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SELF-ADJOINT MULTI-POINT BOUNDARY
VALUE PROBLEMS

W. S. LOUD

It is the purpose of this paper to consider ordinary dif-
ferential operators which are associated with multi-point
boundary value problems on a finite interval. We do not
consider singular boundary-value problems. Our interest is to
determine just what multi-point boundary conditions are to be
imposed if self-adjointness is to prevail.

In a recent paper [2] J. W. Neuberger has shown that a three-
point boundary value problem for a real second-order linear differential
equation is not self-adjoint when the boundary conditions have the
form

anx(a) + a12x'(a) + a13x(b) + aux'(b) + a15x(c) + alδx'(c) = 0

(a < b < c)

a21x(a) + a22x'(a) + a23x(b) + aux\b) + a2δx(c) + a26x'(c) = 0 .

This is done by showing that the associated Green's function is
never hermitian symmetric unless all four of α13, α14, α23 and au are
zero, so that the third point b does not enter into the boundary
conditions.

Neuberger's results have been extended to higher-order problems
by A. Zettl in [5].

It will appear that for a multi-point boundary-value problem to
be self-adjoint the Green's function will have to be discontinuous in
both its variables at the interior boundary points as well as at t = s.
The necessity for discontinuity in both variables was pointed out by
C. E. Wilder [4]. In [4] Wilder considered finding the adjoint of an
nth order differential equation with multi-point boundary conditions.
He also constructed the Green's function. The question of self-
adjoint multi-point boundary value problems was considered by Mans-
field [1]. Mansfield was interested in applications to the calculus of
variations. He considered a vector system of differential equations
with nm boundary conditions where n is the order of the system and
m is one more than the number of interior boundary points. It is
then reduced to a vector system of order nm with no interior boundary
points. The self-adjointness conditions are then found for the system
of order nm and then reinterpreted for the original system of order
n. The results of the present paper seem to be more simply expressed.

Some applications of multi-point boundary value problems with
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the need for possible discontinuities at interior boundary points are
given in the paper by Weinberger [3].

In § 2 we point out what seems to be an essential feature of
Green's functions for multi-point boundary value problems, namely
that intermediate boundary points impose discontinuities in the Green's
function in one of its variables. This unsymmetrical discontinuity
very effectively rules out hermitian symmetry. To restore hermitian
symmetry it is necessary to have a symmetrical discontinuity in the
Green's function in the other variable.

In §3 we consider a general vector differential equation with a
multi-point boundary value problem. The differential equation is as-
sumed to coincide with its Lagrange adjoint, and the Green's function
is assumed to be hermitian symmetric with discontinuities on the lines
t = const, and s = const, corresponding to the interior boundary points.
The appropriate form for boundary conditions is then determined. If
there are m — 1 intermediate boundary points, it is found that the
problem will require m boundary conditions of a somewhat special
form for self-adjointness.

In § 4 we consider the case of a real second-order scalar differential
equation with just one intermediate boundary point. In particular
we consider the interesting case in which the discontinuity in the
Green's function is only in the first derivative at t — c and s = c a s
well as at t = s, where c is the interior boundary point.

In § 5 we mention an application where multi-point boundary
problems occur naturally and show that in the application given the
self-adjointness conditions are fulfilled.

2* Discontinuities in Green's functions* In multi-point bound-
ary value problems the presence of interior boundary points forces
certain discontinuities in the Green's function. For self-adjointness
it is necessary to impose similar discontinuities on the solutions. In
this section we consider a simple case of a three-point boundary-value
problem to see the nature of the imposed discontinuities.

Let us consider the problem:

%" = g(t) , x(-l) = Ax(0) , flj(l) = Bx(0) .

It is not difficult to compute the Green's function for this problem.
It is found that the solution is, if A + B Φ 2,

x(t) = ^ G(t, s)g(s)ds

where
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Note that the Green's function G(£, s) has to be given by four dif-
ferent formulas instead of the two required for a two-point boundary
value problem. In this particular case, G(t, s) is continuous for all
(t, s) in — 1 ^ ί, s ^ 1, but the derivative Gs is discontinuous at s = 0.
It is also clear that hermitian symmetry occurs if and only if A =
B = 0.

The boundary-value problem in the preceding paragraph can be
written in the form

Lx = g(t)

where L is the differential operator which is generated by the dif-
ferential expression %" and which corresponds to the boundary condi-
tions x( — 1) = Ax(0), x(l) = Bx(0). It is of interest to compute the
adjoint of this operator, L*. We can recover L* from the Green's
function by writing the adjoint problem

L*x = h(t)

in the form:

x(t) = Γ G(sJ)h(s)ds

and then differentiating to obtain the differential expression generat-
ing L* and the associated boundary conditions. The integral expres-
sion is:

= Γ
J —1

2 - A- B
_l < , < 0 ,
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+ t1**1 -A) + t(A + B-l) + 8(1 - B) - lh{s)ds

)t 2 - A~B V

0 ^ t ^ 1

Differentiation gives:

χ,{t) =
:

2 — A — B

and

0 <

A second differentiation gives x" = hit), so that L* is generated by
the same differential expression as L. This is natural, since x" is its
own Lagrange adjoint.

To find the boundary conditions of L* we set t — — 1, 0 — ,0 + ,
and 1 in the expressions for x and x'. We find:

= 0

α -
_

There will be four boundary conditions, three of which are clearly

x(-l) = 0 , x(l) = 0 , α?(0-) = x(0 + ) .

A fourth is

x'(0 + ) - ίc'(O-) = Bx'{l) - Ax'(-l) .
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Note that the boundary conditions for L* impose a discontinuity on
the derivative x'{t) at 0. Note also that when A = B = 0, two of
the boundary conditions reduce to continuity of x and x' at 0 while
the other two are those of L when A — B = 0, so that again the
self-adjointness of L is verified when A = B — 0.

Although the above is a special example, it is clear that in
general intermediate boundary conditions will necessitate changes in
formula of the Green's function at corresponding values of s. If the
problem is to be self-adjoint, the Green's function must also have
changes in formula at the corresponding values of t. In the next
two sections we shall find just what boundary conditions will produce
symmetric discontinuities in Green's functions and thus give self-
adjoint multi-point boundary value problems.

3* Self-ad joint vector operators with multipoint boundary
conditions* Let us consider an operator generated by the differential
expression

(3.1) ix' - A(t)x

where the matrix A(t) is continuous on a <̂  t ^ b and is hermitian
symmetric. In this case, the differential expression coincides with its
Lagrange adjoint.

Let Φ(t) be that fundamental matrix of the system %%' = A(t)x
such that Φ(t0) = I for some tQ (a ̂  tQ ^ b).

LEMMA 1. The fundamental matrix Φ(t) is a unitary matrix
for all t in a ^ t ^ b.

Proof. Differentiate the identity

Φitmt)-1 - I.

The result is

Φ'WΦit)-1 + Φ(t)Φ(t)~v = 0 .

Using the fact that %Φ\t) = A(t)Φ(t), we obtain

-iΦ(t)-v = Φ(t)-ιA(t) ,

iφ(t)*-lf = A*(ί)Φ(ί)*"1 - Aίί)Φ(ί)*"1 .

This shows that Φ(t)*~ι is also a fundamental matrix of the equation
ixf = A(t)x. At t = to Φ{tγ~ι - JΓ*"1 = I. Since Φ(t) and Φiψ'1 agree
at t — t0, they are identical, i.e.

φ(t)*~ι = Φ(t) , Φ(t)* = Φ{t)~ι .
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This completes the proof.

To complete the definition of the differential operator we need to
impose certain boundary conditions. We are interested in finding just
what boundary conditions will make the operator self-adjoint. To find
these, let us consider the inverse operator, which will be an integral
operator with kernel the Green's function. Let us suppose that there
are boundary conditions imposed at t = α, t = 5, and (m — 1) interior
points, so that they are imposed at:

t = a = c0 < d < c2 < . < cm - 1 < cm = b .

As we have seen, we will have to have different formulas for the
Green's function G(£, s) in the m2 + m cells into which the square
a ^ t <? b, a <L s ^ b is divided by the lines t = clf s = c19 , t = cm_u

s = cm_i, t = s. In each such cell the Green's function will have the
form

ΦiQCΦis)-1 = Φ{t)CΦ{sY

where C is a constant matrix. Moreover, at the diagonal t — s, the
Green's function has a jump discontinuity given by:

G(s + 0, s) - G(s -0,8) = - i l .

Finally, since we are interested in a self-adjoint operator, we must
choose the various constant matrices so that for all (t, s), G(t, s) =
G(s, £)*. The most general way of doing this is accomplished by the
following.

Let the constant matrices Aid satisfy the relations Ai3- = A%
(ί, j = 1, 2, , m). For i Φ j let

(3.2) G(ί, s) = (PίQAί^ίs)* c i β l ^ ί ^ c,

For i = j , let

(3.3) G(ί, β) - <P(ί)i4«Φ(«)* + —ίΦ(t)Φ{s)* c^ ^ t ^ s ^ c t
Δ

= Φ(t)AuΦ(s)* - —iΦ(f)Φ(s)* c<_! ̂  s ^ ί ^ c4 .

The function G(ί, s) defined by the above is clearly hermitian sym-
metric, has the proper discontinuity when t = s, and also involves
the fundamental matrix Φ(t) in the correct manner so that it is the
Green's function of a differential operator. We proceed to find the
boundary conditions generated by this Green's function.
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THEOREM 1. If L is the differential operator generated by (3.1),
whose inverse has the kernel G(t, s) defined by (3.2) and (3.3), then
L is self-adjoint and is determined by the following m boundary
conditions'.

(3.4) £}

- (An - λiήu(cU) = 0 i = 1, 2, , m

(ί) = Φ(t)-ιx(t).

Proof. We first derive the boundary conditions (3.4) from the
Green's function G(t, s). This will show that the boundary conditions
are necessary for self-adjointness. We then show that if x(t) and
y(t) are differentiate functions such that (3.4) holds for both x(t)
and y(t), then (Lx, y) = (x, Ly). This will show that the boundary
conditions (3.4) are sufficient for self-adjointness.

Suppose x(t) is such that Lx = g(t). Then

x(t) = I G(t, s)g(s)ds ,
J a

and we wish to show that x(t) satisfies the conditions (3.4). If
Ci-ι t=kt<* ci9 we find, using (3.2) and (3.3) that

_ Φ(s)*g(s)ds
3=1 " J ^ _ i

+ λΛCiφ(s)*g(s)ds .

Hence:

Φ(s)*g(s)ds - —i\' Φ(s)*g(s)ds
(3.5)

Φ(s)*g(s)dsΣ
3—1 j i

whence by subtraction:

Φ(s)*g(s)ds .

H-i

Thus the various integrals of Φ(s)*g(s) are given by

(3.6) \H Φ(8)*g(8)d8 = i[(u(cτ) - u(cU)] .
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Using (3.6) in (3.5) we find

u(cτ) = ft Ai3 (i)[u(cj) - u{cU)} - \ i

Transposing and multiplying by i we finally obtain:

\ + \-iu{eU) = 0

which is equivalent to (3.4). This shows that in the case of self-
adjointness, the boundary conditions (3.4) are satisfied.

We now wish to show that when x(t) and y(t) both satisfy (3.4),
we have (Lx, y) — (x, Ly) = 0. Now

(Lx, y) - {x, Ly) = \by*(t)[ίx'(t) - A(t)x(t)]dt

- \\-iy*'(t) - y*{t)A*{t)]x{t)dt

4r{y
U dt

since A(t) = A*(t). We therefore have to show that

(3.7) Σ {y*{cj)x{cj) - y*(cU)x(cU)} = 0
i=i

if x and y satisfy (3.4). To see this, use the notation v(t) for
Φ(t)~ιy(t). Then for each j:

y*{cj)x{cj) - y*(ct^)x(ct^)

= V*(CJ)U(CJ) - v*(ct_1

( 3 8 ) - \{[v*{cj) - v*(c

+ [v*(cj) + v*(cU)][u(cγ) ~

Now use (3.4) which gives:

v*(c7) + v*(cU) = - 2 i Σ ^*(^) - v*(cU)]A% .
fc=l

Using (3.9) and (3.8) in (3.7) gives that the left member of (3.7) is
equal to:

-i Σ b*(cD - t ^cf.
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In the second sum in (3.10) interchange the summation indices and
note that A£s = Aίk. This proves that (3.10) is zero and hence that
(3.7) holds. This completes the proof of Theorem 1.

4* Real second-order self-ad joint operators with three bound-
ary points* In the present section we consider differential operators
generated by the differential expression

(4.1) (p(t)xrY + q(t)x a ^ t ^ b

where p(t) is real and positive on a <̂  t ^ b, and p, p', and q are real
and continuous on a <£ t <£ b. Here x is a scalar-valued function. We
wish to consider differential operators which are defined by boundary
conditions at t = a, t = b, and at t = c, where c lies between a and
b. We shall determine the form the boundary conditions must have
in order that the differential operator be self-adjoint.

The procedure is as in §3. We set up the Green's function and
require it to be hermitian symmetric, i.e. that G(t, s) = G(s, t). We
then use the inverse (integral) operator to determine the boundary
conditions on x(t).

We consider only one intermediate boundary point. The case of
several is very similar and leads to nothing essentially different. The
important features of the problem are present with a single interior
boundary point.

Let t0 be an arbitrary point a ^ t0 ^ 6 , and let φ{t) and ψ(t) be
those solutions of

(4.2) (p(t)xfY + q(t)x = 0

such that

- p(tQ)1r'(to) = 1 ,

Ψ(Q = V(QΨ\Q - 0 .

The expression

p(t)[φ(tH\t) ~ f(t)φ'(t))

is identically constant, and is therefore identically + 1 .
We now define the Green's function. The square a ^ t ^ b, a fg

s ^ δ is divided into six cells by the lines t = c, s = c and t = s.
We must have G(t, s) continuous for t = s Φ c and the derivative
Gt(t, s) must have a discontinuity of pity1 as t increases through s.
We also choose G(t, s) to be hermitian symmetric. These require-
ments lead to the following expressions for G(t,s):
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G(t, S) = anφ(t)φ(s) + CL12

+ a22ψ (t)ψ(s) ,

+ b22ψ(t)ψ(s)
α ^ £ ^ s ^ c

= bnφ(t)φ(8) + buφ{t)f{s) + K

+ Kf(t)f{s) - i[φ(t)ψ(s) -

(4.3) α ^ s ^ ί ^ c

- Cnφ(t)φ(8) +

(s)

) - ψ(t)φ(8)]

In (4.3) the coefficients αn, α12 c22 are arbitrary complex constants
except that 6n, δ22, cn, and c22 are real.

THEOREM 2. T%β differential operator generated by (4.1) with
associated Green's function (4.3) is self-adjoint. It is determined
by the following boundary conditions:

i[u(a) + u(c-)] - BJ[u(c~) - u(a)\ + AJ[u(b) - u(c+)]

i[u(c+) + u(b)] - A*J[u(c~) - u(a)] + CJ[u(b) - u(c+)]

= / Ψ(t)ψ(t) VΊx{t)\ = /αu

W)t'(*)j W(ί)J ' U

where

Λ c (^Λ j 0 1

&12 &22/ VC12 C 2 2 / V - 1 0

Proof. The proof is entirely similar to the proof of Theorem 1
and will therefore not be given.

REMARK. Note that (4.4) is a set of four boundary conditions
involving x and x' at t = α, t = c~, t = c+ and ί = 6.

A few further features should be noted. First if the matrix A
is the zero matrix, the two sets of boundary conditions are entirely
uncoupled, and we actually have two separate self-adjoint problems,
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one on the interval a ^ t <̂  c and the other on the interval c <; t ^b.
If the point c coincides with the endpoint 6, then the problem is

a two-point boundary-value problem with boundary condition:

i[u(a) + u(b)] = BJ[u(b) - u(a)]

which can be shown to have the required form for self-adjoint two-
point boundary value problems.

An important special case of the question considered in this sec-
tion is that in which G(t, s) is continuous at t = c and at s = c. This
will mean that solutions of boundary-value problems of the form
Lx — h(t) will not be discontinuous at t = c (although the first deriva-
tive of such solutions may well be discontinuous at t — c).

Examination of (4.3) shows that G(t, s) is continuous at t = c and
at s = c if

/ φ(c)\

For further analysis we assume that the point tQ at which the
solutions φ(t) and ψ(t) take on the values 1 and 0 is the point c.
i.e. φ(c) = p(t)ψ'(c) = 1, φ\c) = ψ(c) = 0. With this restriction, the
condition for continuity of G(t, s) at t = c and at s = c becomes that
the first columns of the matrices B — A + | J and C — A* — | J should
be all zeros, which gives the relations:

/Λ c x fen = αn , 612 - α21 - i = 0 ,
(4.5) — —

0ii = ^ii > c12 — a12 + i = 0 .

This shows that α u is real and that an = bn — cn. Also α12 = c12 + J,

α2i — &i2 — ί Thus the quantities α22, 6n, 612, 622, c12, and c22 are still

arbitrary, with 6n, δ22, c22 real, α22, 612, c12 allowed to be complex.

The boundary conditions (4.4) simplify somewhat in this case.

Because of our choice of φ and ψ, we find that

x(c)

In the case of continuity of G(t, s), the solution a?(ί) is continuous at
t = c, so we write a?(c) in place of ^(c111). Each of the equations in
(4.4) represents two boundary conditions. When the relations (4.5)
hold, the two equations corresponding to the first rows of the matrices
in (4.4) are alike, so that we are left with just three independent
boundary conditions. These can be written in the matrix expression
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(4.6)

•-&12 + i bn

α2;

+ 4
ΓB-4.

u(a) + ^ 2 2

*22ja9Λ

'cl2 + 4

α 2 2

2 _

= 0

Note that the derivatives x'(c~) and x'{c+) occur, in the case of
continuous G(t, s), only as the difference x'(c+) — x'(c~). It is possible
for the discontinuity in the derivative of the solution not to appear
in the boundary conditions. However, this is true only under very
restricted conditions. In fact, we must have bxι = 0, ό12 = J, and
C12 = — 2. If this is the case, the first boundary condition of the
three in (4.6) becomes simply x(c) = 0. The other two take the form

(4.7)
a2

0

0

- 1
u(b) = 0

As our later examples will show, solutions still will have discontinuous
derivatives at t = 0 even though the boundary conditions do not
require this directly.

A second important special case is that in which two of a set of
boundary conditions equivalent to (4.4) have the form

(4.8) Ax(a) + Bx'(a) - 0 , Cx(b) + Dx'(b) = 0 .

If there is decoupling, so that the coefficients αn, α12, α21, and α22 all
vanish, this leads to two self-adjoint problems one on a ^ ί <* c with
one boundary condition at t = a and the other at t = c, and a second
problem on c <= t ^ b with one boundary condition at t = c, and the
other at t = b.

If decoupling is not present, the computation is somewhat involved,
but it leads to the result that the second two boundary conditions
have the form:

(4.9)
x(c+) = eiθ(pnx(c~)

where the pi3 and θ are real, and pnp22 — p12p2i = 1.
Suppose now that the above special cases are combined,, so that

G(t, s) is continuous at t = c and at s = c, and also two of the three
resulting boundary conditions have the form (4.8). If there is decou-
pling, we always have the third boundary condition is x(c) = 0. If
there is not decoupling, the third boundary condition can be written
in the form
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(4.10) x'(c+) - x\c~) = Ax(c) ,

where A is a real constant.

5* Examples* In the present section we give examples to illus-
trate the special cases mentioned in § 4 together with some applications.

EXAMPLE 1. This is a case where G(t, s) is continuous, but the
boundary conditions are not separated. Because G(t, s) is continuous,
we will have three boundary conditions.

Lx = x" , x(0) = 0 , x(-l) = x'(l) - x\-l) = x(l) .

(The first boundary condition can be written as two: x(0 —) = 0,
χ(0 + ) = 0.) The Green's function for this operator is:

G(t, s) = ts O ^ s ^ l , - 1 ^ ί ^ 0 ,

= s -l^t^s^O

= t - 1 ^ s ^ t ^ 0

= - ί O ^ ί ^ s ^ l

= - s O ^ s ^ ί ^ l

= ts - l ^ s ^ O , 0 ^ ί ^ 1 .

Since G(t, s) is hermitian symmetric, the operator is self-adjoint. The
eigenvalues and eigenfunctions of this operator come in two sets.
One set of eigenvalues is the numbers n2π2 with eigenf unctions sin nπt;
the other is the roots of the equation tan i/~λΓ = 2τ/"λΓ, with eigen-
functions given by (sgnί) sinτ/λί. Orthogonality and completeness
of this set of eigenf unctions can be verified.

Although the boundary conditions do not require discontinuity at
t — 0, the second set of eigenfunctions all have discontinuous first
derivatives at t — 0.

EXAMPLE 2. This is a case where two of the boundary conditions
are exclusively at one end, but no continuity of G(t, s) is required.

Lx = x" x{-π) = 0 , x(π) = 0 ,

a(O-) = πx(0 + ) + (π2 -

α>'(0-) = x(0 + ) + π

The Green's function for this operator is:
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G(t, s) = (t + π)(s -π) O ^ S ^ T Γ , - π ^ ί ^ O ,

= - ( ί + 7Γ) -7Γ ^ £ ^ s ^ 0 ,

= -(s + π) -π ^ s ^ ί ^ 0 ,

= (s - π) O ^ ί ^ s ^ π ,

= (ί - π) O ^ s ^ ί ^ π ,

= (ί - π)(s + π) O ^ ί ^ T Γ , - T Γ ^ S ^ O .

Since G(t, s) is hermitian symmetric, the operator is self-adjoint,
Again the eigenvalues and eigenfunctions come in two sets. One set
of eigenvalues is the roots of the equation tan V λ π = (π — V)V λ
(which includes one negative eigenvalue) with eigenfunctions
sini/λ(ί — 7Γ sgn t); the other set is the roots of the equation
tan V λ π = (π + 1)V λ with eigenfunctions sgn t sin l/ λ (ί — π sgn £).
The first set of eigenfunctions have a discontinuity at t = 0; the
second set of eigenfunctions are continuous at £ = 0, but the deriva-
tives have a discontinuity.

EXAMPLE 3. This example combines the features of the two
preceding examples.

Lx = x" , x(-l) = 0 , x(l) = 0 , £'(0 + ) - α?'(0-) = -x(0) .

(A fourth boundary condition could be written: x(0 —) = #(0 + ).) The
Green's function for this operator is

G(t, s) = (t + l)(s - 1 ) - 1 ^ ί ^ 0 , O r g s ^ l ,

= -(t + 1) - 1 ^ ί ^ s ^ 0 ,

= - ( s + 1) - 1 ^ s ^ ί ^ 0 ,

= (s - 1) O ^ ί ^ s ^ l ,

= (ί - 1) 0 ^ s ^ ί ^ 1 ,

= (t - l)(s + 1) 0 ^ ί ^ 1 , - l ^ s ^ O .

Since G(t, s) is hermitian symmetric, the operator is self-adjoint.
Again there are two sets of eigenvalues and eigenfunctions. One^set
is the numbers n2π2 with eigenfunctions sin nπt; the second set is the
roots of the equation tan i/ λ = 2i/ λ, with eigenfunctions

sgn t sin {V λ (ί — sgn £)} .

The eigenfunctions of the second set have discontinuous derivatives
at t = 0.

The third example is related to an application. Consider a string
of length 2 extending from x = — 1 to a? = 1, and let there be a
point mass at a? = 0. The velocity of propagation of waves along the
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string is determined from the tension and linear density of the string
and, if this velocity is v, the transverse displacements of the string
satisfy the equation

Vxx = —Vtf

The boundary conditions imposed on y(x, t) are: y( — l, t) = y(l, t) = 0,
and to account for the point mass

m>ytt(0, t) = const. (ya(0 + , t) - y.(0-, t) .

Thus if the mass m is positive, there must be a discontinuity in yx

at s = 0.
This problem leads to an eigenvalue problem when variables are

separated, and in this particular case we find:

^ + XX = 0 , X(-l) = X(l) = 0 ,

X'(0 + ) - X'(O-) = const. X(0) ,

which is similar to Example 3. Since this is a self-ad joint boundary
problem, the eigenfunctions (which correspond to the normal modes
of vibration) will be a complete orthonormal set so that eigenfunction
expansions can be used to obtain the solution y(x, t).

In a similar manner other vibrating string problems with point
masses and vibrating beam problems with point loadings lead to
multipoint boundary-value problems which are self-adjoint.
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