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IDEAL NEIGHBOURHOODS IN A RING

H. SϋBRAMANIAN

A group topology on a ring is said to have ideal closure
property in case the closure of an ideal is the intersection of
all maximal ideals containing it. Hinrichs considered such group
topologies on rings C{X) of continuous real-valued functions
defined over completely regular Hausdorff spaces. He gave a
characterization of such topologies with ideal neighbourhoods
at zero in C(X), and showed that there exists in C(X) a group
topology with ideal closure property with the largest collection
of open ideals. His results are indeed true in a wider class of
rings—viz. semisimple commutative rings with unit element
whose structure spaces of maximal ideals (with hull-kernel
topology) are Hausdorff. This generalization is achieved by
making use of a characterization by Gillman of such rings.

In this paper, a ring will always mean a semisimple commutative
ring with unit. With every maximal ideal M of a ring R, let us
associate an ideal π(M) consisting of all elements x in R such that
x belongs to all maximal ideals forming a certain neighbourhood of
M in the structure space 3JΪ(Jβ) of maximal ideals of R [1]. The
ideal π(M) can be algebraically characterized as the set {x e R | there
exists y g M such that xy — 0}. It is known [1] that the structure
space Wl(R) of maximal ideals of R is Hausdorff if and only if for
every Me3Ji(β), M is the unique maximal ideal containing π(M). In
what follows, a ring R shall also be such that 2Ji(jβ) is Hausdorff.
We may mention that this class of rings includes all (von Neumann)
regular rings, rings of all (bounded) uniformly continuous real-(com-
plex-) valued functions defined over a uniform space, and Lι(G)'s (with
unit element adjointed whenever needed) for locally compact Abelian
groups G.

By a group topology on a ring we mean the topology which makes
the additive group structure of the ring a topological group (not neces-
sarily Hausdorff). The ideal closure property of a group topology on
a ring is written shortly as I.C.P. Obviously, the closed ideals in a
ring with a group topology with I.C.P. are precisely the intersections
of maximal ideals. We will make use of the well-known fact that
any open subgroup of a topological group is closed.

THEOREM 1. Let R be a ring with some group topology τ. If τ
has I.C.P., then Cl π(M) — M for every maximal ideal M of R. The
converse is true if further τ has an ideal basis of neighbourhoods at
zero.
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Proof. We need prove only the converse since the first part is
easy as Wl{R) is assumed to be Hausdorff. Consider any ideal I, all
of whose maximal divisors are {Ma}. Let V be any open ideal. Tak-
ing x e Γ)Ma, we see that for each a, there exists an element aa e V
such that x + aa eπ(Ma). Therefore there exist elements ba £ Ma such
that (x + aa)ba = 0. That is, xba e V. Since the ideal (I, , ba, •)
cannot be contained in any maximal ideal of R, we will have some
iel such that ί + a finite (ring) linear combination of ba's equal to 1.
So, $ + an element of V belongs to I. This means that, under the
hypothesis of ideal basis of neighbourhoods at zero (an ideal neigh-
bourhood of zero is necessarily an open ideal an conversely), x belongs
to Cl I. As every maximal ideal is evidently closed, Cl I is contained
in Π Ma; whence the desired result follows.

LEMMA. Suppose that Ix and I2 are two ideals of a ring R such
that for some maximal ideal M of R and some xeM, {x + I5}^π(M)
is nonnull, j = 1,2. Then {x + It ΠI2} Π τc(M) is nonnull.

Proof. We have x-\-a^ e π(M), aό e Ijf j = 1, 2. So there exist
bjeM,j = 1,2 such that (x + a/^bj = 0, which gives that xb^e^Π
I2. Since (bj)2, π(M)) = R, there exists an element h eR such that
hbj)2 — 1 eπ(M). Obviously then, {xj

rlί f] I2} Π π(M) is nonnull.

THEOREM 2. The family of all maximal ideals of a ring R
defines a ring topology in R having I.C.P. This is a Hausdorff
topology whose open ideals are precisely the finite intersections of
maximal ideals.

Proof. Any nonempty family of ideals in R will define a ring
topology on it, if they are considered as a subbase for the neighbour-
hood system at zero. The ring topology given by all maximal ideals
is Hausdorff because the ring is semisimple.

In view of the preceding theorem and lemma, to see that this
topology has I.C.P., it is sufficient to prove that, if M1 and M2 are
any two maximal ideals and x e Mι then {x + M^ Π TC(MJ) is nonnull.
If Mι = M21 this is obvious; we take — xe M2. If Mx and M2 are
distinct we have π{Mx) + M2 = R; hence, a + b = 1, ae π(ikf:), b e M2.
That is, x — xb = xa, as required.

Now, finite intersections of maximal ideals are evidently open.
Conversely, if / is any open ideal then / contains a finite intersection
of maximal ideals; consequently, any maximal divisor of / is one of
them, because a maximal ideal is prime. Therefore, Cl / is the inter-
section of a finite number of maximal divisors of I, using I.C.P. But,
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since I is an open subgroup it is closed. Thus the result follows.

Let σ denote the family of all ideals I of a ring R satisfying the
condition: For every maximal ideal M of R and for every x e M,
(x + I) f] 7c(M) is nonnull. From the previous lemma, σ is closed
under finite intersection. Thus as a basis of neighbourhoods at zero,
σ defines a ring topology on R.

THEOREM 3. Among the group topologies with I.C.P. on a ring
R, there is one possessing the largest collection of open ideals—viz. a.

Proof. By direct appeal to the definition of σ, Cl π(M) — M for
every maximal ideal M. So, I.C.P. of σ follows invoking Theorem 1.
Obviously, any open ideal in whatever group topology with I.C.P. on
R belongs to σ.

REMARK 1. The topology on R given by σ is Hausdorff. In fact,
the (7-topology is finer than any group topology with I.C.P. and having
an ideal basis of neighbourhoods at zero.

REMARK 2. The following statements are equivalent in a ring R.
( i ) σ consists of all ideals.
(ii ) σ-topology is discrete.
(iii) R is a (von Neumann) regular ring.
(iv) π(M) = M for every maximal ideal M.

The proof is evident by the use of [1, Th. 3.16].

REMARK 3. It does not seem possible to algebraise the pseudo-
compactness of a topological space so that the results of [2] in this
regard may also be generalized.

The following information is in a similar vein to that of Theorem
3. Now of course, the ring need not be semisimple, nor its structure
space need be Hausdorff; and the topologies in the ring may well
disregard the compatibility criteria.

THEOREM 4. Among the topologies with I.C.P. in a ring R, there
is one which is the coarsest.

Proof. Define a topology τ in the ring R by taking all maximal
ideals to be a subbase for the closed sets. It suffices to show that
τ has I.C.P. We observe first that an ideal / is contained in the set
union of a finite number of prime ideals Pr only if it is contained in
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some one Pr. For, assume without losing generality that any pair
of prime ideals in this finite collection are incomparable. Then we
may choose elements xr e (Γ\s¥:rPs) — Pr. If ireI—Pr would also
exist, it will amount to a contradiction viz., Σ ί r£ r belongs to I but
not to any Pr. Now, the closure of an ideal is the intersection of
basic closed sets in τ—which are finite unions of maximal ideals.
Therefore, Cl I must be an intersection of maximal ideals. The proof
is complete.

The writer thanks Prof. M. Venkataraman for his inspiration and
encouragement.
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