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A NOTE ON FUNCTIONS WHICH OPERATE

ALAN G. KONHEIM AND BENJAMIN WEISS

Let %, < denote two families of functions a,b: X— 7Y,
A function F: Z < Y — Y is said to operate in (%, <7 ) provided
that for each ac¥ with range (a) S Z we have F(a)c &Z.
Let G denote a locally compact Abelian group. In this paper
we characterize the functions which operate in two cases:

(i) ¥ =0.(G)= positive definite functions on G with
#le)=r and F = 0;4.,(G) = infinitely divisible positive
definite functions on G with ¢(e) = s.

(i) ¥ =F =0,G) = Log 0;.4.,,(G).

The determination of the class of functions that operate in
(A, &#) for other special families may be found in refernces [3]-[8].
Our goal here is to extend the results of [5,6] and, at the same
time, to obtain a new derivation of the results recently announced
in [3].

G will denote a locally compact Abelian group and B+(G) the
family of continuous, complex-valued, nonnegative-definite functions
on G. Let

?.(G) ={p:9€B*(G) and ¢(e) = r}!
D;4..(G) ={p:6€0,(G) and ()" e B*(G) for n = 1}
@r(G) = Log @;4.,.(G) = {log ¢: ¢ €D;,4,.(G)} .

In the case where G is the real line @,(G) is the class of characteristic
functions, @, ,,,(G) the class of characteristic functions corresponding
to the infinitely devisible distributions while @,(G) is the class of
logarithms of this latter class whose form is well known since Levy
and Khintchine.

THEOREM 1. If G has elements of arbitrarily high order then
F operates on (0.(G), @,4.,,(G)) if and only if

F() = sexpo(f(z/r)—1) (2l =7
where ¢ = 0 and
F@ = 3 apazn (zl=1D

with
1 We denote the identity element of G by e.
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Cpw =0 and i Aum = 1.

n,m=0
LEMMA 1, Let

Ws,0) = 3 b,astt" (sl 1t1=1)

7, 0

with

buw =0 and iﬁ brrm

n, 0

Suppose that for each integer k, k = 1 we have

(b, 0" = 3% bonl)s"t” (sl 1t =1)
with |
bun(k) 20 and 3 bun(k) = 1.
Then
s, 8) = exp e(g(s, 1)—1)) (5], [t] = 1)
where
o5, 1) = 3 gy met” (sl [t] 1)
with

=200, =0 and 3 g.n =

N, 0

Proof of Lemma 1. Since (h(s, t))'* is to be a generating function
with nonnegative coefficients we must have #(0,0) = b,, > 0. For
suitable ¢ > 0 we then have

0<l—n(s,t)<1 s, t5e).
Thus k(s, t) = log {1 — (1 — h(s, t))} admits an expansion

ks, 1) = 3 Ky a5ttt O<s t=<e.

n, 0

Clearly k,,, < 0; we want to prove that all of the remaining coefficients
k.. are nonnegative., Assume on the contrary that

{(n, m):(n, m) = (0,0) and k,, <O0}#4.

Let (n,, m,) be a minimal element in this set (under the usual partial



A NOTE ON FUNCTIONS WHICH OPERATE 299

ordering in the plane). We then write

k(s, t) = k0,0 + Zl kn,msntm + kno,mosnotmo + /rno,mo(si t) .
0=n=ng
0=m=m
(n,m)F(0,0),(ng,mg)

It is easily seen that the

coefficient of s™t™ in exp —11\—716(8’ t) =

. . 1
coefficient of s™¢™ in exp-ﬁ koo + S, EpymS"t™ A Ky, m S™OE™
osns
0§m§:n%
(n,m)7(0,0), (g, mg)

But this coefficient is of the form
1 1 1 1
{Nkno,mo + W“(ﬁ)} €xp ﬁko’o

where o is a polynomial. For N sufficiently large this coefficient has
the sign of Fk,,., which provides a contradiction. Thus k,, < 0 and
kpm = 0((m, m) = (0, 0)).

Proof of Theorem 1. By setting F(z) = (1/s)F(rz) we may assume
that »r =s=1. If F operates in (9,(G), @, ,4.,.(G)) then (F)"* operates
in @,(@) for each integer k,k = 1. Thus from [5]

(F@)" = 3 annk)ez (2] = 1)

with
Gpn(k) 20 and 3 a, (k) =1,

n 0

By virtue of Lemma 1 the proof is complete.

LEMMA 2. If G has elements of arbitrarily high order them F
operates in O(G) implies that for any r, 0 < r < o

F(z) = 0(7"){ S @ () + 2+ B — 1}

n,m=0

whenever |z + r| < r where ¢(r) =0, a,,.(r) = 0 and

i Ap,m(r)r™*™ =1,
0

n,m=

Proof., We begin by observing that
P(G) —r={p —r:9e0,(G) S b .
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Thus if F,(z) = F(2z — r) then exp F', operates in (2,.(G), @, ;..(G)) which
proves the lemma by Theorem 1.

THEOREM 2 [3]. If G has elements of arbitrarily high order
then F operates in @(G) if and only if

Fl) = —a+ Bz + 7% + S:S:{exp (sz + 7) — Lu(ds, dt)  (*)
Rez<0

where

(i) a, B and v are real and nonnegative,

(ii) p s a positive measure on {(s,?):0 = s < o0, 0 =t < oo}
which 1s bounded (except perhaps at the origin) and for which

— p(ds, dt oo,
Sogol-}-t—l-sﬂ(s )<

Proof. Since it is clear that functions of the form (*) operate
on @,(G) it suffices to prove the reverse implication. We begin by
noting that if 0 < r < p then

o(r) { % 1)+ 2+ ) — 1}

= o) £ aunlo)o + 20 + W) — 1

7n,m=0

whenever [z + 7| <r and (w + r| < r, where F’ admits the expansion

F@) = o(0)f 3 tnn(oo+ 20 + D" — 1}
lo+zls0.

We now may uniquely define a function Z(z,w) in 0=2< oo,
0<w< = by

¥, w) = e}l = 3 a4 — 90 — w0}

provided 0 < w <r and 0 £z < r. We note that
(—1)i+k—1p9+k
0720w
I=w< > 0=2<
73, k=0 J+k>0.

T(z, w) =0

It follows from a theorem of Bochner [2, p. 89] that
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T(z, w) = @ + Bz + Tw + rru — exp — (sz + tw)](ds, dt)
0Jo

where a, 8,7 and g have the desired properties.
We proceed now to give the connection between Theorem 2 and

the results announced in [3].

DEFINITION. A continuous complex-valued function defined on a
locally compact Abelian group G is said to negative definite if

S S H{F@) + F@5) — flrar)ad; = 0

J=1 =1

for any complex numbers {a;}, any {x,} S G and for n=1,2, ...
The class of such functions is denoted by N(G)° It was already
noticed by Beurling and Deny [1] that N(G) = —&,(G).? We include
a brief proof for the reader’s convenience.

LEMMA 3. A continuous, complex-valued, funcition f on G 1s
negative definitely if and only if exp (—f) is the Fourier transform
of an infinitely divisible distribution on G.

Proof. (Necessity) By Bochner’s theorem it suffices to show that
exp (—(1/n)f) is a positive definite function on G for n =1,2, -.-..
Since (1/n)f is a negative definite function it suffices to check that
exp (— f) is positive definite. Now

n n

2. exp (—f(x:27"))a:a;

= 33 e (/@) + F@) — flaw)
- (a; exp (— £(:)))(a; exp (— @) -

3

B3

J

But the matrix
exp (f(w;) + f(x;) — f(@:x7"))

is the limit of positive linear combinations of “element-wise” products
of positive definite matrices. Since such products are again positive
definite by Schur’s theorem [9] we see that exp (— f) is indeed positive

definite.
(Sufficiency) By DeFinetti’s theorem and the fact that N(G) is

closed under pointwise limits it suffices to show that 1 — ¢ € N(G) for
6€@(G). We must therefore show

2 Professor C. S. Herz has kindly pointed out that this result was actually first
given by I. J. Schoenberg [9], albeit in a different context.



302 ALAN G. KONHEIM AND BENJAMIN WEISS

SHL - p@) + 1~ 6(w)) — 1 + g@a7)aid;
. 12 ” (**)

— 2Re a; 3 0;6@,) = 0.

i=1 j=1

n
i=

-
<,

3 3% s(eaia; + |3 o

To prove (**) we first set ¢(x) = y(x) where y is a character of G
noting that (**) becomes

‘gaiX(xi)r + éai]lz — 2Regaigaa(wi) =>0.

For general ¢ we need only observe that by Bochner’s theorem ¢ is
in the closure of the convex hull spanned by the characters of G.

It is now clear that F operates on N(G) if and only if F', defined
by F(z) = —F(—z), operates on &,(R). Making this transformation
Theorem 2 becomes identical with the main theorem of [3].
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