
PACIFIC JOURNAL OF MATHEMATICS
Vol. 23, No. 3, 1967

POLYNOMIALS IN CENTRAL ENDOMORPHISMS

FRANKLIN HAIMO

Let 2 be a central endomorphism of a group G in the sense
that λ induces the identity map on the inner automorphism
group of G. Despite the nearness of the situation to com-
mutativity, it is not necessarily true that the central endo-
morphisms of G form a ring or even that the subset generated
by λ be a ring. The displacement map τ, given by τ(g) —
g~ιλ(g) for each g e G, is an endomorphism with central values.
We shall show (Theorem 1) that if τ satisfies a certain pair of
simultaneous equations then λ or λz is idempotent. Let P be
a formal polynomial with integral coefficients, and let t be the
sum of these coefficients. Then (Theorem 2) P(λ) is an endo-
morphism if and only if t induces an integral endomorphism
on G. If G is nilpotent of class 2 then (Theorem 3) P(λ) is
an endomorphism if and only if t(t — l)/2 is an exponent for
the commutator subgroup Q of G.

Theorem 3 gives us an alternate proof of an older (essentially
equivalent) result [2, Th. 7, Corollary]. If a and β are two maps
in GG, then Y = a + β is to mean the map given by j(g) = a{g)β{g)
for all g eG. The symbol c will be reserved for the identity map
on G. By diagm x we mean the m-by-ra matrix with x repeated down
the main diagonal and with zeros elsewhere. If 1G is the unity of
the group G, we say that an integer m is an exponent of G if gm = 1Q

for each geG. An integer m is said to induce an integral endomor-
phism on a group G if {xy)m — xmym for all x,yeG.

1* Preliminaries* Let τ be a center-endomorphism of a group
G. That is, τ is an endomorphism of G, and Im τ ^ Z, the center
of G. The map XeGG given by X{x) = #?(#) for each a? e G is a
normal endomorphism of G in that it commutes with each inner auto-
morphism of G. It is a central endomorphism in that λ = t + τ where
τ is a center-endomorphism. See [3]. Each center-endomorphism of
G is likewise a normal endomorphism; but if G is nonabelian, no such
endomorphism is a central endomorphism. The central endomorphism
λ = c + τ is said to be related to the center-endomorphism τ. The
set of all center-endomorphisms of a group G is a ring C(G) under
endomorphism addition and composition.

If τ is a center-endomorphism of G with related central endomor-
phism λ, then, with multiplication proceeding from left to right with
increasing i and with C(n, i) as the usual binomial coefficient, we have

521



522 FRANKLIN HAIMO

(An) xn(x) = x π r{xC{n>i

and

(Bn) τn(x) = [α Π V ( a ^ c o

for each xeG and for each positive integer n. From (AΛ), each Xn

is a central endomorphism related to Σ?=i C(n, ΐ)r* e C(G) where λ is
related to τ. One readily sees that λ is idempotent if and only if
— τ is idempotent. Under this assumption, τ2j+1 = τ = — τ 2 i for each
positive integer j .

Observe that the 2n factors on the right of (Bn) can be rearranged
at will. In fact, if one considers the mapping P(λ) = Σ?=o «Λ* where
the α4 are integers with αΛ ^ 0, where λ° = c, and where P(λ)x =
Π?=oλ*(α;αί) for each x e G , then the terms of P(λ) can be rearranged
in any way. Nevertheless, P(λ) need not be an endomorphism. If,
however, it is an endomorphism, then it is normal. Call n the degree
of P.

THEOREM 1. Let τ be a center-endomorphism with related central
endomorphism λ on a group G.

( a ) Suppose that there exist integers m > 0 and k ^ 0 such
that z2m+k + τ m = 0. T%β% ί/fcβre exists a formal polynomial P with
integral coefficients and of degree 2m + 2k for which X is a zero.

( b ) // there exists an integer n ^ 3 such that τ + τn~λ — 0 =
τ2 + τw~2, ^ew λ is idempotent if n is odd; while if n is even, Imτ
is elementary 2-ahelian, λ3 = λ2, and λ2 is idempotent.

Proof. ( a ) From τ2m+2A; + τm+k = 0 and the above remark on
idempotents, the central endomorphism σ related to τm+lc must be
idempotent. From (Bm+k), σ must be of degree m + k as a polynomial
in λ. Let T be the formal polynomial corresponding to σ. Let P =
rp2 rp

( b ) τ — τ3 so that τ2 = τ4, all odd powers reducing to r, even
to τ2. If % is odd, then τn~ι = τ2 while τ%~2 = τ, from which τ2 = — τ
and λ2 = λ. If n is even, τ"- 1 = τ whence τn~λ + r = 0 yields τ(x2) = 1G

for every xeG. At once, I m τ is elementary 2-abelian. Now, (A2)
leads to λ2(#) = xτ\x) in this case. Applying λ, λ3(#) = xτ(x2)τ\x) = λ2(x).
Thus, λ3 = λ2, all higher powers reducing to λ2. In particular, λ2 is
idempotent.

As an example of (b), take G to be the group of m-by-m non-
singular real matrices, and, for each matrix A therein, let τ(A) =
diagm (|det A |~1 / m). It is clear that τ is a center-endomorphism of G
and that τ2 + τ = 0. If we take n = 3, we have the situation in (b).
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2* T h e sum of the coefficients* If P is a polynomial with
integral coefficients, let t(P) denote the sum of these coefficients.

LEMMA. Let a be a center-endomorphism of a group G, and let
β be a member of GG. Then a + β is an endomorphίsm of G if and
only if β is an endomorphism.

Proof, (a + β){xy) = a{x)a(y)β{xy) while (a + β)(x)(a + β)(y) =
a(x)β(x)a(y)β(y). Since a(y) is in the center, the result is clear.

If k is an integer, let [k] be that member of GG which is given by
[k]x = xk for each xeG. Observe that if τ is a center-endomorphism
of G, then τ generates a subring {τ} of C(G).

THEOREM 2. Let τ be a center-endomorphism of a group G, and
let λ be its related central endomorphism. Let P be a polynomial
with integral coefficients.

(a) // t(P) — 0, then P(λ) is a center-endomorphism, a member
of {T}.

(b) // t(P) = 1, then P(λ) is a central endomorphism related
to some member of {τ}.

(c ) If G is noncommutative and if t(P) = 2, then P(λ) is no
endomorphism.

(d) // t(P) Φ 0, 1, 2, then P(λ) is: (1) an endomorphism if and
only, if [t(P)] is an endomorphism on G; (2) a center-endomorphism
if and only if [t(P)] is a center-endomorphism on G; (3) a central
endomorphism if and only if [t(P) — 1] is a center-endomorphism
on G.

Proof. Suppose that P(λ) = ΣΓ=o &Λ* for integers ait Note that
\° = t and that, from (A<), λ* = c + Σi=i C(i, j)τj if i > 0. Upon sub-
stitution, P(λ) = Σ?=o α<(* + Σ5=i C(i, i)rθ = ί(P)^ + Σ?=i ^^' f o r suit-
able integers q{. (a) and (b) are now immediate. If t(P) = 2, the
lemma says that 2c = [2] is an endomorphism of G if and only if
P(λ) is an endomorphism. But [2] is an endomorphism if and only
if G is abelian, establishing (c). For t(P) Φ 0, 1, 2, the lemma gives
(d), (1) and (2), directly. Now P(λ) is central and related to a center-
endomorphism if and only if P(λ) = c + σ for some center-endomorphism
σ. Equivalents, (t(P) - l)c + Σ?=α <!&' ~ σ = 0; that is, (ί(P) - ΐ)c =
[t(P) — 1] is a center-endomorphism on G, establishing (d), (3).

By (a) above, each Xn — λ is a center-endomorphism, n — 1, 2, .
By (c), if G is noncommutative, no λw + λ is an endomorphism, n =
1,2,....

Recall that a group is (nilpotent) of class 2 if its inner automor*
phism group is abelian.
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THEOREM 3. Let G be a class 2 group, X a central endomorphism
of G, and P a polynomial with integral coefficients. Then P(λ) is
a normal endomorphism of G if and only if (t(P) — l)£(P)/2 is an
exponent of Q.

Proof. Note that P(λ) = ΣLo α*λ* is a normal endomorphism if
and only if it is an endomorphism. Each λ* is central (by A^. For
x,y e G, let w denote [y*1, or1] — y~xx~λyx. For a class 2 group, recall
that ybxa = xaybwab and that (xy)a = xayawa{a-1]l* for all integers a
and b. By the centrality of the powers of λ, \i(yb)Xί(xa) = X3'(xa)Xi(yb)wab

for all x,y e G, all nonnegative integers i and j , and all integers
a and b. It is now easy to show that P(X)(xy) = P(X)(x)P(X)(y)wE

where the integer E = Σ?=o &<(<** — l)/2 + Σ;<; ̂ α,-. From a routine
observation one sees that E = (ί(P) — l)ί(P)/2.

COROLLARY. [2^ Th. 7, Corollary] Lei s be an integer Φ 0,1, 2.
Let G be a class 2 group for which s(s — l)/2 is α^ exponent for Q.
Then [s] is an integral endomorphism for Q.

Proof. By the theorem, any polynomial P with integral coefficients
and with coefficient-sum s has P(λ) an endomorphism for each central
endomorphism λ, and the set of all such λ is nonempty. By Theorem
2, (d), [s] is an endomorphism on G.

As an example of this corollary, let F be a commutative ring of
finite characteristic and wτith a unity. Suppose that the characteristic
It — s(s ~ l)/2 for some integer s > 2. Let G be the set of all ordered
triples (a, b, c) over F with multiplication given by (a, b, c)(a', V, c') =
(a + α', b + 6', c + c' + ba'). We have the well known class 2 group
G of triangular matrices

where Z = Q is the set of all (0, 0, α). S i n c e (0, 0, x)n = (0, 0,
the characteristic k is an exponent for Q. In general, (α, &, c)n =
(na, nb, nc + (n(n — l)/2) δc) for each integer n. An easy calculation
now shows that <(α,δ, £)(«', ά',e'))8 - (a, b, c)9(a', b', c')s = (0,0,(5 - s2)ba').
But (s — s2)6α' = —2hba' — 0, so that [s] is indeed an integral endo-
morphism of G.
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