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CONVOLUTION OPERATORS ON L?(G) AND PROPERTIES
OF LOCALLY COMPACT GROUPS

JouN E. GILBERT

A locally compact group G is said to have property (R) if
every continuous positive-definite function on G can be ap-
proximated uniformly on compact sets by functions of the
form sx§,s€ 22 (G). When x4 is a bounded, regular, Borel
measure on (7, the convolution operator 7. defined by

(Tu)(s) = (us)a) = Sgs<y—lx>du<y> . seH(G),

can be extended to a bounded operator on L?(G) whose norm
satisfies || .||, = || #|]. In this paper three characterizations
of property (R) are given in terms of the norm || T.]||,,
1 < p < =, for specific operators 7.. From these characteri-
zations some closely-related, but seemingly weaker properties
than (R), are shown to be equivalent to (R). Examples
illustrating the results are given also,

If dx denotes left-invariant Haar measure on G and .97 (G) the
space of continuous, complex-valued functions with compact support
on G, the Haar modulus 4 is defined by

Sgs(xa"l)dx = A(a)SGs(x)dx , se 7 (G) .

The Haar measure of a set AC G is written m(A4). The norms on
the measure algebra M(G) and on the spaces L?(G),1 < p < o, defined
with respect to the given Haar measure, will be denoted by |[(.)]],
[1(.)]l, respectively. For any space =(G) of functions or measures
on @, the nonnegative elements in = (G) will be specified by = *(G).
We set 5(x) = s(@™), s(z) = s(@)4(z~) when se . % (G) and p*(x) =
p#(x™") when pe M(G). Since g — p* is an involution on M(G), a
measure g is called hermitian if g = p*. Following Godement ([8],
see also Dixmier [5] §13) we say that a measure pge M(G) is of
positive type if

(1) ws+5) = | (] s@swiay)dpe = o0,
a G
for all se 2 (G). When (.,.) denotes the usual inner product on
L*@), inequality (1) can be rewritten as
(rs,8) 20, s @,
changing s to s, i.e., ¢ is a positive element in the operator algebra
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of G. A continuous function ¢ is said to be positive-definite if
B(s* x8) = S S (y~x)s(y)s(x)dydx = 0,
GJG

for se 27°(G), i.e., ¢ is a positive functional on the involutive algebra
L{G), ([5] p. 2566). Note that s*§ is positive definite; consequently
sx8(x7) = sx38(x), |sxF| = s=3(e).

The following trivial lemma will be useful.

LEMMA 1. Let p be a hermitian measure in M. (G). Then

(2) {| Tull, = sup p(s %),

when the supremum s taken over all se 7 (G), || s|. = 1.

Proof. Certainly | T, ||,=sup|p(c=6)|,0e 2(G),||c].=1. Set
s=|o|. Then ||s|;=1,|0x6| <s+§ and

ox0) = | |ovoldp = | sesdp = pisr5)
G

G

consequently, (2) holds.

2. In this section we give the principal characterizations of
property (R). To every regular Borel measure ¢ on G there corresponds
a convolution operator T, defined by

(T = (ra)@) = | sw-0)dpw),  se @ .

If T, can be extended to a bounded operator on L?(G) we say that
p is p-admissible (cf. Leptin [14]); in particular, every bounded
measure # in M(G) is p-admissible and, in this case, the operator
norm || T, ||, satisfies || T ||, < || ¢#||. Previously, Dieudonne ([3], [4]),
Hulanicki ([9]) have shown that there is an interesting relationship
between property (R) (or properties equivalent to (R)) and the con-
volution operators T, ;te M(G). On the other hand, if every positive
p-admissible measure is necessarily a bounded measure, G is said to
be a K,-group (Leptin [14] p. 111).

THEOREM A. For any p,1 < p < o, the following assertions
are equivalent;

(i) G has property (R),

(i) || Tull, = Il ]l for every pe M.(@),

(ili) G is a K,-group.
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REMARKS. (a) For unimodular groups a result weaker than the
equivalence of (i), (ii) has been given by Hulanicki (see [9] Ths. 5.2,
5.3, 5.4). However, in view of the apparent inaccuracies in [9], (cf.
remarks [10] p. 99) we shall give an entirely different proof.

(b) The equivalence of (i), (iii) answers negatively a question
raised by Leptin ([14] p. 111) concerning the existence of unbounded
positive p-admissible measures’. The results of Kunze-Stein ([13] p.
52) show that there are positive unbounded p-admissible measures on
SL(R, 2).

Proof of Theorem A. (i)= (ii). By convexity it is enough to
prove that || T, ||, = || ¢]| for all e M (G) since || T |, = [ £l = || T, |l
always holds (cf. Wendel [20], Dieudonné [3] p. 284). It is even
enough to establish equality wheny has compact support say K. Since
G has property (R), for each ¢ > 0, there exists se . (G) such that

sup|1— (s+5)w)| <, [lslh=1.
Hence
el =15 s | 11— sesidp<elpl,

Thus
Hellz [ Tell: = [ M(s+8) | = X — o) || ]l

Le, |[Tylle = [l 1]

(ii) = (iii). Let g be a nonnegative p-admissible measure and K
a compact set in G. If p; denotes the restriction of g to K then,
exactly as in the proof of Lemma 1,

| Tug Ml = sUp pxls+T) < sup pu(s ) = || Tull,

where s, te 22.(G),||sll,, || t]l, = 1. Thus, by property (ii),

Nl = I g Ml = N Tell < ooy

for all K< G. Consequently, pte M. (G), i.e. G is a K -group,
(ili) = (ii). If (ii) is false let ¢ be a measure in M, (G) of norm
1 such that || 7.||, = r <1. When v, denotes the n-fold convolution
of p with itself and 7T, the convolution operator on L*(G) defined by
v, we have ||y, ||=1,[|T,||, =r". Now let ¢ be any function in

2%7(G) with S odx =1 and set v = (35, v,)x0. We shall prove that
G

1 The referee has kindly informed me that Leptin himself has proved Theorem
A in his paper On locally compact groups with invariant means (to appear).
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vy is an unbounded measure on G for which || 7,||, < (1/1 —7) in
contradiction to the hypothesis that G is a K, -group. For arbitrary
se % (G),

{(z20.)eofstardz | <||(S0.) 0] sl

<1 -nloll,-Isll.mE)y, N=z=1,

where K is the support of s; consequently v is a continuous linear
functional on 2¥°(G). Obviously, » is unbounded, for

by S(un*a)dx — N

as N— oo, On the other hand, for fe L*(G),
v fll, = Zllvaxo=fll, = [ fIL,/A—7),

and so v is a positive unbounded p-admissible measure.
(ii) = (i). If G does not have property (R) there is a measure

ye M(G) of positive type for which S dy < 0, (cf. Darsow [2], Dixmier

[5] p. 319). This v is necessarily %ermitian ([5] p. 264) while if
RI(y) = po — p, pto, € M (G) we have

ti(s+8) = p_(s=3), se Z(G),
el = (g < Jap = e
But p., ¢t are also hermitian; hence, by Lemma 1,

el =1 T Ml = 1l Ty [l
2T =0Tl = llee-1l -

With this contradiction the proof of Theorem A is complete.
A group G is said to admit an tnvariant mean if there is a
positive linear functional _Z on L*(G) of norm 1 such that

AN =1,  Ap) = AZ(p) = A#Z($), achG,
where ¢,(2) = ¢(a™'2), .9(2) = g(xa).

LEMMA 2 (Fglner-Namioka). Both the following conditions are
necessary and sufficient for G to admit an tnvariant mean:

(i) given any finite set K = {a,, ---,a,} "n G and € > 0, there
exists a measurable set A in G such that 0 < m(A) < « and

m(aJAmA)>(1—5)m(A), .7.:1,2,"',71/,
(ii) there ts a constant k,0 < k <1, such that, to each finite
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set K = {a,, -+, a,} in G, there corresponds a measurable set A in
G with 0 < m(A4) < « and

1S oma,ana) >k,
n j=1

For discrete groups these criteria are due to Felner ([7]); for
locally compact groups in general, (i) is a combination of the results
of Namioka ([15] Th. 3.7) and Dixmier ([6] §4, 3(a)). The proof of
(ii) is a straightforward modification of that given by Felner (see, for
instance, Hulanicki (9] Th. 5.3)).

THEOREM B. Let f be a hermitian function in L'.(G) monzero
almost everywhere. Ther G has property (R) if and only if

1711, = | f@de
Sfor some 1 < p < oo,

REMARK. Theorem B gives a partial extension to all locally
compact groups of the result of Kesten ([11] p. 150) for countable
discrete groups since property (R) is equivalent to the existence of
an invariant mean (see Reiter [17], [18]).

Proof of Theorem B. The necessity of the condition follows at
once from Theorem A. For the proof of sufficiency we may assume
that p = 2. Then, by Lemma 1, for any ¢,6 >0 there exists
se (@), |Is|l: = 1, such that

S f@)dw — S F@)s 3 @) < &

G G

because 0 < s+§ < sx§(¢) = 1. Hence, for each compact set K in G,
gKf(x) 11— (s+8)(2) | da < €5 .

If we assume K is of nonzero measure, on the subset K, of K on

which |1 — (sx8)(x)]| > ¢, S f(x)dx < 0. Assume for the moment that
Ke

S is continuous and everywhere nonzero; in this case

m(K.) < 9/inf f(z) .

Consequently, given any compact set KCG,¢, 6 >0 there exists
se 24(@) with ||s|l; =1 and a subset K, of K such that
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1 —sx3(x)| < e, xe K\K,, m(K)<o.

When ¢ € 2#.(G) has compact support K we have, therefore,

gl = la5) ]| = | o@) 1= (s+9)@)| do
<cllgl+dlgll,

ie., llgl,=1T,ll,. Now let pe M (G),sc 9%(G) be given, where
ll¢]l, =1 and g has compact support. Then, with s, o arbitrary
functions in 97(G) satisfying ||s|,=]|lo|. =1,

I Tull: = ssl_lva#(S*ﬁ)l = ssyaplﬁ(¢*8*5)l
= s;gpl(#*¢)(8*5)l = || Tpolle = [l exo |l = [l 1|

since pxge 25(G). Hence || T.|,= | p|l. The extension of this
inequality to all of M.(G) is immediate. Consequently G has property
(R). It remains now to show that f may be assumed continuous and

everywhere nonzero. Choose any oe¢ 975(G) with | o(x)dz =1 and
G

let K, be the support of ¢ (we assume K, contains the identity e of

G). Given any € > 0 choose se€ 97 (G) and K, a compact set in G
such that

|, f@de <5 1= (+8)@)| <& ve KKK,
G\K,y
where SK f(@)dx < e for some subset K, of K,-K,. Then

| @ N@IL — (55)(@)da = gaaw){gama — (s+5)(ym)dafdy
= | ow{], r@dz+| @ - G0odsfdy
<l owe+elsi+ady=ce+I171).

Hence || T..; |, = || o* f ||;; but, obviously ¢ * f is continuous and every-
where nonzero. This completes the proof of Theorem B.

THEOREM C. Let G be a locally compact group. Then G admits
an invariant mean if and only +f, for some p,1 < p < o, || T,]||, =
|| el whenever p is a discrete measure in M. (G).

Proof. If G, denotes G provided with the discrete topology, the
discrete measures in M.(G) can be identified with [%(G;). To show
that || T ||, = || ]| for some 1 < p < « and all pel (G,) when G
admits an invariant mean, it is enough to prove that || T.|, = || 2]l
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for all e l’(G,) having compact support (note that 7. is an operator
on L¥G)). Let K={a, ---,a,} denote the support of any such
measure. Then, given ¢ > 0, there exists a measurable set A in G,
0 < m(A) < o, such that

m@ANA) > L —md), j=1--n.

Setting ¢ = y.,/m(A)"* with y, the characteristic function of A we
have, therefore,

HEeell = T (=) ||

< 3% pla) [1 - AN A)

() <ellell.

Consequently, || T.]. = || #]|| since |4 ||, = 1. Suppose conversely that
| Tulls = || p£]| for all peli(G,), (again by convexity arguments it
suffices to consider p = 2). Denote by K any finite set {a,, ---, a,}
in G and suppose that a; occurs w(j) times in K; set C = KU K.
Then the measure /¢ in I'.(G,) defined by

w(en xz=a; , a;*a;'
w(g)/2n x=a7, a;'#*a;
n@) = . .
w(g)/n x=a; , a;=a;

0 Otherwise

is hermitian. Hence, by Lemma 1, given any ¢ > 0 there exists
se (@), sl = 1 such that

el — s 5) < &2,
i.e.,
1— o 3 {(s+5)(@) + (82 5)ar) < 2.

Set 0 = s®. Then

3 (10 = 0y 100 < 4 3 (s — s, 1)

n

:8Z|1——(s*s)a)]<4ns

since (sx§)(a;) = (s*§)(a;') = when se 27(G). Thus

Lo ol = X @netyine = 2¢
n n

=1 7

If, forx = 0, E; = {x € G: o(x) = \} and y; is the characteristic function
of E,, we can repeat the proof of Hulanicki ([10] p. 98) to obtain
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sllo = oy ll = oo 5 [ "m(a, B4 i
2n ’ 2n =1 Jo
_f= 1 & m(a E;AEZ)}
=\ m(E)N—=— g dn < €
Elgn 2 m(E,) <

Since
rm(EZ)dx - S o(@)de = 1
0 G

there exists F,, m(E,) =+ 0, such that

1 & mla,ER4E) c
o2n Z‘ m(E,) e

Consequently,

% S miaE N E) > (1 — eym(Ey)

=1

i.e., G admits an invariant mean (Lemma 2).

DEFINITION. For given C,0 < C < 1, a locally compact group G
18 said to have property R(C), resp. R, (C), if, given any compact
set KC G, resp. finite set K = {a,, --+, a,} C G, there exists s % (G)
with ||sl|l; = 1 such that

sup |1l — (sx8)(x)| < C .
€K

respectively

sup |1 — (sx8)a;)| < C.

1Sjsn

Thus, if G has property R(C) for all 0 < C <1 it has property
(R), (cf. Dixmier [5] p. 319).

THEOREM D. Let G be a locally compact group. Then the follow-
g assertions are equivalent:

(i) @G has property (R),

(ii) G has property R(C) for some 0 < C < 1,

(iili) G has property R (C) for some 0 < C < 1.

Proof. Obviously (i) = (ii) = (iii). To show that (iii) = (i) it is
enough to prove that, when G has property R,(C) for some 0 < C < 1,
then || T, ||, = || ¢]|| for every pel'(G;). Since then, by Theorem C,
G admits an invariant mean; consequently it will also have property
(R) (cf. Reiter [17], [18]). Let g be an element of [.(G,) having
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compact support say K ={a,, -++, a,}. By R;(C) there exists se 227 (G),
l|s]], = 1, such that :

Il — [ ps=8) [ = 25 pay) [1 — (sx8)(ay) |
=Clligll.

Thus || Tu|l. = (1 — C) || ¢#]|| for any pel.(G,) having compact support.

But, if || T.|, = r |l #]], r < 1, for sufficiently large n

L =OC)llwall =@ = C)[[ 2|I"
STl = U Tell)™ =)l pll" <@ = C) Il 21

where v, denotes the n-fold convolution product of ¢ with itself and
T,=T,. This is an obvious contradiction. Thus || T, = [[p¢|| for
all £el'(G,) and so G has property (R).

3. By way of illustration we shall consider two groups:

(i) free group G. with generators a,,n = 1,2, - .-, each of order
2,

(il) G = SL(R, 2).

3(i). Let G, be the free group generated by a;, 7 =1,
Darsow ([2]) has shown that, for any se 2(G,), ||sl|. =1,

(3) Sup [ 1= (s=8)(a;) | > [1 — @/m)(n — 1] .

Consequently, G.. fails to have property R(C) for any 0 < C < 1 (note
that the restriction to G, of an se 97(G.), || s|. = 1, cannot decrease
(3)). Repeating the proof of Darsow ([2] p. 452) we can show that
for any such s

M=

 (5x8)(a;) = Z (L — )"

for some wn-tuple (¢, ---,%,),0=¢,<1,¢, +t,+ -0 +¢, <1. An
elementary argument using Lagrange’s Multipliers shows that

i (sx8)(a;) = n(l/n)"*(1 — 1/n)"*
= (n — 1)~

(4)

whenever se 95(G.), || s|l: = 1. Now the characteristic function of
the subset (a,, ---, a,) of G. is a hermitian measure g, in M,(G.) of
norm %n. But, by (4), as an operator on L*G,),

Ty, lle = (m — 1)1

All the above calculations again hold when G, is regarded as a sub-
group of G.. Consider the measure
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p=3 Amp, .

Then p¢ Mi(G), but || T, ll: = 35, (I/n°)(n — 1)7* < oo, e, o is a
positive, unbounded, 2-admissible measure.

3(ii). The group SL(R, 2) contains a discrete subgroup H isomor-
phic to the free group G,,, on two generators a, b (see, for example,
[1]). Furthermore, G = SL(R, 2) possesses a fundamental domain F
measurable with respect to Haar measure on G (cf. [16], [19]) such
that

S s(xydx = 3, S s(x)dx se Z(G).
G §EH JF
Following Reiter ([16] p. 2883) we set

su6) = | s(ew)dn, e H,

whenever se 97(G). Now, for fixed y € H, when se 2%(G), ||s]l. =1
and o = s*, we have

S 10u@) = autr9) | = 3, || (060) — ot ew)de

<, 10@ — otra) | da < [I5 + s, [l s = 5,
< 21— (s+5)() "

clearly >\.ey0,(6) = 1. Denote by M the subset of H which can be
identified with {a, a? ---,a" b, ---,b"} in G,,. Then, if N denotes
all words in G,,, starting with b and P = G,,,\IV

12 33 3 04(@m) > (n+ 1) 3, 04() — ne
12 3 3, 0,07) > (0 + 1) 3, 0(6) — e

where € = SUpyey Sien | 0a(8) — 04(n7'¢) |, (see Yoshizawa [12] p. 57).
Hence ¢ > (n — 1)/2n. But then

n— 1\2
sup | 1= (s+5)(7) | 2 8( ok

This inequality persists for arbitrary se . (@) with ||s|, =1 (cf.
Darsow [2] p. 453), consequently SL(R, 2) does not have R,C) for
any 0 < C < 1/32.

If p denotes the characteristic function of the set MU M~ in
H (so that p is a discrete measure in M,(SL(R, 2)) then
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(el = 1T, ) = inf[2 32 (2 = (s+8)(@") = (6+5) &™) ]

the infinium being taken over all se 9% (G) with ||s|, = 1. Hence

>

§EH

el =170 2 5(5 | 5 |00 - oatra | |) -

nE€EM

With only a simple modification of the argument of Yoshizawa we
see that

|0x(8) — 0x(n78) | > (n — 1)/2.

=M EEH

Thus
AUl el = 1 Tull) =z (1/20)[(n — 1)/2],
i.e., || ¢#]] = 4n, but,
I Tulle = {4 — (0 — 1)*/32n} .

Hence || T, < || ¢
For more definitive results in the contex of free groups one should
consult Dieudonné ([4]), Kesten ([12]).
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