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ON A CLASS OF CONVOLUTION TRANSFORMS

ZEEV DITZIAN

In this paper the convolution transform
(LD f=|" 6o — ettt = G*)e)

whose kernel G(t) is the Fourier transform of [E(iy)]~! where
E(s) is defined by

(1.2) E(s) = e ;ﬁ (1 — sjay) exp (sRea;)
Reb=>b and 3 |ax|2< o

will be studied. An inversion theory similar to that achieved
when a; of (1.2) are real will be obtained. The results will
show that under certain rather weak conditions, an infinite
subsequence a; of a; can satisfy

min {] arg aw; |, | arg — awn [} 2 %:— .

Classes of transforms will be introduced that allow the occur-
rence of min{jarga,;), | arg —a;|} = z/4 for all k.

We hope this will partly answer a problem set by Dauns and

Widder [1] in Remark 1, page 441.
The inversion operator P,(D) is defined by

(1.3) P, (D) = exp ((b — b,)D) ﬁ (1 - "‘) exp (( ) )

where D = d/dxz, exp (kD)f(x) = f(x + k) and lim,,_.. b,
The inversion formula will be

1.9 lim P, (D)f (@) = o) .

This inversion formula was achieved under general conditions on
o(x) in the case a, were real by I. I. Hirschman and D. V. Widder
in a series of papers and in their book, “The convolution transform?”
{7]. Hirschman and Widder [6] also found a slightly changed version
of (1.4) when 3, (Ima,/Rea,)* < . A.O. Garder [5] showed that
if a,,_, = @, then arg a,, can tend to 0 or m slower than is required
in [6]. Dauns and Widder (1] showed that if a,_, = —a,;,0=
Rea,_,e¢ 1 and |arga,_,| < (w/4) — 5, where 7 is independent of £,
then (1.4) can be achieved.

It will be noted that in [1] and [5] the a,’s were in a special
order. The order of the a,’s, though having no influence on E(s),
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may be quite important when treating (1.4) as discussed with some
examples in [2] and [4].

We shall define class A(2) (that will depend also on the order of
the a,’s). The sequence {a,} belongs to class A(2) if Rea, # 0,

(L.5) S (Im (0 + @)l a7+ [0 ) < &

(1.6) (1 = 0)(| oy [7* + @i |7%) + 4 Imazt, Imaz > 0
for & >k, for some 0,0 < 6§ < 1 where 6 is independent of %k, and

(1.7 (m {(ages + @)A1 1)’ | Gops @ *
[ Qoo [P+ | Qo |7 + 4 Imagt, Im ag!

<1l-7

for k = k, for some 7,0 < 7 < 1 where 7 is independent of k.
A transform belongs to A(2) if there is an order under which
{a,} € A(2). Class A(2) includes the transforms of [1], [5] and [6].

Lemma 1.1. 357, (Ima,/Re )’ < o implies {a,} € A(2) (and the
order does not matter).

Proof. > (Ima,/Re a,)< o implies 37 (Im a,/| a, |)*< = which
implies Y7, (Im a;')?/| a,|™® < e which implies (1.5). To prove that
a,, satisfies (1.6) and (1.7) is not difficult.

REMARK. The inversion operator introduced by Hirschman and
Widder [6] was slightly different from (1.4) but since

S, {(Reay) — Reapt) = 3, MBS o
k=1 k=1 ] [27% IZ Re [2 2%

the difference is a change in b and b,, without changing lim,,_.. b, = 0.

LEmMMA 1.2, Let @y, = —a,, let Rea,, >0 and |arga,| <
(m/4) — n, for k > k,, where 7, satisfies 0 < n, < w/4 and 7, is inde-
pendent of k, then {a,} < class A(2).

Proof. It is easy to see that the sum in (1.5) is equal to zero
and the right side of (1.7) is equal to zero. |arga,.| < (7w/4) — 7,
implies (1.6), with 6 = 1 — 2(Sin ((n/4) — 5,))*, for k > k..

This shows that the transforms treated in [1] are included in
class A(2).

LEMMA 1.8, Let a,_, = a,, and let min {|arg a, |, |arg — a, [} <
(w/4) — 1. for k = k, where 1,, 0 < 0, < m/4, 1s independent of k, then
{a’k} € A(2)‘
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Proof. It is easy to see that the sum in (1.5) and the right side
of (1.7) are equal to zero. One can show that min{ arga,,|,
larg — a,, |} < (7/4) — n, implies (1.6) with ¢ = 1 — 2(Sin ((7/4) — 7))
for k = k,.

Lemma 1.8 shows that the transforms treated by A. O. Garder
[5] belong to class A(2). Some cases which do not belong to class
A(2) will be treated, among them will be the case when a,,_, = —a,
and min {|arg a., |, | arg — a,. |} = 7/4 (see Remark 2, [1], p. 442) where
estimates different from those achieved for class A(2) will be obtained.
For the definition of G(t)

(1.8) G(t) = ?lﬂ_g“’ [E(s)|-e"dt

—qo0

we have to assume that the integral on the right converges.
For the convergence of (1.8) we shall have to estimate E(iy) and
to these estimates the various classes correspond.

2. Estimates for E,,(s) when {a,}eclass A(2). In previous
papers (see [1] and [6] for example) it was found useful and important
to estimate E,(s) which is defined by

2.1) E,(s) = ¢ TI (1 — s/a,) exp (s Reai") .

=m+l1

In order to estimate E,(s) we shall estimate one term first.

LEMMA 2.1. Let {a,} €class A(2) then for k = K

[(1 — 1y/ay_ )1 — iy/ay) |*
(2.2) = (1 + ay?/l ay. A + ay’/] az )L — a'[(Im (a5,
+ az))/( Cot |72+ | a0 [ 7)) -

where 0 < a <1 and a is independent of k. (a does depend on 0
and 7 of the definition of class A(2)).

Proof. By a simple calculation we get

I =1 — ty/ay_ )1 — iy/ay) P = 1 + 2y Im (azi, + az)
+ Y| Qs |7 F 00 |7F 4+ 4 Imoagt, Imoaz}

+ 2y° Im {az a5} (a5, + az)} + ¥ | Qo |72 | @ue |72

We assume K = k, and therefore by (1.7) we get
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(m {(at, + @z @z - ez}
[<1 - %)(I ooy |24 |G |72+ 4Imazt, Im a;‘,})J- L(l - g) | Qo Gy, I—‘{I

<(1—;7)/(1—77+%2)<1—_Zf.

It is easy to see that ¥*(4 + 2By + Cy®) = 0 whenever A > 0,
C >0 and B* < AC. We substitute

a-(1= g){i Uy [ + | @ | + 4Tm azi, Im a2},

B = Im{(az-, + ai)az.an} and
C=(1- L) ol
We use (1.6), (1.7) and the above calculation to show that, for

k> max (k,, k), A >0,C >0 and B*> AC. By omitting (4 +
2By + Cy* from the right side of the equation defining I, we obtain

I, =1+ 2y Im (azit, + asid)
4
2.3) - L 1 o+ L) + L

by minimum consideration
1+ 2y Im (azi-, + ax)
4 L _
(2.4) —(Im (@, + @)

ﬁﬁ 2/ |2 19 7
+ Ly ([ T @) =1 — : =
4 e ‘ (| Qo |7 4 [ @2 |77)

the last term tends to 1 for large k& because of (1.5). Using (2.3),
(2.4) and letting the coefficients of y* and y* be smaller, we obtain
(2.2) with a = n6/4.

LeEMMA 2.2, Suppose {a,}€class A(2). Then for k > K there
exist A and B,0 < A < B <1 independent of k (but they depend on
7 and 0) so that for any r,r < min (| ay_, |, | @ |), we shall have:

(a) For |o| < Ar and |y| < Br

Hy0) = [ — (0 + )/ )(L — (0 + 1y)/ay) [ exp (20 Re (az_, + a3}))
Im (az-, + a5)
[ s S e A

— 40*(Re (a5, + aid))* .

=1—2a

7,.2
- Z([ oo |72+ | @i [7F)

(b) For || £ Ar and |y| = Br
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Hi(o) = (1 + %y“’ | B |*2>(1 + %yz | G |-2>

_ 2 (Im(az-, + az))’
8 <1 A | Qoo [T+ | @ |72 ) ’

where « 1s that of Lemma 2.1,

Proof. By a simple calculation
(-2 =) = -2 -3h)
Aoy Aoy, Qo1 Aap;
— 20 Re (azt, + az) + [0%(| @yy |72 + | @0 |72 + 4 Re azl; Re azl)
+ 0% Qoo [T + 20°9° | @@y |77 — 4oy Im (az,03)
— 2(0° + y*)o Re {(az—, + ax)azi.ax}
+ 20% Im {(a;;, + azd)aziez}] = I, — 20 Re (a5, + azi) + J; .

2

For the estimation of J, we shall recall that
(2.5) | (azy + a)azi 0z | = 2(] Goey |72 + [ 02 [7°)
and

2.6) Qo |72+ |z |72 + 4 Re az; Reayl = —2|Reajt, Rea! |
) = — (| Qs |72+ @ [75)

To prove (a) assume |o| < Ar,|y| < Br. Using (2.5) and (2.6) and
dropping positive terms we obtain for A < B
Jie = (—A° — [ 2AB)r(| Qo |7 + | @0 [7F)
+ (—4A4* + BHA — 4A’B)r*(| g [7° + | 0 [7)
= (=3B* — 12B%)7(| Qars [ + | @0 [7%) &

Choosing A < B and (for instance) B = 3% and using Lemma 2.1
with ¥ = 0 we obtain

H >(1_ a(Im (a5, + ai)) ___1__ 2 L e
o) 2 (1 S e g7 el

— 20 Re (az—, + a;;:)) exp (20 Re (az—, + a3))
= 1 — 2a7'(Im (e, + az))l] Gops |72 + [ @0 [
. %72(1 ooy | + | 0 | — 40*(Re (azy + agd))* .
(The coefficients in the above estimation are not the best but they

are convenient), To prove (b) (for which we are free to choose
A, A < B) we recall that for A < BB, 0< B8 <1 and |o]| < Ar we
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have
20" Re az, Re azi)) | < B*B*r*(| oy |72 + | Qo |7F)
| 20%y Im {(az, + az)azt, - ai'} |
S Y | Qo @ [+ 20%(| Qo |72+ [ @0 7))
|2y%0 Re {(az, + az)azi,a5} |
= BY | @y |70+ 28V Qg [P+ @ [7F)
and
|20° Re {(azi—, + aziD)az.05} |
< 0 | Qi@ |72 4 20%(| Qpey |72+ | @i [7F)

Choosing A so that 58° + 48 < «/4 and K so that

@ (Im (@5, + @)/ Qnes [ + | @ [ < %
for £k = K we obtain by the above estimations
Hy(0) = (1 + S0 a1 + 5 low [2)(1 = 2(m (a5, + az)),
X[ oy [T + @ |7°]7 — 20 Re (azt, + az‘k‘))-exp (20 Re (a5, + a3}))

< (1 + %Y_yz [ oy {—2><1 + %’iyz [ @y {"2)<1 — %(Im (azy + az))*,

Kl oy [ |0 [P (1 — d0°(Re (@it + aai)))
Since B < «a-47?, £* < a-4~* we obtain (b) easily.
Define S,, and S (see [7], [2] and [4]) by

2.7) Sp= 2 o™

k=m

2.8) SO =8, — max 3 |am .

k(1)< +-<E(l) 1=1
Define also 7, by

(2.9) 7, = min|a, |
kE>m
One can easily see that S = S,, and S = S,, — ;%

THEOREM 2.3. Let {a,} € class A(2), then for m = K, |d| < AS;?,
and b,, = 0 we have

(2.10) | Bon(o + 19) | Z172/2 .
(A being that of Lemma 2.2.)
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Proof. To prove (2.10) we use Lemma 2.2(a) whose conditions
are satisfied since S,, > 737, Siil? < 7y = Mins,, |, |. We also recall
that for 4, >0 and 37 ... 4, < 1/2 we have

o

I a-4)y=z1- 3 Anz%.

n=m+1 n=m+1

Remembering that for large m

2ot 3% (Im (@t + )/ qu 1+ |0 [) < <

and

o oo

do* 3, (Re (o, + @) = 84S, 3, (1Gaat [T+ | @ [79)

=m-+ =m-+1

< 8A* < 8!

and using Lemma 2,2(a) we conclude the proof of (2.10) in the case
where |o] =< S;2* and |y| < BS:.)®. Using Lemma 2.2(b), (2.10) in

the case where |o| < AS:Y% |y | = BS;Y* follows by an argumentation
similar to that used in the first part. Then:

THEOREM 2.4. Let {a,} € A(2),b,, =0, then for m=k, |o| =<
ASGY* and |y | = BS;* we have

| B, (0 + 1Y) | = _i_(l + i Lyan(ﬁ>ni§ Séﬁ,ﬁ)llg

(2.11) enlt
. 3 1 n(a >n n—1 >1/2
> 9 = apenf (1)
=31 o (T) msw)

Proof. Using (1.5) we can choose, by the method in the proof
of Theorem 2.3, m so that

@12) 5 (L Zm e + @@/ o+ las 1 9]) 2 o

k=m41

(9/16 can be replaced of course by any 1 — ¢).

& 1 “<£(_)” T Qo

Z:l nl Y 2 ll;[osm
converges for all y since S,, = S§) > S, > --- > S{). By Lemma
2.2 and (2.12) we have

\ . 3 o on o n s 1/2
o+ i) =221+ S 0(4) S Ja e wnl®)
4 (1) >2m

4 (1)
k(i) <k(i+1)

n=

But we have
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_ 1 -
I(n, m) = S law G [T = — Z Qe = * Qe |7°
2am <k (1) n!  kH>em
k(i) <k(i+1) k(i)Fk(5), 51
1 n—1 _ _
= — > (S2m — > | @ | 2> [@ray = * Qpinny |77
nl  kG>wm =1
k(i)5%k(5), 571
1 _ _
= WSQ:L Y > [ Q) = * Aty 75

k(2) >2m
k()7k (), 374
Since
2 __ _ Qo
>l 7P = S = Sim

k(i)>2m
by induction I(n, m) = 1/n!. I17= S, which concludes the proof of
the theorem.

THEOREM 2.5. Let {a,} € A(2), b,,, = 0, and o satisfies Rea, + o
for all k> mn, then for p,n =0,1,2, -.. there exist k,(p, g, n) and
ky(p, 0, m) so that

(2.13) | Ezu(o + 17) [ = ki(p, 0, m) + ky(p, 0, n)T*" .

Proof. Since S,, = o(1)m — oo we can choose m so that AS;;}* > ¢
(for A of Theorems 2.3 and 2.4). Combining Theorems 2.3, 2.4 and
the fact that |3, (1 — ¢ + it/a,))e’™% | = § whenever Rea, + o,
we obtain (2.13).

3. Estimates for E,;(s) in special cases when {a,} ¢ A(2). In
this section we shall estimate E,,(s) in case {a,} does not necessarily
belong to A(2) but a,,_, = —a,, or a,,_, = @,, and some other conditions
are satisfied.

First we prove some lemmas concerning the above mentioned
cases.

LEmMMA 3.1. Let a be a complex number Rea = 0, then for all

real y and ¢ =1
(- ) -
a a

Hay = |(1 - )14 1)
- q<Rel>z + (1 _ %)2,4 |

a a
laf

1+ yal™ Rea*=0.

2

(3.1)
=

Proof. Simple calculation yields

o= ) 0ot

+ (vv%‘: + 7%” o) + (1~ %)2, ]
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from which (8.1) is immediate.

LEMMA 3.2. Let a be complex number, Rea = 0, then

(- =) =)

(3.2) = I(@) + 20*(a — 2(Rea)’|a[™) + o' |a|™
+ 20%° [a | + doy(Im a’) [a |,
i
(3.8) N i

= I(a) —40Reala|?+ d*2|a|? + 4(Rea)’ |a|™)
+otla|™+ 20 |a|™ — 4(0* + ¥)o |a|™Rea,

where I(a) is defined in Lemma 3.1,

Proof. The proof is a corollary of the proof of Lemma 2.2
combined with Lemma 3.1.

LEMMA 3.3. Let Rea = 0, then for K > 1 there exists A and B,
independent of a,0 < A < B <1 such that for r < |Rea| we have:
(a) For |o] < Ar and |y| < Br

(- ) )

=1~ K77 |a]* — (min (0, Re @)-|a | %)) .

2

(3.4)

(by For |o| < Ar, < Ar,|y|= Br and 6 >0

(- 2y 2y

2

(3.5) = (1+ %y @)t — 2(min (0, Re a*/| a [

— K 0l e+ fa)

Proof. To prove (3.4) we use (3.2) and (3.1) with ¢ =1 and
obtain the result by choosing B so that 6B* < K~!, and dropping
some positive terms.

To prove (3.5) we use

1

toy(Ima?) |a|~ = —4|oy||a|> = "<32

yZ i a {—-(3—8) + 2‘820-2 l a {—(11'-8))

and
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1 1 _ _

— e b el = e
Choosing 4/8* < 1/K or 8= #¥4K and A so that 28°4>< K~ or
A’ < 1/4KV'K or A <1/2K one can conclude the proof by using
Lemma 3.1 (choosing there ¢ = 2 in case Re a* < 0) and dropping some
positive terms.

LEMMA 3.4. Let Rea = 0, then for K > 1 there exist A inde-
pendent of a,0 < A <1, such that for »r < |Rea| and |o| < Ar we
have

’ O'-I—’by)(l _ﬂ%ﬂ.)rexp(éiﬂRea/lalz)
&0 > <1 -ly |a|‘4)(1 — 2(min (0, Re a’/[a )} — K~'r*|a|™?) .

Proof. Using (3.3) of Lemma 3.2, Lemma 3.1 with ¢ = 3/2, the
estimations

—40®*|a|™*Rea = —0c*|a|™ — 40°(Re a)*|a|™,

—4y’c|a|™*Rea = ——217214 la|™ — 4%* |a|?
and dropping some positive terms we obtain
. . e
}(1_3%&><1_i;ﬂ> gl+<_1_.__1_>y la |

3 2
- %(min (0, Re a?/| a|2))? — 4°4%* | a | — 40(Rea) |a |~ .

Choosing A so that 4°A* < 1/4K, which implies

—earjalt > = Zrlalt, 4lollalt< L,

and
exp (40(Rea)|a|?) =1 + 40(Rea) |a|™* — 4%¢* |a|™®
from which (3.6) follows.

We shall define now two classes of convolution transforms by the
function E(s) and the sequence {a,}.

DEeFINITION 3.1. {a,}eclass B(2, 0) if
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(3.7) Es) = T (1 - sai)
(3.8) S, la " Re ) < e
and

(3.9) i la, |78 < e, f‘, la |2 < oo for some § > 0.
k=1 k=1

DEFINITION 3.2. {a,} € B(2) if there is ¢ > 0 so that {a,} € B(2, 9).
DEFINITION 3.3. {a,}eclass C(2) if

(3.10) E(s) = T (1 — sai)(L — s-@") ,

if condition (3.8) is satisfied and >} |a,|™* < oo.
REMARK. S., =235 ...]a,|™ in case of class B(2) and C(2).

We have to introduce some more notations before being able to prove
the estimation on E(s) for transforms of classes B(2) and C(2).

(3.11) Q=3 lai.
k=m+1
(3.12) Q= @~ max {3l
m<k(l)<-+-<k(j) \r=1

We shall state the estimations for classes B(2) and C(2) together
and then outline the proofs.

THEOREM 3.5. If {a,} € B(2,d), then for m = M and some A and
B we have:

(@) |o| = ASLP, ly| £ BS;" imply
(3.13) | Een(s) | = 3/4 .
(b) |o| = A ni a7 and |y | = BS;)* imply

3 I | 4nn—1 . 1/2
(3.14) Bz 2(1+ 5 0T Y)

THEOREM 3.6. If {a,} € C(2) then for m = M there exists an A
so that for |o| < AS;* (3.14) is valid.

Proof of Theorems 3.5 and 3.6. The proof follows the proof of
Theorems 2.3 and 2.4 Using Lemmas 3.3 and 3.4 we have to choose
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r =S8 and r, = (2 35 ns1 | @ |78 "HEY () necessary only in proving
Theorem 3.5 from Lemma 3.3). Obviously » < min,.,|a.],r <
min,.,, |a,]. Also we have

oo

k=m-+1

o (1+8)/2 oo (1—8)1/2 . 1—-38
= (5 Jar) (S jal?) T (minja.)
k=m+1 k>m

k=m+

oo (1+8)/2
=( 3 o)

=m+1

This implies

o —1/(1+8)
r=(2,3 jal) T =SS
k=m-+1
Choose m and K so that Y., (min (0, Re ai/| a, [))* < e, 1/K < ¢, (K of
Lemmas 3.3 and 3.4) and, for proving Theorem 3.5, 37 ... | a, [P <e,.
The choice ¢, < 1/16 will yield the number 3/4 in (3.13) (every 1 — »

could be achieved by ¢, small enough) and the coefficient 3/4 in (3.14).
To complete the proof we have to show

n—1

I (1+3vla)=1+3 29T Qv,
k=m+41 4 n=1 ’n, 1=0

the proof of which follows stepwise that of Theorem 2.4.

The classes in this section are not included in A(2) since (1.6)
may fail to be valid. The estimates in this section are weaker in
the case where the transforms are also A(2).

THEOREM 3.7. Let {a,} € B(2) or C(2). Then for o satisfying
Rea, = 0 for all k > n, and for p,n = 0,1,2 - .- there exist k,(p, o,n)
and ky(p, o, n) such that when o + Rea,

(3.15) | Eyu(0 + 17) [ = ky(p, 0, m) + kup, 0, n)T*" .

Proof. Deduced from Theorems 3.5 and 3.6 as Theorem 2.5 is
deduced from Theorem 2.4 and 2.3.

4. Estimates for G,(t). We define G,(f), in the usual manner,
by

4.1) Gult) = 5| [Ba@leds,  Gu(t) = GOt .
2

1 J—ie

We define also:
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4.2) a(m) = max {Rea,, — |Rea, <0 and k& > m}.
(4.3) B(m) = min {Re a;, = |Rea, > 0 and &k > m}.

We recall that in the cases {a,}c A(2), {a;} € B(2) and {a,}c C(2)
we have

(4.4) | Eb(o + 17) [ = ki(p, 0, n) + kyp, 0, n)T7,
for n,p =0,1,2 ... and a(2n) < 6 < B(2n).
THEOREM 4.1. Let E.(s), P.(D) and G,(t) be defined by (2.1), (1.3)

and (4.1); let (4.4) be satisfied for m(l), a subsequence of m, then:
A. For any o satisfying o(m(l)) < ¢ < B(m(l)) we have

(4.5) Gi(t) = Pooy(D)G(D) = 51—.j”+f°°[Emm<s>]~le“ds .
TY Jo—ico

B. Suppose in case a(m(l)) = —coo that Gruy = *** = Cepmpny
Apz,ny = **° = Qpigymgrnyy ** %y Qi) = 00 = Qpprymgr1) A€ all with indices

greater than m(l) and a(m(l)) = Rea,,,, = Rea,e,y = + -+ = Reay,,,,
then

@8 ToGau®) = BT (Pteen) + 0@H) e

where p;(t) are polynomials of order m; and k s any real number
satisfying

max {Re a,, — o |k > m(), Re a, < a(ml)} < k < a(m(l)) .

C. Suppose a(m(l)) = — o=, then
(4.7) —g:TGM)(t) = 0(c")  t—sco for any real k, k<0 .

D. Suppose in case B(m(l)) # o that G,y =+ = Guyymn,
St Qg = 0t = Qpgmen 016 all with indices greater than m(l) and
B(m(l)) = Rea,,,, = -+ Rea,,,), then
j

@8 LG = 5 -Llamen o) + 0@t -

where q,(t) are polynomials of order m; and k is a real number
satisfying B(m(l)) < k < min {Re a,, = |k > m(l), Re a;, > B(m(1))}.
E. Suppose B(m(l)) = o, then
dv

(4.9) 7tTGmm(t) =0(") t— —co
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where k 1s any real positive number,
F. For a(m(l)) < Res < B(m(l)) we have

1 oo
4.10 1 E G, o(t)d
( ) B, o5 _we G (t)dt
which 1mplies
(4.11) 1= S” Gor(B)dE -

Proof. The proof follows the method used in Hirschman and
Widder’s book “The convolution transform” [6, p. 108]. Formula
(4.4), that was proved for class A(2), B(2) and C(2), is used here
instead of the theorems on E,(s) in [6].

The following result will estimate G,,(t) in the case when m is
large near the point ¢ = 0 as well as when [¢{]|— oo,

THEOREM 4.2. Let {a,}€A(2) and suppose that for some n
St > IS, where L, >0 is independent of m, then there ewist
M(n) > 0 and A > 0 such that

(4.12) |GEI(t) | < M(n)Sg"*"2 exp (— A- S5l [t ]) .

Proof. By Theorem 4.1.A we have

Soo e—(o+iylt

1
() = —| —-——d
Ganl®) o B0 + 1Y) Y

2T

and therefore

1 oo (o- + ,iy)'ﬂe—'(q+ill)t
G = 1| y
i (0) 2 J—= E,,(0 + 1Y)
Remembering that S{% = L,S,, implies S{¥) = L,S,, for k =n + 1,
and using Theorems 2.3 and 2.4 we obtain, choosing ¢ = AS;,”* for

the case t > 0,

1 _ 555" (o] + |y
Gty | = L exp (— ASzet {S (ol + [y 4
| G (D) | = D ( ) s n B + )] Yy
(ol + 1y |)ndy} <e — AS-2t V2 A 1 B)"2BS=(n+/2
+ SmgB.s;"{Iz |E2m(0' + zy)] = exp ( Sen'"?) _72—7;-( + B) m
2\ qere 2 S” y"rdy
+ 2 kz=:0 (k) 2m 3 Bsz—"lblz (1 n yz(”H) 1 (L )n+1Sn+2(ﬁ>”+2>”2
(n _[_ 2)! (n) 2m} 4

= M(n)S; 0" exp (— ASz") .
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—1/2

The result for ¢ < 0 is achieved choosing 0 = — AS;Y>.

REMARK. When a,,_, = —a,. we have Sit) > (1/2)S,.. and therefore
Theorem 4.2 for » = 0 includes Lemma 2.4 of {1, p. 432]. Whenever
the connection between pair is 0 < 8, < | ay_./a.| < 0, < oo, where
6., 0, are fixed for all m, we have S\, = L, S,,. L, > 0. But in case of

n = 0 the restriction S{) = L, S,, is not necessary as is proved by
the following.

THEOREM 4.3. Let {a,} € A(2), then for some A > 0 we have
(4.12) | Go(?) | = MS5," exp (= AS;2 [ T)) .

Proof. Following the proof of Theorem 4.2 and using Theorem
2.4 we have for ¢ > 0 (¢ < 0 can be treated similarly)

|Gun(t) | < exp (— ASP*t) { V2 pgciis
T

4 Soo dy
3 352_1/2 (1 1 4 (1 (a >2>1/2 :
g Vo
N W =SS S o T ST
s;12 (1 4+ Ly*S,,So)'" BILA S35 (L 4 %)

= dy

e
By(Sop/Sanm 'L 4 Y*

< 215 (S.a 550"
< 2851%(S,,/Si) " lim (arc tgZ — arc tgB,(S../Si)")
oo

L= BiS/SDCY - p s
EFF Bu(SunS) T

< 28:%(S.,/Si)" lim arc tg{
g——»oo

From this the proof can be easily concluded.

Lemma 3.2A of [1, p. 434} is generalized by Theorem 4.2 in case
S = L,S,, for some L, Case B is covered only in part. The

2m =

following theorem generalizes Lemma 3.2B [1, p. 434].

THEOREM 4.4. Let a, € A(2),b,,, =0 and suppose 0<0,<| Qop/Co_, | <
0,< oo where 0,,0, are independent of k and |Rea,|/|a.| > 7, then for
some A, > 0 and M, we have:

(4.13) | GLa(t) | = MSi exp (— AS5” [t]) .

Proof. Let us split the proof into two cases
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@) Sen — max (| @y [ + |0 ) = LS,
kE>m K
and
(b) Sun — MAX (| Gy [ + | G ) < LSom -
E>m K

In case (a) (4.13) was proved by Theorem 4.2 for any arbitrary
K. We shall choose K > 2. To prove (4.13) in case (b) we define £,
by

Iknf'mx (| Qs |72+ @ |7°) = | Qo1 |72 + | Qsrey |2,
(In case (b) the choice of %, is unique.) Define gi (t) and G,...(t) by:
@1 5O == |10 - e, ) — ivan)edy .

(@15)  Glaest) = 2| (L = W/t )L = 10/t (Bun(in)) oy -

By [9, p. 255] we have
Gen(t) = 95 (0) xGis(P) .
One can calculate gi (t):

a t
gE(t) = Qapep1 Aoy e*2k, t=0
Aopgy — Qopy (E72kg—1° t <0

when Rea,, , > 0, Reay, < 0.
M[Ga”o—lt — e"2k’] t <0

gio(t) = {a”ﬁo — Bakg
0 t>0

When Re a2k0—1 > 0, Re a/2k0 > 0; aZko # aZko—l'

— a3, te“akt t<O0

when Aoy = Qoky—1s Re Ao, > 0.
Either gi(t) or gi(—t) is of the above form.

Ginso(t — Re (@i + ai,))

satisfies the assumptions of Theorem 4.3 with S§..; = Sin — | @apys [*
— | @y, [ and therefore
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[GHio(t) | = M(S512)'"° exp (— ASS |t + Re (aags + azi) ]) -
Integrating by parts

Gru® = |7 g0 Gst — widu

A7 o

Since

i ’a2k0~1 = lazko * and [azko I* < 6| Qapy1 :
we have

07 + 1) |4y, | = %sm and (63 + 1) | @y | = %sm ;

therefore
max (| @y, |, | @, ) = [(207% + 2)° + (205 + 2)°]S5° = R.S5* .

By the same method (0;% + 1) | ay, |° = Se and (67 + 1) | Gupys i = Sems
from which we deduce

|Re @, | = 7| aa, | = 7(0;° + 17085,
| Re @y, | = (67 + 1)7S5
and
min (| Re a,;, |, [Re a5, |) = R,S:° > 0
where
R, = 7-min ((6;* + 1)7", (0} + 1)7) .

One has to estimate G.,,(t) for different cases of gj(t) of which
the case where Rea,,, > 0,Rea,,, > 0 and ay, # a,_, will be done
here. The other cases are similar and simpler.

(a'zk,«,—l exp (azkn—-lu) — Oy, €XP (azkou)) u <0

dg*('u/) _ azk0_1a2k0
du

Aoy — Qappr

0 uw >0,

Let us recall from [8, p. 203] that if f'(¢) is continuous and f(¢) is
complex valued, then

LSOO —5pie) + =0 E) tite(b) 0 <A<

from which it is obvious that
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Z%:_é’_(&_) =0N(G) + 1 —NFE) 0<a<1

where &, =l + (1 — @), 0<a, <1 and ¢ =3,4. Substituting
FO) = e, f1(&) = e8* + Cues*, we obtain the following estimate for
(d/du)g*(u) when u < 0:

dg*(w) <

. [ Wopeyr@ory | (€XD (Rpt) + mMax (| Qopys [y | Qo [) | u | exp (B u))

where R, = min (Re ay, ., Rea,,). Therefore we obtain

0
| Gon() | = | Gorey1@ak, [S exp (R u){l + || max (| @, |, | @or, )}
St exp (—ASHT [T — u + Re (awy + az) Ndu .
Using relations among S3,.., Som, @2, and a,,_, one obtains
exp (—ASH |t — u + Re (az, ., + azi) |) = Myexp (—ASL/ZL |t —ul)) .

Using this and the definition of R, and R, one derives

—co

(Gl | = MZRfS;,;g" exp (RSl + |u| RSqi) S
cexp (— ASEE [t — u)du .

We have to distinguish two cases ¢ < 0 and ¢ = 0. Let us prove
first the theorem in case ¢ < 0:

(G| = MRS exp (— Ausizz)| {1 — uR S St
-exp {(R,S:* + ASiHuldu
+ MR:SH exp (AtSE| (L — uR,SESE
-exp {(RuSei® — AStyuldu .
Choosing K so that AS;* > 2R,S;.* we have
| GLu(t) | < M5 exp (RtSHF)
For t >0

|GLa(t)| = MRS exp (—AtS5)-| {1 — wRSH - S5l

-exp {(R.S:? + ASiyuldu < M,S;,. exp (— At S
= M,S;, exp (— R.S3,.°t) .

Estimations similar to those achieved in Theorem 4.2 for
{a.} € B(2, 0) and {a,} € C(2) are developed in the following theorems.
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THEOREM 4.6. Let {a,} e B(2,0) and QF = L(7)Q, for some j,
then there exist A >0 and M > 0 (independent of m) so that for
k< 25:

@1a) (6Ro| = Mezesn (—4(2 5 Jal) " e)),

k=m+1

THEOREM 4.7. Let {a,} € C(2) and Q' = L(j)Q.,. for some j, then
there exist A >0 and M > 0 (independent of m) so that for k < 2j:

(4.15) Gin(t) = MQ,"" exp (— AS5” [t]) .

One can note that in case & = 0 no condition of the form Q4 =
L(5)Q,. is needed.

Proof of Theorems 4.6 and 4.7. Using Theorems 3.5 and 3.6
(for Theorems 4.6 and 4.7 respectively) we obtain by Theorem 4.1

g—iow (o + iy)ke——iyt

Gt | = | e
e e Bonlo + 1)

dyl . BE@m) <0< am).

Using the fact that @;'* < ((1/2)S..)""?, as S > @, (which is achieved
by dropping many positive terms) and recalling that

e o s 1/1+36
St < (2 X o] ,

k=m+1

we obtain

Q< (3 Jal)

k=m+1

The completion of the proof is similar to the proof of Theorem 4.2,

5. Some inversion theorems. In this section we shall show
that inversion formulae can be given for {a,}c A(2), {a,} € B(2, ) and
{a,} € C(2).

THEOREM 5.1. Suppose: (1) G(t) and E(s) are defined by (1.2)
and {a,} € A(2).
(2) @ = G- veat.
(8) For some M and K,|p(t)| < Ke™, where M <min|Rea, | .
(4) bemw=0(1) m | oo.
Then

(51)  lim Pou(D)f(2) = lim exp (b — b, D) [T (1 _ D )(1 - D) :

Mmoo m— Aoy Aope
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exp (Re az, + az))D)f(x) = p(x) at any point of continuity of ¢(t).

Proof. By steps following those of |1; p. 433]

| Po(D)f (@) — @(2) |
= sup [ ple — 1) — P(x) iS:o | Gea(t) [ dt + MOS | Genl®) [ €7t

ti<a 1t]

Using Theorem 4.3, the conditions of which are satisfied by the kernel
G,n(t + b,), choosing m so big that |b, | < 6/2 and AS;,* > 4M, we
conclude the proof of the theorem.

THEOREM 5.2. Suppose: Assumptions (1) and (2) of Theorem 5.1
are satisfied

(3) For a(t) = S:cp(u)du there exist positive M and K so that
|a(t) | < ke™ where M < Min |Rea;| .

(4) by = 0(S5H) m— oo,

h
(5) | lo@+v) — p@ldy = o(h) ©—0.
(6) Hither S& = 1(2)S., or 0 <0, <|ay_,/ay] <8, < <« and

[Rea/la.|| > 7.
Then lim,, ... P, (D)f(x) = p(x).

Proof. Integrating by parts and since r G,.(t)dt = 1 we obtain

| Pon(D)f () — () |

>\ B0 G =i+ | (Gt — ] ]860) | dr,

le—t{z

where A(t) = St[go(x + u) — p(x)]du and therefore B(x + t) = o(t) t — 0

and |B() | < K",

To obtain the inversion result for the case S = I(2)S,, we use
the estimation from Theorem 4.2; while for |Rea,/a,| > 7,0 < 6, <
| Qory/sr | < 0, < oo we use Theorem 4.4, both are applicable to

Gon(t + bzm).

REMARK 1. In case a,_, = —a, (from some k& onward) we can
drop (5) and write instead

[lp@ = ) — oo = Oldy = k) h—0+

(if the numbers (2 + 0) exist) and then if we write b,, = 0 instead
of (4) and drop (6), we shall obtain
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(5.2) lim Pu(D)f (@) = L{p(z + 0) + o — 0]

The proof is similar if we remember that G,,(t) = G..(—t) and there-
fore 80 Gon(H)dt = 1/2.

REMARK 2. The condition (3) of Theorem 5.2 seems too strong
since for the case where a, are real the assumption could be dropped.
We hope that at least for some classes of {a,} Theorem 5.2 could be
proved without (3).

THEOREM 5.3. Suppose: (1) G(t) and E(s) are defined by (1.2)
and {a,} € B(2, d).

(2) f@ = |" Gl - howa.
(8) For some M and K |p(t)| < Ke¥'! where M = min|Rea,]| .
(4) ACFms L@ 7)) < KQ3* for some 8 = 1.

(5) @@ — o) =0(t -2 t—w
Then

(5.3) lim P, (D)f (%) = o(x) .

Proof. We have

i@ — g = [{[ 4+ NGunte = Dlp) — Pl

le—tlzd

= KLS | Gl — t) | €M'dt + 630_; | Gom(t) | | E]77MdE

lt—zlzd

< o(l) + usg:Q;ﬂ‘* I 5 exp <—A< S |—1—6)—”“5 |t |>dt

k=m+1
< o(l) + usKr || exp (— Auydu < o(l) + eKK

m — oo

THEOREM 5.4. Suppose: (1) G(t) and E(s) are defined by (1.2)
and {a,} € C(2).

(2) f@ = | 6@ — vt
(3) For some K and M |p(X)| < Ke"'"" where M = min |Rea, |.
(4) SiF < KQl* for some 8 = 1.
(5) @@ — @) =o(t — ) t—ua.
Then
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(5.3) lim P,(D)f (2) = (@) .

Proof. Similar to that of Theorem 5.3.

REMARK. When B of condition (4) of Theorem 5.4 and Theorem
5.3 is equal to one, the condition on ¢(t) is mere continuity at a point
t = .

LEMMA 5.5. If an integer r exists such that for all n |a,.,| >
qla,| for ¢ > 1, then

o IAVEL »

k=m+1

(for 6 =1 we have Sif < KQ'*).
Proof. Obvious.

COROLLARY 5.5. If the kernel is defined by a,, = 2" (1 + ©) and
Aoy = — 211 + 1) then (5.3) is valid at any point of continuity.

6. Examples, remarks and generalizations. In this section we
shall show some examples of convolution transform by giving its
related sequence {a,}. When we say G(t) € A(2), B(2,0) or C(2) we
mean that there is an order for which {a,} € A(2), B(2, ) and C(2)
respectively.

ExampLE 6.1. {a,} defined by a.,._, =k, a,, = ¢*¢® for q > 1,
0<d6<m(l/2),|6,— (w/2)| >90,|0, + (7/2)| > d. {a,} € A2). The kernel
G(t) related to {a,} is not necessarily one of those discussed in [6];
for instance in case 6, = (2/5)r the result of Theorem 5.2 can be
applied as S = L(5)S.. for all j (5 = 2 is needed).

ExampPLE 6.2. G(t) defined by ay,_, = 2k — 1)! a, = (2k)! €%
where —7w <6, <7, |0, — (@2)|>0,|0,+ (x/2)] >0 for some 0 <
0 < m/2 where the a,’s are arranged in the order of |a,|. Theorem
5.2 does not apply here as one can easily verify that S¥ = o(S..)
m— oo for all 1 > 0. We can apply Theorem 5.1 and get an inversion
formula.

ExXAMPLE 6.3. Let ¢, be real, 3, ¢;* < « and
Ay = C(8IN6)) 7', @y, = cy(sin 0,) e~

where 0 < 6,, 6, < /2,0 <0, < 0, + 6, < w2 — 5,. (1.5) is easily veri-
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fied. (1.6) is valid also since sin®*#, + sin?@, — 4 sin* 4, sin* 4, = 1 and
cos? #, > sin® @, and therefore sin®f, + sin®4, < 1 implies

(l — %;7_>(sin2 0, + sin®*f,) — 4 sin* 4, sin* 6, =

ro |3

Using sin® 6, < cos?§, and sin® 4, < cos? 4, we get after some calculations
that sin%4, + 6,) sin®(6, — 0,) < sin*@, + sin* 0, — 4 sin® 6, sin* §, which
implies (1.7). It should be noted that the class defined by a,,_, = as
and min (| arg a,, | |arg — a,|) < 7/4 — 6 which includes Garder’s class
of transforms [5] as a very special case, is a special case of this
example. Theorem 5.2 can be applied here.

ExAMPLE 6.4. Let ¢, be real, > ¢;* < o and a,,_, = ¢,(sin 6,)" '™,
a,, = — c,(sin 0,) "¢t where either 0< 4, 0,<7/2,0<d, <0, + 0,<m/2— 0,
or —(n/2) < 6,0,<0, —(7/2) + 06, < 6, + 0, <o, <O.

The inqualities used in Example 6.3 for the validity of {a,} € A(2)
can also be used here. It should be noted that the class of transforms
defined by Dauns and Widder [1] is the case 6, = 0, here.

ExamMPLE 6.5. Let a,,_, =n(1+ 1), a,, = w1 —1),v>1/2. In
this case {a,} ¢ A(2) (since (1.6) is not satisfied) but clearly {a,} € C(2).
In this case S of Theorem 5.4 is easily computed as S,, =
1 + o(1)4dvym~4+, Q,, = (1 + o1))4dvm~** m — o and therefore

1> 1
—v + < — -+
< 2 Bz 4

that is 8 =1 + 1/2(2y — 1). From this one can see easily that: (a)
When v =1 it is enough to have at ¢ =2 @(t) — p(x) = o(|t — 2 ['/?)
for Theorem 5.4.

(b) When v > 3/4 it is enough to have @(t) — @(x) = 0(t — 2)
t —x or it is enough for @(f) to have a left and right derivative at
t =,

EXAMPLE 6.6. a,,_, = (1 + 1), @y, = —nw'1 +14). For v > 3/4
{a,} € B(2,1/3). The following remarks will constitute generalizations
of the Theorems of §5 in various directions.

REMARK 6.1. In Theorem 5.1 |p(t)| < Ke' can be replaced by
lgtg)(t)dtl < K" if for every 8> 0 if
0
(6.1) (SewSinSin) 1 exp (—08,"%) = o(1) m— oo,

This result can be achieved by a proper change of Theorem 4.2 that
will yield now
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(6.2) | Gin(t) | = M(S.,SinSin) ™" exp (— AS;" [ ¢]) .

REMARK 6.2. In Theorems 5.3 and 5.4 condition (3) can be
replaced by Htcp(t)dtl < Ke'"" if either QY = LQ,, or if for all >0
o —1/(143)

@R "exp (=7 3 la =) )=o) m— e
for Theorem 5.3 and (Q%'Q,,)"* exp (—7S;i*) = o(1) m — <« for Theorem
5.4. For the above generalization slight improvements of Theorems

4.6 and 4.7 are needed in case Q' = L@, is not satisfied.

ReEMARK 6.3. If S;? < K@Q!*, then in Theorem 5.4 ¢(t) — @p(x) =
0(1) t — 2« can be replaced by

[ Vlo®) - p@ldt = o) h—0.

REMARK 6.4. If in Theorem 5.3 (5) is replaced by
pt) — pla+) = ot —2[) t—x+

and
p(t) — pw—) =o(|t — x|~ t—a—,
then
lim P, (D)f (@) = Lip(e+) + o(o-)] .

REMARK 6.5. If in Theorem 5.3 we have

1/1+4

(15—:1 | a/k ]H1—5> é KlQm y

then @(t) — o(x) = o(1) t — = can be replaced by
r‘hkp(w + t) — p(@ + 0)dt = o(h) h— 0+

and then

lim P, (D)f(x) = %[@(90 + 0) + p@ — 0)] .
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