P)-1) \iota=$ [$t(P)-1]$ is a center-endomorphism on G, establishing (d), (3).

By (a) above, each $\lambda^{n}-\lambda$ is a center-endomorphism, $n=1,2, \cdots$. By (c), if G is noncommutative, no $\lambda^{n}+\lambda$ is an endomorphism, $n=$ $1,2, \cdots$.

Recall that a group is (nilpotent) of class 2 if its inner automorphism group is abelian.

Theorem 3. Let G be a class 2 group, λ a central endomorphism of G, and P a polynomial with integral coefficients. Then $P(\lambda)$ is a normal endomorphism of G if and only if $(t(P)-1) t(P) / 2$ is an exponent of Q.

Proof. Note that $P(\lambda)=\sum_{i=0}^{n} a_{i} \lambda^{i}$ is a normal endomorphism if and only if it is an endomorphism. Each λ^{i} is central (by A_{i}). For $x, y \in G$, let w denote $\left[y^{-1}, x^{-1}\right]=y^{-1} x^{-1} y x$. For a class 2 group, recall that $y^{b} x^{a}=x^{a} y^{b} w^{a b}$ and that $(x y)^{a}=x^{a} y^{a} w^{a(a-1) / 2}$ for all integers a and b. By the centrality of the powers of $\lambda, \lambda^{i}\left(y^{b}\right) \lambda^{j}\left(x^{a}\right)=\lambda^{j}\left(x^{a}\right) \lambda^{i}\left(y^{b}\right) w^{a b}$ for all $x, y \in G$, all nonnegative integers i and j, and all integers a and b. It is now easy to show that $P(\lambda)(x y)=P(\lambda)(x) P(\lambda)(y) w^{E}$ where the integer $E=\sum_{i=0}^{n} a_{i}\left(a_{i}-1\right) / 2+\sum_{i<j} a_{i} a_{j}$. From a routine observation one sees that $E=(t(P)-1) t(P) / 2$.

Corollary. [2, Th. 7, Corollary] Let s be an integer $\neq 0,1,2$. Let G be a class 2 group for which $s(s-1) / 2$ is an exponent for Q. Then $[s]$ is an integral endomorphism for Q.

Proof. By the theorem, any polynomial P with integral coefficients and with coefficient-sum s has $P(\lambda)$ an endomorphism for each central endomorphism λ, and the set of all such λ is nonempty. By Theorem 2 , (d), $[s]$ is an endomorphism on G.

As an example of this corollary, let F be a commutative ring of finite characteristic and with a unity. Suppose that the characteristic $k=s(s-1) / 2$ for some integer $s>2$. Let G be the set of all ordered triples $\left\{a, b, c\right.$) over F with multiplication given by $(a, b, c)\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=$ $\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}+b a^{\prime}\right)$. We have the well known class 2 group G of triangular matrices

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
c & b & 1
\end{array}\right)
$$

where $Z=Q$ is the set of all $(0,0, x)$. Since $(0,0, x)^{n}=(0,0, n x)$, the characteristic k is an exponent for Q. In general, $(a, b, c)^{n}=$ $(n a, n b, n c+(n(n-1) / 2) b c)$ for each integer n. An easy calculation now shows that $\left\{(a, b, c)\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)^{s}-(a, b, c\}^{s}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)^{s}=\left(0,0,\left(s-s^{2}\right) b a^{\prime}\right)$. But $\left(s-s^{2}\right) b a^{\prime}=-2 k b a^{\prime}=0$, so that $[s]$ is indeed an integral endomorphism of G.

Bibliography

1. F. Haimo, Groups with a certain condition on conjugates, Canad. J. Math. 4 (1952), 369-372.
2. (1955), 201-213.
3. W. Scott, Group Theory, Englewood Cliffs, New Jersey, 1964.

Received September 1, 1965. This research was supported jointly by the National Science Foundation and by Washington University under grants No. GP-89 and GP3874.

Washington University

