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A STUDY OF MULTIVALUED FUNCTIONS

CARLOS J. R. BORGES

The primary purpose of this study is to determine which
topological properties of a space are preserved by multivalued
functions. Among other results, the following are proved:

(A) Let F: X-> Y be a perfect map from Zonto Y, with
F(x) Φ 0 for each x e X, where X and Y are TΊ-spaces whose
diagonals are GVsets. Then X is metrizable (stratifiable) if
and only if Y is metrizable (stratifiable)-see Theorem 3.2.

(B) If F: X-> F i s a multivalued F-compact quotient map
from a separable metrizable space X onto a regular first
countable space Y with a Gs-diagonal, then Y is separable
metrizable (see Theorem 4.5).

(C) Every (use-) lsc-function F from a closed subset of a
stratifiable space X to a topological space Y admits a (use-)
lsc-extension to all of X (see Theorem 5.2).

Multivalued functions have been extensively studied by Kruse [6],
Michael [7; 8], Ponomarev [12; 13; 14], Smithson [15] and Strother
[17; 18]. Choquet [2] and Hahn [3] have also considered multivalued
functions.

2* Preliminary definitions and results* Because there are many
conflicting terminologies in the theory of multivalued functions, we
find it necessary to attempt a terminology of our own, which is a
direct extension of the most natural and simple terminology of
Michael [10] and includes some of Ponomarev's terminology:

DEFINITION 2.1. For any sets X and Y, F: X—> Y is a multivalued
function provided that, for each x e X, F(x) is a subset of Y(F(x)
need not be a closed or nonempty set as required by Ponomarev and
others).

Clearly, single-valued functions are just special cases of multivalued
functions and indeed a multivalued function from X to Y can obviously
be thought of as a single-valued function from X to <s>f(Y)—the
family of all subsets of Y (including the empty set).

DEFINITION 2.2. Let f : l - > 7 be a multivalued function. Then
(a) F(A) = U {F(x) \xeA} for each AcX,
(b) F-\B) - {x e XI F{x) n B Φ 0} for each BcY (clearly F~ι

is a multivalued function from Y to X).

It is quite easy to construct a multivalued function F from a
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topological space X to a topological space Y such that F~\U) is open
for each open UaY and yet F~\B) is not closed for each closed
BaY and vice versa. Hence on immediately realizes that the various
equivalent definitions of continuity of (single-valued) functions have
to be considered separately for multivalued functions:

DEFINITION 2.3. Let F: X—* Y be a multivalued function. Then
we say that (the terminology of (e)—(g) was first developed by
Ponomarev [13])

(a) ί1 is a use-function (i.e., upper semi-continuous function)
provided that F~\B) is closed for each closed B c F ,

(b) F is a lsc-f unction (i.e., lower semi-continuous function)
provided that F~\V) is open for each open F c 7 ,

(c) F is a continuous function provided that F is a use-function
and a lsc-f unction,

(d) F is a closed (open) function provided that F(B) is closed
(open) for each closed (open) B c X,

(e) F is F-compact (F-separable) (X-compact: X-separable)
provided that F(x) is compact (separable) for each x e X{F~ι(y) is
compact for each y e Y; F~\y) is separable for each y e Y),

(f) F is F-perfect (X-perfect) provided that F is a closed, In-
compact, use-function (F is a closed, X-compact, use-function),

(g) F is perfect provided that F is X-perfect and Y-perfect.
Our terminology compares with others as follows (where " = "

means "the same as"):
1. use = strong upper semi-continuity (Choquet [2]) = upper semi-

continuous (Michael [7]) = continuous (Ponomarev [12]) = lower con-
tinuous (Hahn [3]).

2. lsc == strong lower semi-continuity (Choquet [2]) == lower semi-
continuous (Michael [7]) = skew-continuous (Ponomarev [12]) = lower
continuous (Hahn [3]).

DEFINITION 2.4. Let F: X—> Y be a multivalued function. Then

(a) The graph of F is

grF = {(x, y)eX x Y\ye F(x) and xeX} .

(b) The functions px: grF-^ X and pγ: grF-* Y are defined by

, V) = x and pγ(x, y) = y

for each (x,y)e grF.

We now state, without proof, some straightforward results of
crucial importance which were first observed by Ponomarev and
Smirnov.
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LEMMA 2.5. Let F:X-+Y be a multivalued function from X
onto Y. Then

(a) (F-r1-^,
(b) F(x) = pYPxl(x) for each x e X,
(c) F~'(y) = VxPΛy) for each yeY,
(d) the maps px and pγ are always continuous (since they are

restrictions of the projection maps πx\ X x Y-+X and πγ; X x Y—» Y).

We now prove two very useful results which determine the rela-
tionship of a multivalued map F:X—> Y and the maps px and pγ.
The proof of the first result is essentially due to Smirnov.

THEOREM 2.6. Let X and Y be topological spaces and F: X~* Y
be a multivalued function. Then

(a) F is a use-function and Y-compact if and only if the map
φx is perfect,

(b) F is closed and X-compact if and only if the map pγ is
perfect,

(c) F is perfect if and only if px and pγ are perfect.

Proof. The proof of the "only if" part of (a) appears in the
footnote of page 123 of Ponomarev [13]. The proof of the "if" part
of (a) follows easily from Lemma 2.5 and Definition 2.4(a). The proof
of (b) is the same as the proof of (a) if one considers F~γ instead of
F. Part (c) is an immediate consequence of parts (a) and (b).

REMARK 2.7. The appealing conjecture that px(pγ) is closed even
though F is not F-compact (X-compact) is false: Let R be the real
line with the usual topology, I be the closed unit interval and
F-.R-+R be defined by F(x) = I for each XQR. Then F is not
X-compact (F^iO) = R) and pγ is not a closed map (pγ({(x, y)\y — ex

and x ίg 0}) = [0,1]). Furthermore, F is F-compact, continuous and
closed.

THEOREM 2.8. Let F: X—•> Y be a multivalued function. Then
(a) if F is a \sc-function then px is an open map,
(b) if F is open then pγ is open.

Proof. It suffices to prove (a), since (b) is an immediate con-
sequence of (a), due to Definition 2.4(b) and Lemma 2.5(a): Therefore,
let us assume px is not open. Then there exists a closed AczgrF
such that the set B = {x e X \ px\x) c i } = I - PxigrF - A) is not
a closed subset of X. Let weB~ - B. Then px\w) ςέ A. Let
(w, z)e pγ{w) — A. Since A is a closed subset of grF there exists an
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open neighborhood N = U X X of (w, z) in X x F such that N Γ) A =
0. Letting

C = X- F~\V) - {xeX\F(x)n V= 0}

we get that C is not a closed subset of X, since w e U~C(z e F(w) f] V),
weUnB- and 0 ^ Uf) BaC (Suppose there exists xe(UΓ)B) - C.
Then F c F ( x ) ^ 0 and thus

0 Φ(U x V)C\ ({x} x F(x)) = (Ux V)Π Vx\x) czNf]A= 0 ,

a contradiction). Hence F^1 is clearly not an open function (i.e., F
is not a lsc-function), a contradiction which completes the proof.

Finally we prove a rather interesting result (even though we
cannot find it in the literature, it appears to be known).

THEOREM 2.9. The relation between spaces X and Y expressed
by "there is a perfect multivalued function F from X onto Y such
that F(x) Φ 0 for each x e X" is an equivalence relation.

Proof. The only difficult part of the proof involves showing that
the composition of a F-compact use-function F: X—> Y and a Z-compact
use-function G: Y—>Z is Z-compact; but this is an immediate con-
sequence of Corollary 9.6 of Michael [10] (see also 7.7 (p. 60) of
Kruse [6], Th. 1 (p. 104) of Ponomarev [12] and 21.3.4 of Hahn [3]).

3. Preservation of topological properties* First we will prove
necessary and sufficient conditions for the preservation of metrizability
and stratifiability1 by multivalued functions, for which we need the
following lemma:

LEMMA 3.1. Let X and Y be topological spaces with G^-diagonals.2

Then X x X has a Gδ-diagonal.

Proof. Suppose that Un and Vn are open in X x X and Y x Y
respectively, and Π"=i Un and |J^=i Vn are the diagonals of X x X
and Y x Y respectively. Let

Wn = {((α^, i/O, (a?2, y2)) I (xly x2) e Un and (x2, y2) e Vn} .

Then Wn is open in (X x Y) x (X x Y) and (J^i Wn is the diagonal
of (X x Y) x (X x Y).

1 A summary of the properties of stratifiable spaces appears in the introduction
of [1], The most relevant results about these spaces which should be mentioned
here are (a) Every CW-complex of Whitehead is stratifiable, (b) metrizability implies
stratifiability which implies paracompactness and perfect normality.

2 A topological space Xhas a Gδ-diagonal if {(x, x) \ xβX] is a Gs-subset o f l x l .
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THEOREM 3.2. Let F: X-+ Y be a perfect multivalued function,
with F(x) Φ 0 for each xeX (i.e., F~ι(Y) = X), where X and Y
are Tλ-spaces with G-diagonals. Then X is metrizable (stratifiable)
if and only if Y is metrizable (stratifiable).

Proof. We will first prove the "only if" part: Let X be metrizable
(stratifiable) and Y have a Gδ-diagonal. Then grF has a Gδ-diagonal
(a subspace of a space with a Gδ-diagonal clearly has a Gδ-diagonal)
and hence grF is metrizable (stratifiable) because of Theorem 8.1
(Theorem 8.4) of [1].

Since pγ is perfect, due to Theorem 2.6(c), we get that Y is
metrizable (stratifiable) due to Theorem 1 of Stone [16] (Th. 3.1 of
[1]). The "if" part follows immediately from Theorem 2.9.

We will now turn our attention to the preservation of various
other topological properties by multivalued maps, for which we will
need the following definition:

DEFINITION 3.3. Let F: X—* Y be a multivalued map. Then F
is said to be Y-monotone (monotone) provided that each F(x) is con-
nected (each F"\y) is connected).

THEOREM 3.4. Let F: X~~> Y be an onto (i.e., F(x) — Y) multi-
valued function such that F(x) Φ 0 for each x e X. Then

(a) if F is a \sc-function, F(x) is separable for each xe X and
X is separable then Y is separable,

(b) if F is a Y-monotone Isc-function and X is connected then
Y is connected.

Proof, (a) By Lemma 2.8(a), px is an open function and hence
grF is easily seen to be separable. Hence Y is separable (pγ is con-
tinuous).

(b) Clearly, it suffices to prove that grF is connected: Assume
not. Then grF is the union of two disjoint nonempty open subsets
U and V. Since Px is clearly monotone we get that pγ(x) Π U Φ 0
if and only if pγ(x) c U. Hence {px(U), px(V)} is an open disjoint
cover of X, because of Lemma 2.8(a), a contradiction.

As pointed out by the referee, both parts of the preceding result
become false if the hypothesis that F(x) Φ 0 , for each xe X, is
removed (Example (a). Let Z be a countably infinite discrete space,
Y - (βZ) - Z (βZ denotes the /3-compactification of Z) and define
F: βF-+ Y by F(x) = {x} n Y. Clearly ί7 is a perfect F-separable
map. However, while βZ is clearly separable it is well-known that
Y is not separable (see, for example, exercise 60(1, 2) of [4] for an
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easy proof of the fact that Y has 2No mutually disjoint open subsets
which clearly implies that Y is not separable). Example (b). Let
X=[0,2],Y=X- {1} and define F: X-> Y by F(x) = {x} Π Y).

As a final comment of this section, we note that the requirement
that X and Y be completely regular in the statement of Theorem 3
(page 127) of Ponomarev [13] is much stronger than needed, as the
ensuing result indicates:

THEOREM 3.5. Let X and Y be regular spaces and F: X—> Y be
an onto perfect multivalued function. If X is paracompact (locally
compact; countably paracompact) star-paracompact) then so is Y.
The converse is also true if F(x) Φ 0 for each xe X.

Proof. Since F is a use-function then F~\X) is a closed subset
of X. Hence the "if" part follows immediately from Theorem 2.2 of
[5] and Theorem 1 of [11], whose proofs clearly depend only on the
fact that X and Y are regular spaces, and Theorem 2.6. The converse
follows from Theorem 2.10.

4* Multivalued quotient maps* Since multivalued functions
behave very much like single-valued functions, it seems imperative
that one consider the extension of a quotient map for single-valued
functions to multivalued functions. In so doing, one is immediately
compelled to consider two distinct concepts of multivalued quotient
maps in the same manner as with the continuity of multivalued maps.
However, it turns out that the situation is not as simple as it seems.
Therefore, let us first prove some results which will justify our
Definition 4.2.

LEMMA 4.1. Let F:X—+ Y be a multivalued function and let
X be a topological space. Then

(a) {Ua Y\ F~ι{U) is open) is not necessarily a base for a topo-
logy on Y.

(b) {UdY\ F~\Y — U) is closed) is a base for a topology on Y.

Proof. It is easily seen that
(i) F-1(\JaeΛAa) = \JaeAF-ί(Aa)
(ii) F~1(\JaeΛ Aa) c {JaβΛ F~\Aa), and equality does not necessarily

hold, for any collection {Aa}aeΛ of subsets of Y.
In order to prove (a) let X be the real line with the usual topology,

Y the set of all real numbers, and let F: X—> Y be defined by

= [1, 2] ,
Fix) = Y - [1, 2] for all x Φ 1 .
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Then F~\{y eY\y^ (3/2)}) and F~\{y eY\y ^ (3/2)}) are open sub-
sets of X, but F~ι({ZI2}) is not an open subset of X. Hence
{UaY\ F~ι(U) is open} is not a base for a topology on Y.

Finally we prove (b): Let ye U f) V such that F~ι(Y - U) and
F~\Y — V) are closed subsets of X Since

F-\Y - VnU) = F~\{Y - U)\J(Y- V))
= F~\Y - U) U F~\Y - V) ,

due to (i), one easily sees that { ! 7 c 7 | F~~\Y — U) is closed} is a base
for a topology on Y, which completes the proof.

While Lemma 4.1 dashes all hopes of developing a concept of
"multivalued quotient topology," nonetheless one can define a multi-
valued quotient map F;X—*Y in such a way that F is either a
use-function or a lsc-function.

DEFINITION 4.2. Let X and Y be topological spaces and F: X—* Y
an onto multivalued map. Then F is said to be a us-quotient (Is-
quotient) map provided that a subset U of Y is closed (open) if and
only if F~\U) is a closed subset of X {F~\U) is an open subset of X).
F is said to be a quotient map whenever F is both a us-quotient map
and a Zs-quotient map.

We will now study the relationship between a multivalued function
F: X—> Y and the maps px and pYi as well as other relations.

PROPOSITION 4.3. Let X and Y be topological spaces and F: X—> Y
a multivalued function. Then

(a) if px is closed and F is a πs-quotient map then pγ is a
quotient map,

(b) if F is a ίs-quotient map then pγ is a quotient map, and px

is an open map,
(c) if F is a F-compact us-quotient map then pγ is a quotient

map, and px is a perfect map.

Proof. Part (a) is straightforward by use of Lemma 2.5(c). Part
(b) is straightforward by use of Lemma 2.5(c) and Theorem 2.8(a).
Part (c) is an immediate consequence of (a) and Theorem 2.6(a).

Now we generalize Theorem 3 and the Corollary on page 695 of
Stone [16] to multivalued quotient maps.

THEOREM 4.4. Let F: X—> Y be a multivalued Y-compact quotient
map from the locally compact separable metrizable space X onto a
Hausdorff first countable space Y with a G&-diagonal. Then Y is a
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locally compact separable metrίzable space.

Proof. By Proposition 4.3, pγ is a quotient map and px is an
open perfect map. Hence grF is locally compact (due to Theorem 3.5),
metrizable (due to Theorem 3.2), and separable (because px is open
and each px\x) is separable-indeed each px\x) is compact metrizable).
Since pγ is a quotient map, we get that Y is a locally compact
separable metrizable space, by Theorem 3 of [16].

Similarly one can prove the following result, by using the Corollary
of page 695 of [16]:

THEOREM 4.5. Let F: X—+ Y be a multivalued Y-compact quotient
map from the separable metrizable space X onto a regular first
countable Tγ-space Y with a G'^-diagonal. Then Y is a separable
metrizable space.

Finally we generalize Theorem 4 of Stone [16] to multivalued
open maps.

THEOREM 4.6. Let F: X —• Y be an open, Y-compact, X-separable
continuous function from a metrizable and locally separable space X
onto a regular T^space Y with a G^-diagonal. Then Y is metrizable
and locally separable.

Proof. Similar to the proof of Theorem 4.4 except that we use,
respectively, Theorem 2.8(b), Theorem 2.8(a) and 2.6(a), and Theorem 4
of [16].

5* Continuous extensions* We will now generalize Theorem 4.3
of [1] to multivalued functions. Throughout this section, we let
CU(Y, Z)(d(Y, Z); C(Y, Z)) be the space of all use-functions (lsc-
functions; continuous functions) from Y to Zy for any topological
spaces Y and Z.

Before stating our main theorem we state the following straight-
forward but crucial result:

LEMMA 5.1. Let F: X—> Y be a multivalued function. Then
(a) F is a use-function if and only if for each xe X and

neighborhood V of F(x) there exists a neighborhood U of x such that
F(U)dV.

(b) F is a \sc-function if and only if for each xe X and open
VdY such that F(x) f] V Φ 0 there exists a neighborhood U of x
such that F(z) Π V Φ 0 for each zeU.
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THEOREM 5.2. Let X be a stratifiable space, A a closed subset
of X and E any topological space. Then there exist mappings

satisfying the following conditions:
(a) each <p(f) and φ(f) is an extension of /,
(b) range φ(f) = range/; range f(f) = range/,

(c) Ψ(f){n) Φ 0 (Ψ(9)(%) Φ 0 ) for each xeX whenever f(x) Φ 0
(g(x) Φ 0 ) for each xeA.

Proof. Without further comment we will frequently use the
terminology of Definition 4.1 of [1] and the crucial results of Lemma
4.2 of [1], since our proof parallels that of Theorem 4.3 of [1], to a
large extent. Let W = X — A, and let W = {x e W \ x e Uy for some
ye A and open U containing y}. For each xeW', let

m(x) = m a x {n( U,y)\y eA a n d x e Uy} .

It is easily seen that each m(x) ̂  n( W, x) < oo.
Using the paracompactness of W, let 5 "̂ be an open locally finite

(with respect to W) cover of W such that {V~ \ V e ^ " and F~ is
the closure of V with respect to W) is a refinement of {Wx\xe W).
For each 7 G ^ , pick xveW such that F ~ c WXγ. If ίcFe Tf', pick
aveA and open SF containing av such that a;F 6 (Sv)av and w(SF, αF) =
m(xv); if ccFg TΓ', let av be the fixed point aoeA.

We now define two functions g: X—> E and Λ: X—>E by

= h(x) if x G A ,

= U {f(dy) \ x e V ~ } i f x e W ,

h(x) = U {fiβy) \ x e V ) i ί x e W .

It is easily seen that g is a use-function on ΫF (Let xeW and let V
be a neighborhood of 0(a). Then U = W - \J {V~\Ve^ and x £ V~~}
is a neighborhood of x, and clearly g(U) c F; indeed, for each 2e [7,
r̂(̂ ) c g(x)). Similarly, one easily sees that h is a lsc-function on W

(Let £ G PΓ and let ί7 be an open subset of E such that h(x) Π U Φ 0 .
By the definition of / φ ) there exists some Ve^ such that
/(αF) Π U Φ 0 and α e F. Then Λ(«) n U Φ 0 for each s G F ) .

To show that g is a use-function at be A, whenever feCu(A, E),
let 0 be any open subset of E containing /(&). Since / is a use-
function, there exists an open neighborhood N of b such that
f(A n N) c 0.

Now it is not hard to see that
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(a) If xe[(Nb)b - A]nV~ with Ve^ and F~ the closure of
V with respect to W, then av e N. (A detailed proof of (a) can be
found in the last paragraph of the proof of Theorem 4.3 of [1].)
Consequently, g((Nb)b)czQ, due to (α), and thus g is a use-function.

To show that h is a lsc-f unction at be A, whenever feCι(A,E),
let 0 be any open subset of E such that f(b) Π 0 Φ 0. Since / is a
lsc-f unction, there exists an open neighborhood N of b such that
f(z) Π 0 Φ 0 for each z e N n A. It is easily seen that x e (Nb)b) — A
implies h(x) Π 0Φ 0 , due to (a) and the definition of h(x). Consequently,
h(x) Π 0 Φ 0 for each xe(Nb)b, and thus h is a lsc-function.

To complete the proof, we simply let φ(f) = g and ψ(f) = /̂ .

REMARK 5.3. It is easily seen that the function g is not neces-
sarily a lsc-function on W (Let U be any subset of E and suppose
f(av) Π U Φ 0 for some Ve^\ Then #(x) n Ĉ  Φ 0 for each a e F~,
since x e F " implies /(α7) cflf(flc) by the definition of g(x). Hence

Q~\U) = UiV-'lfMn UΦ0}

is a closed subset of W for any subset U oΐ E (since 5^ is locally
finite with respect to W)). Thus g is not a lsc-function, unless g~\U)
is clopen3 for each open subset U of E. We have thus essentially
proved the following result:

THEOREM 5.4. Let X be a stratίfiable space, A a closed subset
of X such that dim (X — A) = 0 (covering dimension). Then there
exist mappings

ψ: d(A, E) > Ct(X, E)

θ: C{A, E) > C(X, E)

satisfying the following
(a) Each φ(f), ψ(f) crnd θ(f) is an extension of /,
(b) range φ{f) = range ψ(f) = range θ(f) = range/.

Proof. The same as the proof of Theorem 5.2 except that we
choose the open cover ^ of X — A so that each Ve y is a clopen
subset of X - A (see Proposition 2(b) of [9]).

We end this section with the following two questions:
1. Does Theorem 5.2 remain valid if X is a paracompact space?

(We conjecture a negative answer.)
3 A subset U of a topological space X is said to be clopen provided that U is an

open and closed subset of X.
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2. In Theorem 5.4, does the existence of the mapping θ imply
that for some single-valued quotient map q from X onto X, say, q
maps A homomorphically onto a closed subset of X, q(A) and q(X — A)
are disjoint, and dim (q(X — A)) = 0?
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