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GENERALIZED SEMIGROUP KERNELS

RoNALD FULP

This paper is concerned with the problem of generalizing
the notion of a kernel of a semigroup. Various kernels are
introduced and their mutual relationships are investigated.
Conditions are found on a semigroup which are necessary and
sufficient in order that certain of its kernels be trivial.

The ¢ generalized’’ kernels we introduce here have properties
which are reminiscent of the notion of a radical. Our results, however,
are quite different from certain of the investigations along these lines
(see, for example, [3] and [13]). Our work is more closely related to
that of Schwartz [10], [11], and [12]. We refer to [2] for definitions
not explicitly given.

1. Mutually annihilating sums and kernels. The following
definition seems to be due to Ljapin [6]. If S is a semigroup, then
S is said to be a mutually annihilating sum of semigroups {S;};e; if
and only if S is (isomorphic to) a semigroup with zero such that if 0
is the zero of S, then

(i) for \ in 4, S; is a subsemigroup of S with contains 0,

(ii) each member of S is in S, for some ) in 4, and

(ili) for » and v in 4, A =7, S, NS, ={0} = S, S,.

We shall be concerned with semigroups S which are mutually
annihilating sums of semigroups each of which has some one fixed
semigroup property P (to say that P is a semigroup property means
that P is a property such that if one of two isomorphic semigroups
has property P, then so does the other). There is a rather obvious
connection between mutually annihilating sums and subdirect sums
which we make explicit in the lemma below.

We use the concept of a subdirect sum as in the theory of rings,
i.e., to say that S is a subdirect sum of semigroups {7.},.e, means
that S is (isomorphic to) a subsemigroup of the direct product /7,¢,T,
such that if for some ve Q,r, is the projection of I1,e,T, onto T,
then the homomorphism =z,|S is onto 7,. The following lemma is
not difficult to prove.

LemMA 1.1 If S is a semigroup with zero, then S is a mutually
annihilating sum of semigroups each having property P if and only
if there is a collection {T.}.eo 0f semigroups such that

(1) for each peR, T, s a semigroup with zero which has pro-
perty P, and
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(2) S is a subdirect sum of the collection {T,.}.eq such that each
member of S, when viewed as a member of I ,.c,T,., has at most one

NONZEro component.
Let K, denote the set {I|I is an ideal and S/I has property P}.

THEOREM 1.2. Suppose P is a semigroup property, S is a semi-
group, and J is an ideal of S. Then S/J is a mutually annthilat-
ing sum of semigroups each having property P if and only if there
18 a subset K of Kp such that (i) J is the K-kernel of S, and (ii) if
I and I' are distinct members of K, then S =1U1I'.

Proof. Assume K is a subset of K, such that (i) and (ii) of
the theorem are true. It is clear from (i) that S/J is, in a natural
way, a subdirect sum of the collection {S/I|Ie K}. Property (ii)
implies that each member of the subdirect sum has no more than one
nonzero component. It then follows from (i) and the lemma that S/J
is a mutually annihilating sum of semigroups each having property P.

Now assume .J is an ideal of S and S/J is a mutually annihilating
sum of a collection {S;};e;, Where, for each N in 4, S, is a semigroup
having property P. Let ¢ denote the natural homomorphism from S
onto S/J. For each Me 4, let I, denote the set of all x in S such
that either o(x) is zero or o(z) is not in S. If K = {I;|x € 4}, then
K satisfies (i) and (ii) of the theorem.

REMARK 1.3. Incase S hasa zeroand .J is zero, the theorem asserts
that S is a mutually annihilating sum of semigroups each of which
has property P if and only if there is a subset K of K, such that
(i) NK=0and (ii) if T and I’ are in K,I+# I', then S=1U I

For each semigroup S, let .7 = _# 5 denote the set of all max-
imal ideals of S. The following corollaries are immediate applications
of Remark 1.3,

COROLLARY 1.4, Assume S is a semigroup with zero. Then
N”Z =014 and only if S 1s a mutually annthilating sum of
semigroups each of which either is a null semigroup of order two
or 1s a 0-simple semigroup.

COROLLARY 1.5. If S is a semigroup and J is the _# -kernel
of S, then the _# -kernel of S/J 1is zero.

The _-kernel of a semigroup determines, to some extent, which
maximal ideals are prime (an ideal J of a semigroup S is said to be
prime if and only if either J = S or the complement of J is a sub-
semigroup of S).
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THEOREM 1.6. Suppose S is a semigroup which has a maximal
ideal. If J denotes the _# -kernel of S, then each maximal ideal of
S ts prime if and only if there is a collection {S.}.es of simple
subsemigroups of S such that

(1) S =JU UeesSa,

(2) for acd,Bedyax+B,S,NSs ts void and S, S = J, and

3) for each aacd,JN S, is void.

Proof. First assume that each maximal ideal of S is prime and
that J is the _# -kernel of S. From previous arguments, it is known
that S/J is isomorphic to a mutually annihilating sum of semigroups
each of which is isomorphic to S/M for some Me_ . Since S/M is
a simple semigroup with zero for each M e _.Z (recall that M is prime),
it follows that there is a collection {S,}.e, of simple semigroups such
that S/J is a mutually annihilating sum of {S2|a € 4}. For each e 4,
we identify S, with the subsemigroup T, of S such that

(T W) =S,

and T, N J is void. Then the collection {S,}.c; satisfies (1), (2), and
(3) of the theorem.

Assume, on the other hand, that {S.}.e, is a collection of simple
subsemigroups of S such that (1), (2), and (3) hold where J denotes
the _/ -kernel of S. Then each maximal ideal of S is of the form

JU U S,

a€A\(B}

for some BeA. Thus each maximal ideal of S is prime.

2. The F-kernel of a semigroup. We now turn our attention
to a different kind of kernel of a semigroup. Let .77 denote the set
of all prime ideals of S. We now characterize the .Z”-kernel of S.
First we need some notation and definitions.

To say that S is a band means that S is an idempotent semigroup.
S is said to be a rectangular band if and only if S is a band and
a ba=a for all « and b in S. Rectangular bands may be charac-
terized as semigroups of the form X x Y where X and Y are arbitrary
sets and where the operation on X x Y is defined by

(@, )@, ¥) = (x,9)

for z, 2" in X and ¥, %' in Y (see, for example, [4] or [7]).
We assume, from this point on, that S is any semigroup, that FE
is the maximal semilattice homomorphic image of S, and that 7 is
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the natual homomorphism from S onto E. Define a relation ¢ on S
by (a, b) e » if and only if there exists xeS*',ye S, ceS,deS, and
positive integers m and % such that a = xcy,b =xdy, and ¢™ = d”.
Clifford has observed, [1], that if ¢* is the transitive closure of o,
then S/p' is the maximal band homomorphic image of S. He also
noted that the maximal semilattice homomorphic image of S/ptis the
maximal semilattice homomorphic image of S. Each ¢t-congruence
class of S will be called an archimedean component of S. This defini-
tion, which agrees with the usual one in case S is commutative, has
not been used before in case S is not commutative, Clifford’s obser-
vation may be rephrased, ‘‘any semigroup is a semilattice union of
semigroups each of which is a rectangular band of archimedean com-
ponents of S,
The following theorem is due to Petrich (see [8] and [9]).

THEOREM 2.1. (Petrich) In order that P be a prime ideal of the
semigroup S it is mecessary and sufficient that there exists a prime
ideal @ of K such that P = U.eq 7 '(€).

The following corollary is immediate.

COROLLARY 2.2. The P-kernel of the semigroup S s precisely
the inverse image of the -kernel of E under 7 (even in case either
18 votid).

LemmA 2.3. If E is a semilattice, then the P-kernel of E 1s
void im case E contains no zero element and otherwise 1s the zero
of K.

Proof. Suppose z is in the &”-kernel of E. If z were not a zero
of E, then {xe E|x 2 2z} would be a prime ideal of E which does not
contain z.

The next theorem follows immediately from previous results.

THEOREM 2.4. The F-kernel of the semigroup S is void in case
E does not contain a zero and otherwise is the inverse image of the
zero of E under 7.

COROLLARY 2.5. If the semigroup S contains a zero, then the
FP-kernel of S s zero if and only if the equations acb = 0 and
¢ =d™ tmply adb=0 for acS,beS,ceS,deS, and positive
integers m and n. Note that in case S s commutative the latter
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condition merely asserts that 0 is the only nilpotent member of S.

Proor. By Theorem 2.4 the Z-kernel of S is %»~'(z) where 2z is
the zero of E. Since 77(2) contains the zero of S, it must contain
only one archimedean component of S. Thus the Z”-kernel of any
semigroup with zero is precisely the archimedean component containing
the zero. The corollary now follows from the way @ was defined.

The following corollaries are evident.

COROLLARY 2.6. The following statements are equivalent:

1) the maximal semilattice homomorphic image of S is trivial,
(2) the F-kernel of S is S, and

3) S is a rectangular band of its archimedean components.

COROLLARY 2.7. The maximal band image of a semigroup is @
rectangular band if and only if the maximal semilattice image 1s
trivial.

Finally we consider an application to semilattice theory. To say
that F' is a face of a semilattice F means that F is a (nonvoid) sub-
semigroup of E such that either F' is E or the complement of F in
E is a prime ideal of E. A prime ideal P of £ is principal if and
only if it is of the form {x € F|e £ x} for some ec E (in this case e
is called the generator of P).

THEOREM 2.7. If E is a semilattice, then each proper face of
E is finite of and only if

(1) each proper prime ideal of E is principal,

(2) each ascending chain in E s finite, and

(8) each momzero element of E 1is covered by at most a finite
number of elements of K.

Proof. First assume each proper face of E is finite. If P is a
proper prime ideal of E, then P is principal and has as generator the
product of all elements of E not in P. It is equally clear that (2)
and (3) follow.

Now assume (1), (2), and (3) are true. Let F denote any proper
face of E. Then E\F is a proper prime ideal and thus is principal.
Let e denote the generator of E\F. Then z¢ F if and only if & = e,
Define a sequence A of subsets of E inductively by

(i) x€ 4, if and only if xe K and « covers ¢, and (ii) if % is a
positive integer, xe€ A,,, if and only if 2e X and x covers some
member of A,.



98 RONALD FULP

For each positive integer 7, A; is finite. One can show that there
is a positive integer n such that A, is void by assuming otherwise
and by constructing an infinite ascending chain in E. Thus

F: 0 A,;
i=1

and F' is finite. The theorem follows.

If _# is any collection of ideals of a semigroup S, S/(N_#) is always
a subdirect sum of the collection {S/T|Te _#£}. In case S=F is a
semilattice the intersection of the collection of all prime ideals of FE
is void or is a zero of E. Thus one obtains the following corollary
of Theorem 2.7.

COROLLARY 2.8. Assume E is a semilattice such that

1) each proper prime ideal of E is principal,

(2) each ascending chain in E is finite, and

(8) each monzero element of E is covered by at most a finite num-
ber of elements of E.

Then E is a subdirect sum of the collection {F°|F is a finite
face of E}.

3. Relationships among various kernels. As in the previous
section S denotes any semigroup, E its maximal semilattice homo-
morphic image, and 7 the natural homomorphism from S onto E.
Throughout this section K, will denote the intersection of all ideals
of the semigroup 7T and will be called the kernel of T. If N denotes
the void set, we define K, = N. Likewise P, and M, will denote the
Z and _# Kkernels of T respectively.

THEOREM 3.1. If A is an ideal of the semigroup S, then K, = K.
Thus we have
KS = KPS = KHS .
Proof. Let A denote any ideal of S. If K is not void, then for
each ideal J of A
KS - KsJKsKSngJKS .
Thus K JK; is an ideal of K. Since K is simple,
K= KJK; S AJAS J .

Thus K;< K,.
Conversely, if K, is not void, then K is equal to the intersection
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of the collection 5% where Je 57 if and only if J = 1IN A for some
ideal J of S. But each such J is an ideal of A, thus K;SK,.

It follows that Ky = K, for each ideal A of S. Clearly if Ps or
My is void so is K;. The theorem follows.

COROLLARY 3.2. If S is a semigroup, then the kermel of S is
the same as the kernel of Ps and thus is the kernel of a rectangular
band of archimedean components of S.

In order to obtain the relationship between the _# -kernel, Mg,
and the .Z”-kernel, P,, we need more information about the maximal
ideals of S. The next theorem provides such information and has
some interest in its own right. First we need another definition. An
ideal I of n7'(e), for ec E, is said to be induced by S if and only if
IU (S\y~'(e)) is an ideal of S. It is easy to see that an ideal I of
77 '(e) is induced by S if and only if
(1) fieE\{e}, f.€ E\le}, and f,f. = e imply 7T (S) &7 and
(2) feE and f>e imply ' (f)ISTI and I ()& 1.

THEOREM 3.3. If M is a subset of the semigroup S, then M is
a maximal tdeal of S tf and only if there exists ec E such that

etther

(1) e is a maximal element of E such that n~'(e) is simple and
M =Usen 7'(f), or

(1) there is a mawximal ideal M, of n~'(e) such that M, is induced
by S and M =M, U Urepe ()-

Proof. Suppose M is a maximal ideal of S and that ae S\M.
Let ¢ denote 7n(az). First we show that 5'(f)&M for all fe E\{e}.
Consider F' = {xe E'|x 2 e¢}. The set M U n~(F) is a proper ideal of
S. Since M is maximal, » (F)S M. Thus if feE such that
7 (f)Z M, then e < f. Suppose there exists f,c E such that

() EM

such that f, >e. If F,={xecFE|x £ f}, then MU n'(F,) is a proper
ideal of S. Thus % (F,) S M. But f, > ¢ implies that ¢ € F| and that
77(e) 2 M, contrary to the choice of ec E. It follows that ()& M
for each f +# e.

We now show that if M N #x~'(e) is not void, then M, = M N5n~'(e)
is a maximal ideal of 7~'(¢) which is induced by S. Suppose there is
an ideal J of 77'(e) such that M,cJc%n'(e). Then MUJ is an
ideal of S such that Mc MU JCS. Thus no such J exists and M,
is a maximal ideal of n~'(e). Clearly M, is induced by S.
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Similar reasoning shows that if M N y~'(e) is void, then e is maximal
in B and that 7~'(e) is simple.
The proof of the other half of the theorem is easy and is omitted.

LEMMA 3.4. The _ -kernel of a semigroup is never void.

Proof. Assume the _ -kernel of some semigroup S is void.
Then the _# -kernel of S° is zero and thus S° is a mutually annihi-
lating sum of semigroups each of which either is a null semigroup
of order two or is a simple semigroup with zero. Since 0 is a prime
ideal of S°, S° must be a simple semigroup with zero. Thus S is
simple and the _# -kernel of S is S contrary to the assumption that
the _/-kernel of S is void.

THEOREM 3.5. In order that the 7 -kernel of S be a subset of the
-kernel of S it is mecessary and sufficient that E contain a zero
z and that for cach ec E\{z}, e is maximal in K and 17'(e) is simple.

REMARK. We do mot require in the previous theorem that E
contain elements other than z.

Proof. Assume M;< P;. Since Mg is not void, neither is Pg;
thus there is a zero z in E and Ps; = 77'(2). Assume ec E\{z}. We
show that e is maximal in E and that 77'(¢) is simple. To do this it
suffices, by Theorem 3.3, to show that U jemw7'(f) is a maximal
ideal of S. Assume U ez 7 (f) is not a maximal ideal of S. Since
Ms < Pg, x € n7'(¢) implies that there exists a maximal ideal M, of S
such that ¢ M,. Since U en? (f) is not a maximal ideal of S,
Theorem 3.3 implies that there exists a maximal ideal N, of 7~'(e)
such that M, = N, U U sep7 (f). Since for each xen~'(e),x¢ N,,
we have that ().e, %N, is void. But N.e, %N, contains the _7 -
kernel of 7~'(e) which, by the lemma, is not void. We have establi-
shed the necessity of the condition.

Now assume E has a zero and that if ¢ € E'\{z}, then ¢ is maximal
in E and n7'(e) is simple. If E contains no element other than z,
then M;= S = 77'() = Ps. Assume F contains elements other than
z. For each ec E\{z} it is easy to see that U, 7 '(f) is a maximal
ideal of S. Thus N.erw [Urem? (f)] = »7'(2) contains (.~ and
M;=n7'(z) = Ps. The theorem follows.

COROLLARY 3.6. If E has a zero z and 77'(z) is simple, then
the following statements are equivalent:

1) Mg = P, and

(2) whenever ec E\{z}, e is maximal in £ and 77'(e) is simple.
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