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GENERALIZED SEMIGROUP KERNELS

RONALD FULP

This paper is concerned with the problem of generalizing
the notion of a kernel of a semigroup. Various kernels are
introduced and their mutual relationships are investigated.
Conditions are found on a semigroup which are necessary and
sufficient in order that certain of its kernels be trivial.

The "generalized" kernels we introduce here have properties
which are reminiscent of the notion of a radical. Our results, however,
are quite different from certain of the investigations along these lines
(see, for example, [3] and [13]). Our work is more closely related to
that of Schwartz [10], [11], and [12]. We refer to [2] for definitions
not explicitly given.

1* Mutually annihilating sums and kernels* The following
definition seems to be due to Ljapin [6]. If S is a semigroup, then
S is said to be a mutually annihilating sum of semigroups {JSJ};^ if
and only if S is (isomorphic to) a semigroup with zero such that if 0
is the zero of S, then

( i ) for λ in A, Sλ is a subsemigroup of S with contains 0,
(ii) each member of S is in Sλ for some λ in A, and
(iii) for λ and 7 in A, λ Φ 7, Sλ Γ) Sλ = {0} = Sλ Sy.
We shall be concerned with semigroups S which are mutually

annihilating sums of semigroups each of which has some one fixed
semigroup property P (to say that P is a semigroup property means
that P is a property such that if one of two isomorphic semigroups
has property P, then so does the other). There is a rather obvious
connection between mutually annihilating sums and subdirect sums
which we make explicit in the lemma below.

We use the concept of a subdirect sum as in the theory of rings,
i.e., to say that S is a subdirect sum of semigroups {Tμ}μeΩ means
that S is (isomorphic to) a subsemigroup of the direct product ΠμeΩTμ

such that if for some veΩ,πu is the projection of ΠμeΩTμ onto Tv,
then the homomorphism πJ S is onto Tv. The following lemma is
not difficult to prove.

LEMMA 1.1 If S is a semigroup with zero, then S is a mutually
annihilating sum of semigroups each having property P if and only
if there is a collection {Tμ}μeΩ of semigroups such that

(1) for each μ£ Ω, Tμ is a semigroup with zero which has pro-
perty P, and
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(2) S is a subdirect sum of the collection {Tμ}μeΩ such that each
member of S, when viewed as a member of ΠμeΩT^ has at most one
nonzero component.

Let KP denote t h e set {I\I is an ideal and S/I has property P } .

THEOREM 1.2. Suppose P is a semigroup property, S is a semi-
group, and J is an ideal of S. Then S/J is a mutually annihilat-
ing sum of semigroups each having property P if and only if there
is a subset K of KP such that (i) J is the K-kernel of S, and (ii) if
I and Γ are distinct members of K, then S = I U /'.

Proof. Assume K is a subset of KP such that (i) and (ii) of
the theorem are true. It is clear from (i) that S/J is, in a natural
way, a subdirect sum of the collection {S/I\Ie K}. Property (ii)
implies that each member of the subdirect sum has no more than one
nonzero component. It then follows from (i) and the lemma that S/J
is a mutually annihilating sum of semigroups each having property P.

Now assume J is an ideal of S and S/J is a mutually annihilating
sum of a collection {Ŝ };€i> where, for each λ in A, Sλ is a semigroup
having property P. Let φ denote the natural homomorphism from S
onto S/J. For each Xe A, let Iλ denote the set of all x in S such
that either φ(x) is zero or φ(x) is not in S. If K — {Ix | λ e A}, then
K satisfies (i) and (ii) of the theorem.

REMARK 1.3. In case S has a zero and / is zero, the theorem asserts
that S is a mutually annihilating sum of semigroups each of which
has property P if and only if there is a subset K of KP such that
(i) Π K = 0 and (ii) if / and Γ are in K, I Φ /', then S = / U /'.

For each semigroup S, let ^fZ = ^/'s denote the set of all max-
imal ideals of S. The following corollaries are immediate applications
of Remark 1.3.

COROLLARY 1.4. Assume S is a semigroup with zero. Then
Π ̂ " = 0 if and only if S is a mutually annihilating sum of
semigroups each of which either is a null semigroup of order two
or is a 0-simple semigroup.

COROLLARY 1.5. // S is a semigroup and J is the ^ -kernel
of S, then the ^-kernel of S/J is zero.

The ^/Γ-kernel of a semigroup determines, to some extent, which
maximal ideals are prime (an ideal J of a semigroup S is said to be
prime if and only if either J = S or the complement of J is a sub-
semigroup of S).
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THEOREM 1.6. Suppose S is a semigroup which has a maximal
ideal. If J denotes the ^f-kernel of S, then each maximal ideal of
S is prime if and only if there is a collection {Sa}a<=Λ of simple
subsemigroups of S such that

(1) S = JU U e Λ ,
(2) for aeΛ, βeΛ, aΦβ,SanSβ is void and SaSβ S /, and
(3) for each ae A, JΓ) Sa is void.

Proof. First assume that each maximal ideal of S is prime and
that J is the ^//-kernel of S. From previous arguments, it is known
that S/J is isomorphic to a mutually annihilating sum of semigroups
each of which is isomorphic to S/M for some Me^^. Since S/M is
a simple semigroup with zero for each Me ^/f (recall that M is prime),
it follows that there is a collection {Sa}aeΛ of simple semigroups such
that S/J is a mutually annihilating sum of {S° \ oc e A}. For each aeA,
we identify Sa with the subsemigroup Ta of S such that

(Ta U J)/J= Sa

and Taf] J is void. Then the collection {Sa}aeΛ satisfies (1), (2), and
(3) of the theorem.

Assume, on the other hand, that {Sα}α.€/i is a collection of simple
subsemigroups of S such that (1), (2), and (3) hold where J denotes
the ^//-kernel of S. Then each maximal ideal of S is of the form

JU U Sa
«eΛ\[β}

for some β e A. Thus each maximal ideal of S is prime.

2* The & ^kernel of a semigroup* We now turn our attention
to a different kind of kernel of a semigroup. Let & denote the set
of all prime ideals of S. We now characterize the ^-kernel of S.
First we need some notation and definitions.

To say that S is a band means that S is an idempotent semigroup.
S is said to be a rectangular band if and only if S is a band and
a b a —a for all a and b in S. Rectangular bands may be charac-
terized as semigroups of the form X x Y where X and Y are arbitrary
sets and where the operation on X x Y is defined by

(», y)(χ', yf) = (x, y')

for x, xf in X and y, y' in Y (see, for example, [4] or [7]).

We assume, from this point on, that S is any semigroup, that E
is the maximal semilattice homomorphic image of S, and that η is
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the natual homomorphism from S onto E. Define a relation φ on S
by (α, b) e φ if and only if there exists xeS\yeS\ceS,deS, and
positive integers m and n such that a = x cy, b = x dy, and cm = dn.
Clifford has observed, [1], that if φι is the transitive closure of φ,
then Slφ* is the maximal band homomorphic image of S. He also
noted that the maximal semilattice homomorphic image of S/φ* is the
maximal semilattice homomorphic image of S. Each (^-congruence
class of S will be called an archimedean component of S. This defini-
tion, which agrees with the usual one in case S is commutative, has
not been used before in case S is not commutative. Clifford's obser-
vation may be rephrased, "any semigroup is a semilattice union of
semigroups each of which is a rectangular band of archimedean com-
ponents of S".

The following theorem is due to Petrich (see [8] and [9]).

THEOREM 2.1. (Petrich) In order that P be a prime ideal of the
semigroup S it is necessary and sufficient that there exists a prime
ideal Q of E such that P = \JeeQ η~ι{e).

The following corollary is immediate.

COROLLARY 2.2. The ^-kernel of the semigroup S is precisely
the inverse image of the &-kernel of E under η (even in case either
is void).

LEMMA 2.3. If E is a semilattice, then the ^-kernel of E is
void in case E contains no zero element and otherwise is the zero
of E.

Proof. Suppose z is in the ^-kernel of E. If z were not a zero
of E, then {x e E \ x g z} would be a prime ideal of E which does not
contain z.

The next theorem follows immediately from previous results.

THEOREM 2.4. The &-kernel of the semigroup S is void in case
E does not contain a zero and otherwise is the inverse image of the
zero of E under η.

COROLLARY 2.5. If the semigroup S contains a zero, then the
^-kernel of S is zero if and only if the equations a c b = 0 and
cn = dm imply adb = 0 for aeS1, be S1, ce S, deS, and positive
integers m and n. Note that in case S is commutative the latter
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condition merely asserts that 0 is the only nilpotent member of S.

PROOF. By Theorem 2.4 the ^-kernel of S is η~\z) where z is
the zero of E. Since η~\z) contains the zero of S, it must contain
only one archimedean component of S. Thus the ^-kernel of any
semigroup with zero is precisely the archimedean component containing
the zero. The corollary now follows from the way φ was defined.

The following corollaries are evident.

COROLLARY 2.6. The following statements are equivalent:
(1) the maximal semilattice homomorphic image of S is trivial,
(2) the ^-kernel of S is S, and
(3) S is a rectangular hand of its archimedean components.

COROLLARY 2.7. The maximal band image of a semigroup is a
rectangular band if and only if the maximal semilattice image is
trivial.

Finally we consider an application to semilattice theory. To say
that F is a face of a semilattice E means that F is a (nonvoid) sub-
semigroup of E such that either F is E or the complement of F in
E is a prime ideal of E. A prime ideal P of E is principal if and
only if it is of the form {x e E \ e ^ x) for some e e E (in this case e
is called the generator of P).

THEOREM 2.7. If E is a semilattice, then each proper face of
E is finite if and only if

(1) each proper prime ideal of E is principal,
(2) each ascending chain in E is finite, and
(3) each nonzero element of E is covered by at most a finite

number of elements of E.

Proof. First assume each proper face of E is finite. If P is a
proper prime ideal of E, then P is principal and has as generator the
product of all elements of E not in P. It is equally clear that (2)
and (3) follow.

Now assume (1), (2), and (3) are true. Let F denote any proper
face of E. Then E\F is a proper prime ideal and thus is principal.
Let e denote the generator of E\F. Then x e F if and only if x >̂ et

Define a sequence A of subsets of E inductively by
(i) xeAλ if and only if x e E and x covers e, and (ii) if k is a

positive integer, x e Ak+1 if and only if x e E and x covers some
member of Ak.
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For each positive integer i, A{ is finite. One can show that there
is a positive integer n such that An is void by assuming otherwise
and by constructing an infinite ascending chain in E. Thus

F = U Ai
i = l

and F is finite. The theorem follows.
If ^ is any collection of ideals of a semigroup S, S/( Π ̂ ) is always

a subdirect sum of the collection {S/T\ Te ^ } . In case S = E is a
semilattice the intersection of the collection of all prime ideals of E
is void or is a zero of E. Thus one obtains the following corollary
of Theorem 2.7.

COROLLARY 2.8. Assume E is a semilattice such that
(1) each proper prime ideal of E is principal,
(2) each ascending chain in E is finite, and
(3) each nonzero element of E is covered by at most a finite num-

ber of elements of E.
Then E is a subdirect sum of the collection {F° \F is a finite

face of E).

3* Relationships among various kernels* As in the previous
section S denotes any semigroup, E its maximal semilattice homo-
morphic image, and rj the natural homomorphism from S onto E.
Throughout this section Kτ will denote the intersection of all ideals
of the semigroup T and will be called the kernel of T. If N denotes
the void set, we define KN = N. Likewise Pτ and Mτ will denote the
& and ̂ // kernels of T respectively.

THEOREM 3.1. If A is an ideal of the semigroup S, then KA — Ks.
Thus we have

Ks — KPs = KMs .

Proof. Let A denote any ideal of S. If Ks is not void, then for
each ideal J of A

Ks = KSJKSKS £ KSJKS .

Thus KSJKS is an ideal of Ks. Since Ks is simple,

Ks - KSJKS^AJA^J.

Thus KS^KA.
Conversely, if KA is not void, then Ks is equal to the intersection
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of the collection 3ίf where J e ^f if and only if J = IΠ A for some
ideal J of S. But each such J is an ideal of A, thus KSQKA.

It follows that Ks ~ KA for each ideal A of S. Clearly if Ps or
Ms is void so is Ks. The theorem follows.

COROLLARY 3.2. If S is a semigroup, then the kernel of S is
the same as the kernel of Ps and thus is the kernel of a rectangular
band of archimedean components of S.

In order to obtain the relationship between the ^-kernel, Ms,
and the ^-kernel, Ps, we need more information about the maximal
ideals of S. The next theorem provides such information and has
some interest in its own right. First we need another definition. An
ideal I of 7)~ι{e), for eeE, is said to be induced by S if and only if
JU (SVy-^β)) is an ideal of S. It is easy to see that an ideal I of
Ύ]~ι(e) is induced by S if and only if
(1) fx e E\{e}, f2 e E\{e}, and fj2 = e imply ^(/ity-'ίΛ) S I and
(2) fe E and / > e imply ψ\f)I^ I and I ψ\f) Q I.

THEOREM 3.3. If M is a subset of the semigroup S, then M is
a maximal ideal of S if and only if there exists eeE such that
either

(1) e is a maximal element of E such that η~ι{e) is simple and

Jtf = U/e*\(.}>Γ1(/), o r

(1) there is a maximal ideal Me of y]~ι(e) such that Me is induced
by S and M=MeU

Proof. Suppose M is a maximal ideal of S and that a e S\M.
Let e denote τj(a). First we show that ψ\f)^M for all feE\{e}.
Consider F — {x e E \ x gb e}. The set M U η~\F) is a proper ideal of
S. Since M is maximal, ψ\F)ξiM. Thus if feE such that
ψ\f) £ M, then e ^ / . Suppose there exists f0 e E such that

τrι(fo) £ M

such that /o > e. If Fo = {x e E \ x g /0}, then Λf U ̂ "'(^o) is a proper
ideal of S. Thus ^ W ) C M. But /0 > e implies that eeF0 and that
y~\e) 2 M, contrary to the choice of e e E. It follows that η~ι{f)^M
for each f Φ e%

We now show that if M Π ψι(e) is not void, then Me — M Π ^""^β)
is a maximal ideal of Ύ]~ι(e) which is induced by S. Suppose there is
an ideal J of ψ\e) such that Mea Jczψ\e). Then Ml} J is an
ideal of £> such that MczM U JaS. Thus no such J exists and Mt

is a maximal ideal of r)~ι{e). Clearly Me is induced by S.
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Similar reasoning shows that if M Π ̂ ( e ) *s void, then e is maximal
in E and that f]~ι{e) is simple.

The proof of the other half of the theorem is easy and is omitted.

LEMMA 3.4. The ̂ f/-kernel of a semigroup is never void.

Proof. Assume the ^f/-kernel of some semigroup S is void.
Then the ^f-kernel of S° is zero and thus S° is a mutually annihi-
lating sum of semigroups each of which either is a null semigroup
of order two or is a simple semigroup with zero. Since 0 is a prime
ideal of S°, S° must be a simple semigroup with zero. Thus S is
simple and the ^// -kernel of S is S contrary to the assumption that
the ^//-kernel of S is void.

THEOREM 3.5. In order that the ^'-kernel of S be a subset of the
^-kernel of S it is necessary and sufficient that E contain a zero
z and that for each e e E\{z}} e is maximal in E and r]~ι(e) is simple.

REMARK. We do not require in the previous theorem that E
contain elements other than z.

Proof. Assume MS^PS. Since Ms is not void, neither is Ps;
thus there is a zero z in E and Ps = Ύ]~\Z). Assume eeE\{z\. We
show that e is maximal in E and that η~\e) is simple. To do this it
suffices, by Theorem 3.3, to show that \J feE\{e}V~\f) *s a maximal
ideal of S. Assume U/eiAUj??"̂ /) *s n °t a maximal ideal of S. Since
Ms QPS, % £ Ύ]~~\e) implies that there exists a maximal ideal Mx of S
such that xgMx. Since U/eMtβ}7?"̂ /) i s n o ^ a maximal ideal of S,
Theorem 3.3 implies that there exists a maximal ideal Nx of 7)~\e}
such that Mx = Nx U U/e^tβj^ί/)- Since for each x e ψ\e), x g Nx,
we have that Π βe^"1^)^* is void. But Γiχev~\e)N* contains the ^£'-
kernel of rj~ι{e) which, by the lemma, is not void. We have establi-
shed the necessity of the condition.

Now assume E has a zero and that if e e E\{z}, then e is maximal
in E and rj~ι{e) is simple. If E contains no element other than z,
then Ms Q S = r]~ι(z) = Ps. Assume E contains elements other than
z. For each eeE\{z} it is easy to see that \Jf E\{e)V~l(f) ^s a maximal
ideal of S. Thus ΓheAU} [ U / E A U P Γ V ) ] = ψ\z) contains f l-^ ' and
Ms S V~\z) = Ps The theorem follows.

COROLLARY 3.6. If E has a zero z and Ύ)~\Z) is simple, then
the following statements are equivalent:

(1) Ms = Ps, and
(2) whenever e e E\{z}, e is maximal in E and η~\e) is simple*
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