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ON A CLASS OF CONVOLUTION TRANSFORMS

ZEEV DITZIAN

In this paper the convolution transform

(1.1) /0*0= f ~ G{x - t)φ(t)dt Ξ (ί
J—oo

whose kernel G(t) is the Fourier transform of {E(iy)]~ι where
E(s) is defined by

(1.2) E(s) = ebsΠ (1 - slak)exp (sReak

ι) ,
k~ι

Reb = 6 and Σ ! α* l~2 < °°

will be studied. An inversion theory similar to that achieved
when ak of (1.2) are real will be obtained. The results will
show that under certain rather weak conditions, an infinite
subsequence akn) of ak can satisfy

min {j arg" am) J, j arg — α*<t ; |} ̂  -7-.
4

Classes of transforms will be introduced that allow the occur-
rence of min {] argak\,\arg — ak)} ^ ττ/4 for all ^.

We hope this will partly answer a problem set by Dauns and
Widder [1] in Remark 1, page 441.

The inversion operator Pm(D) is defined by

(1.3) Pm(D) - exp ((b - bm)D) Π ( l - — ) exp ( ( ^ — ) ^

where Z> = rf/rfα;, exp (kD)f(x) = /(a? + ft) and l i m , ^ όm = 0.
The inversion formula will be

(1.4) lim Pm{i)(D)f(x) - φ(x) .
i—*co

This inversion formula was achieved under general conditions on
φ(x) in the case ak were real by I. I. Hirschman and D. V. Widder
in a series of papers and in their book, "The convolution transform"
[7]. Hirschman and Widder [6] also found a slightly changed version
of (1.4) when ΣΓ=t (Im αfc/Re αfe)

2 < 00. A. 0. Garder [5] showed that
if a2k_x = a2k then arg a2k can tend to 0 or π slower than is required
in [6]. Dauns and Widder [1] showed that if a2k^ = — a2k, 0 <̂
Re α ^ j G ] and j arg a2k_t j < (π/4) — η, where η is independent of k,
then (1.4) can be achieved.

It will be noted that in [1] and [5] the α/s were in a special
order. The order of the αfc's, though having no influence on E{s),
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may be quite important when treating (1.4) as discussed with some
examples in [2] and [4].

We shall define class A{2) (that will depend also on the order of
the ak's). The sequence {ak} belongs to class A(2) if Re ak Φ 0,

(1.5) Σ (Im {fliU + ^)) 2/(l O2t-i I"2 + I a** I'2) < - ,
k=ί

(1.6) (1 - θ){\ a2k^ |-2 + I a2k |-
2) + 4 Im a2k

ι_λ Im a^ > 0

for k > k0 for some θ, 0 < θ < 1 where # is independent of k, and

(1 7) (Im {(a2k-i + <hh)(hk-\^hI)2

I «2&_i I2 + I α2A; |-
2 + 4 Im a^ Im α^1

for k ^ kL for some 37, 0 < rj < 1 where η is independent of &.
A transform belongs to A(2) if there is an order under which

{αn}eA(2). Class A{2) includes the transforms of [l], [5] and [6].

LEMMA 1.1. ΣΣU ( I m α*/R© akf < °° implies {ak}eA(2) (and the
order does not matter).

Proof. Σ?=i ( I m α/b/Re αA)2< co implies Σ*U ( I m α/b/l αA [)2< 00 which
implies Σ?=i ( I m aϊι)2l\ ak I"2 < °° which implies (1.5). To prove that
ak satisfies (1.6) and (1.7) is not difficult.

REMARK. The inversion operator introduced by Hirschman and
Widder [6] was slightly different from (1.4) but since

Σ {(Re α*)-1 - Re a^} = ± a ^ ^ Y < 00 ,
k=ί k=i I ak I R e ak

the difference is a change in b and bm without changing limm_^o bm = 0.

LEMMA 1.2. Let a2k_x — —a2k, let Reα2A. > 0 and |argα 2 f c | <
(τr/4) — τ)1 for k > k21 where 7]t satisfies 0 < rj1 < τr/4 α^d rj1 is inde-
pendent of k, then {ak} e class A(2).

Proof. It is easy to see that the sum in (1.5) is equal to zero
and the right side of (1.7) is equal to zero. |argα 2 A. | < (τr/4) — η±
implies (1.6), with θ = 1 - 2(Sin ((τr/4) - ^)) 2 , for k > k2.

This shows that the transforms treated in [1] are included in
class A{2).

LEMMA 1.3. Let a2k_x — a2k and let min {| arg a2k |, | arg — a2k |} <
(π/4) — Ύ]2 for k ^ k2 where η2, 0 < η2 < 7r/4, is independent of k, then
K}ei(2).
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Proof. It is easy to see that the sum in (1.5) and the right side
of (1.7) are equal to zero. One can show that min {| argα2fc |,
I arg - a2k |} < (ττ/4) - rj2 implies (1.6) with 0 = 1 - 2(Sin ((ττ/4) - η2)f
for k ^ k2.

Lemma 1.3 shows that the transforms treated by A. 0. Garder
[5] belong to class A(2). Some cases which do not belong to class
A(2) will be treated, among them will be the case when a2k^ = —a2k

and min {| arg a2k |, | arg — a2k |} = τr/4 (see Remark 2, [1], p. 442) where
estimates different from those achieved for class A(2) will be obtained.

For the definition of G(t)

(1.8) G(ί) = - M [E(8)]-Wdt
2π% J-<«>

we have to assume that the integral on the right converges.
For the convergence of (1.8) we shall have to estimate E(ίy) and

to these estimates the various classes correspond.

2 Estimates for E2m(s) when {ak} e class A(2). In previous
papers (see [1] and [6] for example) it was found useful and important
to estimate Em(s) which is defined by

(2.1) Em(s) = e^s Π (1 — s/ak) exp (s Re a,1) .
k = m + l

In order to estimate Em(s) we shall estimate one term first.

LEMMA 2.1. Let {ak} e class A(2) then for k ^> K

I (1 - iy/thk-dil

(2.2) ^ (1 + ayη\ alk_γ |2)(1 + af\\ a2k |

where 0 < a < 1 and a is independent of k. (a does depend on θ
and Ύj of the definition of class A(2)).

Proof By a simple calculation we get

Ik = I (1 - iy\a2k_^{\ - iy/a2k) j2 = 1 + 2y Im (a2k

1^ + a2k

ι)

+ y2{\ azk~ι l~2 + I a2k |~2 + 4 Im α^-i Im α^1}

+ 2y3 Im {a^UaTkia^1-, + α^1)} + y4 \ a2k_, (~21 ak2

We assume K ^ kλ and therefore by (1.7) we get
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U +
[ ( l - | - ) ( | a,*.! I"2 + I a2k |-

2 + 4 Ima^Ima,"*1)J |_(l - | )I %-, a2 t

It is easy to see that y\A + 2Bτ/ + Cy2) ^ 0 whenever A > 0,
C > 0 and ΰ 2 < AC. We substitute

A - ( l - - |){ | α ^ |-2 + I a2k |~2 + 4 Im α ^ Im or*1} ,

JS = Im {(cΰ-i + α ^ α ^ α ^ 1 } and

We use (1.6), (1.7) and the above calculation to show that, for
k > max (fc0, ΛOi A > 0, C > 0 and J52 > AC. By omitting τ/2(A +
2By + Cτ/2) from the right side of the equation defining Ik we obtain

Ik :> 1 + 2y Im (GQU +

(2.3)

by minimum consideration

1 + 2# Im (αΓfc-i + α

(2.4)
2 ) ^

_ ηθ
-(Im ( α ^ i -f α^1))2

the last term tends to 1 for large k because of (1.5). Using (2.3),
(2.4) and letting the coefficients of y2 and y* be smaller, we obtain
(2.2) with a =

LEMMA 2.2. Suppose {ak} e class A(2). Then for k > K there
exist A and B,0 < A < B < 1 independent of k (but they depend on
η and θ) so that for any r,r < min (| α2A-i |, | a2k |), we shall have:

(a) For \σ\ ^ Ar and \y\ ^ Br

Hk(σ) = I (1 - (σ + iy)10,^(1 - (σ + iy)/a2k) \2 exp (2σ Re (a^ + a^))

> -< ζ\ i JLJL1J. \ t v o l i U/o^ / / /[ I 9 i I I 9 \

ί X — 2 ί l ~ — '' ™ '— - L ' Λ ' *

- 4<72(Re (α^1-, +

( b ) F o r \ σ \ ^ A r a n d \ y \ ^ B r
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jV21 a2kHk(σ) ^ ̂

Λ 2 (Im (α^-i + tiϊk1))2 \

where a is that of Lemma 2.1.

Proof. By a simple calculation

l-iL^)(l-iL±_^)2=lίl-
2k~ 1 2k

— 2cr Re (αiiLi

- 2(σ2 -

2σ2y2 \ alh_γaι

|~2 + 4 Re aςU Re or*1)

Im {a^^a^)

+ 2(7V Im {(aίi-i + ̂ 1)a2l
1_1a2i

1}] = Ik - 2σ Re (a,!1.! + a^1)

For the estimation of Λ we shall recall that

(2.5) I (or*1-! + aϊi)aϊUa£ I ̂  2(| a,,,, |~3 + | a2fc |~
3)

and

(2.6) + + 4 Re α^Li Re α^1 ^ - 2 | Re α^Lx Re α^11

To prove (a) assume | <7 | ^ ^4r, 12/1 ̂  β^r. Using (2.5) and (2.6) and
dropping positive terms we obtain for A < B

Jk^(-A2-\ 2AB)r2(\ a2k_x \~2 + | a2k \'2)

+ ( —4(A2 + B2)A — 4A2J?)r3(| α2jfc_11~3 + | a2k |~
3)

^ { — on — LΔ& )Ύ κ\ a2k_x i -t- ( a2k \ ) .

Choosing A < B and (for instance) B = 3~2 and using Lemma 2.1
with y — 0 we obtain

^2fc-l + a2k)) _ 1 ^2/1 ̂  1-2 , I „ |-2\

~ 2σ Re

- -f r2(|
4

^1) j exp (2cr Re ( α ^ i + a2k

1))

2k^ |~2 + | a2k h 2 ] " 1

- 4(j2(Re ( α ^ + a^

(The coefficients in the above estimation are not the best but they
are convenient). To prove (b) (for which we are free to choose
A, A < B) we recall that for A g βB, 0 < β < 1 and \σ\ < Ar we
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have

I 2σ2 Re aϊU Re aϋ) \ ̂  β2BW2(\ a2k_γ |~2 + | a2k |~2) ,

I 2σ2y Im {(a2kU + α ^ α ϋ - i - α^1} 1

I 2y2σ Re {(cft-i + α^α^αΓ* 1 } |

| a2k

and

1 2^73 Re {(αΓfc-i + αΓ* 1)^ 1-!^ 1} I

^ σ41 α , ^ ^ I"2 + 2<τ2(| a2k^ |~2

Choosing β so t h a t 5/32 + 4/9 < a/A and i f so t h a t

a-\Im (aϊU + ^WVίl ^ - i I"2 + I <hk \~2) ^ - i
4

for k ^ Z" we obtain by the above estimations

Hk(σ) g

x [I «£*-! ί~2 + I «2fc I"2]"1 - 2(7 Re (α^1-! + α ^ exp (2<τ Re (αS-i +

1 a 2 k

Since β < a-4~2, β2 < α>4~4 we obtain (b) easily.

Define Sm and Sΐ (see [7], [2] and [4]) by

(2.7) Sm =

(2.8)

Define also rm by

(2.9)

One can easily see that S{£> = Sm and S^ = S w — r~2.

= S w - max Σ|α*<i>
fc(l)< <fc(Z) * = 1

r m = m m ak
k>m

T H E O R E M 2 . 3 . Let {ak} e class A ( 2 ) , then for m ^ K,\σ\
62m = 0 ^ Λαvβ

(2.10) I E2m(σ + iy)\^ VΎ/2 .

(A being that of Lemma 2.2.)



ON A CLASS OF CONVOLUTION TRANSFORMS 89

Proof. To prove (2.10) we use Lemma 2.2(a) whose conditions
are satisfied since S2m > rϊ£, S^12 < r2m = minfc>2m \ak\. We also recall
that for An > 0 and Σ»=»+i A> < V% we have

. - 5 + i ( 1 "

Remembering that for large m

2a-1 y, (Imiaz

Σ

and

4(72 Σ (Re (αϋU + α^1))2 ^ 8A2S2m
k — m + l

^ 8A2 <

(I ^ - i I"2 + I a2k |~2)

and using Lemma 2.2(a) we conclude the proof of (2.10) in the case
where ] σ | g S^!2 and \y\^ BS^\ Using Lemma 2.2(b), (2.10) in

the case where | σ \ ^2 follows by an argumentation
similar to that used in the first part. Then:

T H E O R E M 2 .4. Let {ak} e A(2), b2m = 0, then for m^k, \σ\ <^

i!2 and \y\^ BS^2 we have

I E2m(σ

4

Proof Using (1.5) we can choose, by the method in the proof
of Theorem 2.3, m so that

(2.12) Σ (l ~

(9/16 can be replaced of course by any 1 — ε).

2

converges for all y since S2m = S2°i > S2m >
2.2 and (2.12) we have

^ ^-(l + Σ vH^ί Σ
4 \ l \ 4 / k(l)>2m

k(i)<k(i

> Sz%. By Lemma

ak{n)

But we have
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I(n, m) = Σ 1-2 _ -L V
•Λn) I Γ 2-J

γi\ fc(ί)>2ί

^ — Σ
^ T k{i)>2m

- Σ I α* t,, I"1) ak(ι)

^ Tθ2m Σ
k{%)>2m

iφk[j

Since
V I n I-2 —
2-J I ak(i) I —

k(i)>2m

by induction I(n,m)^l/nl. Π S S , which concludes the proof of
the theorem.

THEOREM 2.5. Let {ak} eA(2), b2m = 0, and σ satisfies Reak Φ σ
for all k > n, then for p, n = 0, 1, 2, there exist k^p, σ, n) and
k2(p, σ, n) so that

(2.13) I E2n(σ + iτ) |2 ^ Up, σ, n) + k2(p, σ, n)τ^ .

Proof. Since S2 w = o(l)m —* oo we can choose m so that ^ ^
(for A of Theorems 2.3 and 2.4). Combining Theorems 2.3, 2.4 and
the fact that | ΓB=2*+i (1 - σ + ίτ/αA;))eσReαΓ11 ̂  δ whenever Re ak Φ σ,
we obtain (2.13).

3» Estimates for Emii)(s) in special cases when {ak}ζA(2). In
this section we shall estimate E2m(s) in case {ak} does not necessarily
belong to A(2) but α2fc_1 = — a2k or α^,. = a2k and some other conditions
are satisfied.

First we prove some lemmas concerning the above mentioned
cases.

LEMMA 3.1. Let a be a complex number Re a Φ 0, then for all
real y and q J> 1

(3.1) 1 - g

α /\ α

Reα 2 ^ 2

1 - J 2 L ) ( 1 _ - M
α

- — r α

Proof. Simple calculation yields

α /\ α /
Reα2
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from which (3.1) is immediate.

LEMMA 3.2. Let a be complex number, Re a Φ 0, then

— σ + iy V i _L σ + iy

a A a
( 3 β 2 ) = I(a) + 2α2(| a |2 - 2(Re α)21 α |~4) + σ* \ a |~4

+ 2σ2y2 [ α |~4 + 4σ^/(Im a2) | α [~4 ,

91

σ + iy 1 - iy

(3.3)
α /v α

- /(α) - 4σ Re α I α |-2 + <72(2 [ a \~2 + 4(Re a)2 \ a |~4)

+ σ41 α I"4 + 2c7V | α |~4 - A(σ2 + y2)σ \ a |~4 Re a ,

where I(a) is defined in Lemma 3.1.

Proof. The proof is a corollary of the proof of Lemma 2.2
combined with Lemma 3.1.

L E M M A 3.3. Let Re a Φ 0, £/^π /or i f > 1 ίfeere exists A and B,
independent ofa,0<A<B<l such that for r < | Re a \ we have:

(a) For \σ\ <g Ar and \y\^Br

(3.4)
σ -\- iy σ

a /v α
^ 1 - i f - V I α |-2 - (min (0, (Re α 2). | α |~2))2 .

α

(b) For I 0" I ^ Arx ^ Ar, | y | ^ S r α^ώ δ > 0

^ 1 -

(3.5) ^ f 1 + —y" I α |-Λ(1 - 2(min (0, Re a2/\ a |2))2

V 4 /
— K~ι(r21 a \~2 + r\ \ a I"1"5 + | a |-2+2δ)) .

Proof. To prove (3.4) we use (3.2) and (3.1) with q = 1 and
obtain the result by choosing B so that QB2 < K~\ and dropping
some positive terms.

To prove (3.5) we use

4σy(hn a2) \ a |~4 ̂  - 4 | σy \ \ a |-2 ^ -(—y2 \ a |-(3"δ) + 2/3V | α |~(1+δΛ
V β2 I

and
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|-(3-fi) |-(2-28)

Choosing 4//34 ^ I/if or β ^ V4JΪ and A so that 2/32A2 < K~ι or
A2 < l/4if ι/ϊΓ or A < l/2if one can conclude the proof by using
Lemma 3.1 (choosing there q — 2 in case Re α2 < 0) and dropping some
positive terms.

LEMMA 3.4. Let Re a Φ 0,

pendent of α, 0 < A < 1,
have

(3.6)

+ iy
a

σ + iy

/or if > 1 ί/̂ βrβ exist A inde-
/or r < | Re a \ and \ σ \ ̂  Ar we

exp (4σ Re α/| α |2)

2(min (0, Re α2/| a |2))

Proof. Using (3.3) of Lemma 3.2, Lemma 3.1 with q = 3/2, the
estimations

-4<731 a |-4 Re a ^ -σ4 \ a |~4 - 4<72(Re a)2 \ a |~4 ,

— 4i/2(j I α ~4 Re a ^ — —yA \a ~4 — 4?σ21 α ~2

25

and dropping some positive terms we obtain

o + %y
a

σ
a

- A ( m i n (0, Re a2/\ a |2))2 - 43AV | a |~2 - 4σ(Re α) | α |~2 .

Choosing A so that 43A2 < 1/4K, which implies

-43A2r2 I α I"2 > - — r 2 a |~2

and

exp (4σ(Re a) \ a \~2) ^ 1 + 4σ(Re α) | a \~2 - 4 V | a

from which (3.6) follows.

We shall define now two classes of convolution transforms by the
function E(s) and the sequence {ak}.

DEFINITION 3.1. {ak} e class 5(2, δ) if
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(3.7) E(s) = Π (1 -

(3.8) Σ

and

(3.9) Σ I % I"1"8 < °° , Σ I α& l"2+δ < °° f o r some δ > 0 .
fc=l

DEFINITION 3.2. {αfc} e B(2) if there is δ > 0 so that {aJ e 5(2, <5).

DEFINITION 3.3. {α*}e class C(2) if

(3.10) E(s) = Π (1 - sα^Xl - s α^1) ,
J f e = l

if condition (3.8) is satisfied and Σ I ^ l~2 < °°.

REMARK. S2m = 2 ^ L » + i I ^ I"2 in case of class B(2) and C(2).
We have to introduce some more notations before being able to prove
the estimation on E(s) for transforms of classes B{2) and C(2).

(3.11) = Σ
k=m+l

^ f c I
1-4

(3.12) Q«> = Q» - max { t I ak(r) \A .

We shall state the estimations for classes B{2) and C(2) together
and then outline the proofs.

THEOREM 3.5. If {ak} e B(2, δ), then for m :> M and some A and
B we have:

(a) I σ I ̂  AS^!\ \y\£ BS^12 imply

(3.13) I E2m(s) 1^3/4.

(b) I σ I ̂  A(ΣΓ= + ι I αA |-^)^/^+« and \y\^ BS^12 imply

(3.14) I E2m(s) I ̂  4 ( X + Σ Λ ^ " Π

THEOREM 3.6. // {ak} e C(2) then for m ^ M there exists an A
so that for \σ\S ASTm2 (3.14) is valid.

Proof of Theorems 3.5 and 3.6. The proof follows the proof of
Theorems 2.3 and 2.4 Using Lemmas 3.3 and 3.4 we have to choose
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r = S2I12 and rλ = (2 Σ?=»+i I α* l-1-8)-1 '^8* (rj. necessary only in proving
Theorem 3.5 from Lemma 3.3). Obviously rι < min/ί>m ] ak |, r <£
minA;>m I αΛ l Also we have

-1-5 ̂  (. Σ . I α* \~*){™™ I a* \f
(l + δ)/2 / co \ (1-5)1/2/ \l-δ

X~* I I—2 \ / X^ I 1—2 \

' \fc = m + l ^ / \fc>ri

2/

(min | ak \

>( Σ
This implies

Σ
Choose m and K so that Σ^>m (min (0, Re α|/| % |2))2 < ε191/K < ε, (K of
Lemmas 3.3 and 3.4) and, for proving Theorem 3.5, Σ^m+i I ak l~2+2δ < slβ

The choice εx ^ 1/16 will yield the number 3/4 in (3.13) (every 1 — η
could be achieved by εx small enough) and the coefficient 3/4 in (3.14).

To complete the proof we have to show

Π
k = m +

the proof of which follows stepwise that of Theorem 2.4.

The classes in this section are not included in A(2) since (1.6)
may fail to be valid. The estimates in this section are weaker in
the case where the transforms are also A(2).

THEOREM 3.7. Let {ak}eB(2) or C(2). Then for σ satisfying
Re ak Φ 0 for all k > n, and for p, n = 0, 1, 2 there exist kx{p, σ, n)
and k2(p, σ, n) such that when σ Φ Re ak

(3.15) I E2n(σ + iτ) |2 ^ k,(p, σ, n) + k2(p, σ, n)τ2p .

Proof. Deduced from Theorems 3.5 and 3.6 as Theorem 2.5 is
deduced from Theorem 2.4 and 2.3.

4* Estimates for Gm(t). We define Gm(t), in the usual manner,

by

(4.1) Gm(t) - - M ' [EMYWds , G0(ί) = G(t) .
2πτ )-i~

We define also:
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(4.2) a(m) = m a x {Re ak, — 00 | R e ak < 0 a n d k> m) .

(4.3) β(m) = min {Re αfc, 00 | R e αfc > 0 a n d A: > m} .

We recall that in the cases {ak} e A(2), {ak} eB(2) and {αk} e C(2)
we have

(4.4) I # 2 u(σ + ir) |2 ^ ^ ( p , (7, w) + kt(p, σ, n)τ2p ,

for n, p = 0,1, 2 . . and α(2w) < σ < β(2n).

THEOREM 4.1. Let En(s), Pn(D) and GJJb) be defined by (2.1), (1.3)
and (4.1); let (4.4) be satisfied for m(l), a subsequence of m, then:

A. For any σ satisfying σ(m(l)) < σ < β(m(l)) we have

(4.5) Gw ( Z )(ί) - Pmm(D)G(t) =

B. Suppose in case a(m(l)) Φ — oo l

αft(2,i) = = %(2,m2+D, , α*(r,υ = = % ( r > W 2 + 1 ) a re al ί wΐt/i indices
greater than m(l) and a(m(l)) = Re afc(1)1) = Re a fc(2j l) = = Rea f c ( r > 1 ) ,
then

(4.6) JL-G^it) - Σ ^{PάW**™} + 0(e*w) t ~+ -

where Pi(t) are polynomials of order rrti and k is any real number
satisfying

max {Re aky — co | fc > mil), Re αfc < a(m(l))} < k < a(m(l)) .

C. Suppose a(m(l)) = — oo, tfcen

(4.7) ^ Γ G m α ) ( ί ) = 0(efcί) ί — oo for any real k, k < 0 .

D . Suppose in case /3(m(ϊ)) ^ oo that ariul) = ••• = α r ( 1 , m i + 1 ) ,
• * r̂(i,D — * = UrUimj+D ^r^ ^ϊϊ wΐί/z- indices greater than m(l) and
β(m(l)) = R e α r ( 1 > 1 ) = R e α r ( i > 1 ) ,

(4.8) -^Γ^-^W = g -^r{

where q^t) are polynomials of order mi and k is a real number
satisfying /3(m(i)) < k < min {Re ak, oo | & > m(ί), Re αΛ > /9(m(i))}.

E. Suppose βimil)) = oo, then

(4.9) _JLG m U ) (t) = 0(efcί) t - - -
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where k is any real positive number.
F. For a(m(l)) < Re s < β{m(l)) we have

(4.10) λ = Γ e'*Gmm(t)dt

which implies

(4.11) 1 -

Proof. The proof follows the method used in Hirschman and
Widder's book "The convolution transform" [6, p. 108]. Formula
(4.4), that was proved for class A(2), B(2) and C(2), is used here
instead of the theorems on Em(s) in [6].

The following result will estimate G2rϊl{t) *n the case when m is
large near the point t = 0 as well as when | £ | —• oo.

THEOREM 4.2. Let {ak} e A{2) and suppose that for some n
S{

2V
1] ^ LnS2m where Ln > 0 is independent of m, then there exist

M(n) > 0 and A > 0 such that

(4.12) I Gίΐ(ί) I ̂  M(^)S2-^+1)/2 exp ( - A S^/21 ί

Proof. By Theorem 4.1.A we have

£ d

and therefore

= If
2π) E2

Remembering that S&+1) ̂  LnS2m implies S^} ^ Z/,S2w for Jc ̂  n + 1,
and using Theorems 2.3 and 2.4 we obtain, choosing σ = ASK/2 for
the case ί > 0,

• ) / 2
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The result for t < 0 is achieved choosing σ — —AS^2.

REMARK. When a2k^ = — a2k we have S^ ^ (l/2)S2w and therefore
Theorem 4.2 for n = 0 includes Lemma 2.4 of [1, p. 432]. Whenever
the connection between pair is 0 < θ, <z | a2k_Ja2k | ^ θ2 < co, where
#!, 6*2 are fixed for all m, we have S ^ ^ LίS2mLί > 0. But in case of
w = 0 the restriction SΆ ^ Lι S2m is not necessary as is proved by
the following.

THEOREM 4.3. Let {ak} e A(2), then for some A > 0 we have

(4.12) I G2m(t) I £ M S ^ 1 2 exp(~AS^12 \ t \ ) .

Proof. Following the proof of Theorem 4.2 and using Theorem
2.4 we have for t > 0 (t < 0 can be treated similarly)

I G2m(t) I ̂  exp ( - { ^ A

BS£I* (I + i y S ί m S ί ϋ ) " !

<-~ O d Q - 1 / 2 / C f / O f ( l ) \ l / 4

^ _ Q—1/2/ Cf /Cf(l)\l/4

1 } 1 / 2 *->2m l>^2m/^2m/

^ 2S-/2(S2m/Srj)1/4 lim (arc ^ ζ - arc

{' 1 _ P /
-1/2
2

/£>2m) J

From this the proof can be easily concluded.

Lemma 3.2A of [1, p. 434] is generalized by Theorem 4.2 in case
SSI ^ L2S2m for some L2. Case B is covered only in part. The
following theorem generalizes Lemma 3.2B [1, p. 434J.

THEOREM 4.4. Let ak e A(2), 62m = 0 and suppose 0<θ, < | a2k/a2k_t <
θ2< co where θ19 θ2 are independent of k and \ Re ak |/| ak \ > η, then for
some Aι > 0 and M1 we have:

(4.13) I GL(t) \ ̂  M&i e x p ( - Λ S ^ 2 \t\) .

Proof. Let us split the proof into two cases
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(a) S 2 m - m a x (| ak_x |~
2 + | a2k |~2) ^ — S2m

k>m K

and

(b) S2m - m a x (| a2k_γ |~2 + | a2k \~2) < ^-S2m .
k>m Jζ

In case (a) (4.13) was proved by Theorem 4.2 for any arbitrary

K. We shall choose K > 2. To prove (4.13) in case (b) we define k0

by

max (I a2k_γ |~
2 + | a2k |~2) = | ^ λ \~2 + | a2k |~2 .

k>m

(In case (b) the choice of k0 is unique.) Define g*0(t) and G2m+2(t) by:

(4.14) gta(t) =J-

(4.15) G2*m+2(ί) = -±-\~ [(1 - iy/a^a - i
2ττ J-°°

By [9, p. 255] we have

G2m{t) = gio(t)*Gίm+*(t)

One can calculate <7*0(£):

when Re ̂ ^ . i > 0, Re a2kQ < 0.

0̂ t > 0

when Re α ^ ^ > 0, Re α2fco > 0, a2kQ φ a2k^.

-a\kμ
a^1 t < o

0 t > 0

when α2fco = α ^ ^ , Re α2A;o > 0.
Either g*Q(t) or g*Q(~t) is of the above form.

GL+2& - Re (αsVi + a*D)

satisfies t h e assumptions of Theorem 4.3 wi th S2*m+2 = S2m — \ a2kQ_±

— I a2k |2 and therefore

2
'2*0-
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^ lf(S2*TO+2)
]/2exp {-ASt-lί2 \ t + Re (a£0+ι + a^) |) .

Integrating by parts

GL(t) = Γ 9U
at

= til+ Π ( i < " » ) G - ( e - •>*•
Since

0? I α 2 * 0 -i I2 ^ I α2 f c o ί
2 a n d I a2kQ \2 ^

w e h a v e

(#Γ 2 + 1) ! a2kQ |"2 ^ l s 2 w a n d (θ\ + 1) | a2ko^ |"2 ^ i - S 2 m
Δ Δ

therefore

max (I a2kQ |, | a2/io_x |) ^ [(2^Γ

2 + 2)1/2 + (20* + 2 ) ^ 2 ] ^ / 2 - i ? ^ ^ 2 .

By the same method (#2-
2 + 1) | a2ko |~2 ^ S2m and (^2 + 1) | α2,o_ : |

2 ^ S2m,
from which we deduce

ί R e a2kQ \ ^ η \ a2ko \ ^ V ( θ 2 * + 1 ) ~ 1 / 2 S ^ / 2 ,

! R e a2k0_λ I ^

and

min (I Re a2]CQ |, | Re ^ ^ |) ^ i ? 2 S / 2 > 0

where

R2 = 37.min ( ( ^ 2 + 1)~1/2, (^2 + 1)-1/2) .

One has to estimate G2m(ί) for different cases of g*0(t) of which
the case where Re a2ko > 0, Re a2ko^! > 0 and a2ko Φ α2j_x will be done
here. The other cases are similar and simpler.

dg*(u) _ Jtt2fco_A/£o = 2 2 = u < u
d% 2A,0 2 f c o - l

l 0 % > 0 .

Let us recall from [8, p. 203] that if /'(£) is continuous and /(£) is
complex valued, then

/ ( α ) "" {{b) = Xf'itJ + (1 - λ)/'(ί2) t1912 e (α, 6) 0 < λ < 1
α — 0

from which it is obvious that
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/(Ci) ~

ζ l S2

0 < λ

where ζ* = ^ d + (1 - aχ2, 0 ^ a, ^ 1 and i = 3, 4. Substituting
/(ζ) = ζβ ,̂ /'(ζ) = <£% + ζwê *, we obtain the following estimate for
(d/du)g*(u) when u < 0:

max , | α2fco |) | u \ exp
du

where RkQ = min (Re a2ko_ly Rea2kQ). Therefore we obtainfc(r_i, R e α 2 f c o )

I G'2m(t) I = I ̂ /co-iα2fco I j ^ exp (Rk(u){l + \u\ max

•S?-^ exp (-ASSr+f I ί - w + Re ( α ^ , + a£Q) \)du .

Using relations among S2*TO+2, S2 m, α2fco and α2/c0-i one obtains

exp ( - ASf-U* \ t - u + Re ( α ^ U + α2t0) |) ^ Jlf2 exp ( - AS^2 \ t - u |) .

Using this and t h e definition of Rx and R2 one derives

r,i/2w){l + \uexp (222Sr,i/2w){l

•exp ( - ASSr+f \t - u \)du .

We have to distinguish two cases t < 0 and £ ^ 0. Let us prove

first t h e theorem in case t < 0:

->2m+2

Choosing K so that ASί~$ > 2R2S^12 we have

I GL(t) I ̂  M , ^ exp (R2tS^β

For ί > 0

S M"Λ^ exp (-

Estimations similar to those achieved in Theorem 4.2 for
{ak} e B(2, δ) and {ak} e C(2) are developed in the following theorems.
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THEOREM 4.6. Let {ak} e B(2, δ) and Q\[> ^ L(j)Qm for some j ,
then there exist A > 0 and M > 0 (independent of m) so that for
k ^ 2j:

-A(2
—1/(1+3)

THEOREM 4.7. Let {ak} e C(2) and Q{J,] :> L(j)Qm for some j , then
there exist A > 0 and M > 0 (independent of m) so that for k ^ 2j:

(4.15) G£(t) £ MQzkl4 e x p ( - AS^12 \ t \ ) .

One can note that in case k = 0 no condition of the form Q{J,] ^
L(j)Qm is needed.

Proof of Theorems 4.6 and 4.7. Using Theorems 3.5 and 3.6
(for Theorems 4.6 and 4.7 respectively) we obtain by Theorem 4.1

-<- E2m(σ + iy)
β(2m) < σ < a(2m) .

Using the fact that Q~1/4 < ((l/2)S2m)~1/2, as S2

m > Qm (which is achieved
by dropping many positive terms) and recalling that

Q-l/2
2

we obtain

+

The completion of the proof is similar to the proof of Theorem 4.2,

5. Some inversion theorems* In this section we shall show
that inversion formulae can be given for {ak} e A(2), {ak} eB(2, δ) and

6 C(2).

THEOREM 5.1. Suppose: (1) G(t) and E(s) are defined by (1.2)
and {ak} e A(2).

( 2 ) f(x) = J ^ G ( x - ί)9>(ί)dί.

( 3 ) For some M and K, \ φ(t) \ ̂  Kem\ where M< min | Re an \ .
( 4 ) 62W = o(l) m \ co.

(5.1) Mm Pim(D)f(x) = lim exp ((& - 6 2JD) Π (̂ 1 - - ^
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exp ((Re α ^ + a2~k

1)D)f{x) = φ(x) at any point of continuity of φ(t).

Proof. By steps following those of [1; p. 433]

\P,ΛD)f(x)~φ(x)\

^ sup I φ(x ~ t) - φ(x) \[° \ G2m(t) \ dt + Mo\ | G2m{t) I e™dt .
\t\<5 J-°° J\t\>0

Using Theorem 4.3, the conditions of which are satisfied by the kernel
G2m(t + bm), choosing m so big that \bm\ < δ/2 and ASK'2 > 4M, we
conclude the proof of the theorem.

THEOREM 5.2. Suppose: Assumptions (1) and (2) of Theorem 5.1
are satisfied

φ(u)du there exist positive M and K so that
0

I a(t) I ^ keMltι where M < Min | Re ak \ .
( 4 ) b2m = o(Sί2) m->oo.

( 5 ) \\φ(x + y)- φ(x)]dy = o(h) h-+0.
Jo

( 6 ) Either SZ ^ L{2)S2m or 0 < θt < | a2kja2k \ < θ, < o= and
I Re ak/\ ak\\>η.

Then l im m _ P2m(D)f(x) = φ(x).

S CO

G2m(t)dt = 1 we obtain

I P2m(D)f{x) - φ(x) I

> ( I β ( t ) I I G J m ( « - t ) \ d t + \ I Gί.(a; - ί) | | /3(ί) | dt ,

S t

[φ(x + u) — φ(x)]du and therefore β(x + t) = o(ί) ί —• 0
and I /3(ί) | ^ ίΓ^ 1 ' 1 .

To obtain the inversion result for the case S{ϋ ̂  L(2)S2m we use
the estimation from Theorem 4.2; while for \~ReaJak \ > η, 0 < θt <
I a2k__Ja2k I < θ2 < co we use Theorem 4.4, both are applicable to
G2m(t + 62m).

REMARK 1. In case α2fe_1 == — a2k (from some k onward) we can
drop (5) and write instead

\h[φ(x ±y) - φ(x ± 0)]dy = o(h)
Jo

(if the numbers φ(x ± 0) exist) and then if we write b2m — 0 instead
of (4) and drop (6), we shall obtain
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(5.2) lim P,JD)f(x) = Uφ{x + 0) + φ(x - 0)] .

The proof is similar if we remember that G2«(ί) = G2m( — t) and there-

fore Γ G2m(t)dt = 1/2.

REMARK 2. The condition (3) of Theorem 5.2 seems too strong
since for the case where ak are real the assumption could be dropped.
We hope that at least for some classes of {ak} Theorem 5.2 could be
proved without (3).

THEOREM 5.3. Suppose: (1) G(t) and E(s) are defined by (1.2)
and {ak}eB(2, δ).

( 2 ) f(χ) = Γ G(x- t)φ(t)dt.
J__oo

( 3 ) For some M and K \ φ(t) \ ̂  KeMμι where M = min | Re ak \ .

( 4 ) {(Σΐ=»+i I <** l - 1 - ' ) 1 ' ^ ^ ^ ^QU 4 for some β ^ 1.

( 5 ) φ(x) —

Then

(5.3)

Proof. We

|P-W>/(*)-

= κί-
£ 0(1) +

g 0(1) +

* * ) 0(|,

lim

have

φ(x) = -

1 G2m(ί» -

J—CO

ί)

X ' j 6 ' *" X.

(D)f(x) = φ(a ) .

- w

+ L , S 5 K ( x -ί)Mί) - ̂ )<fa

eΛ/ίrfί + e\~ | G2 m(ί) | 11 ^ιdt

-exp(-^|+ iα f c-f / 1 +Ίe|> ί

1 exp { — Au)du ^ o(l) + εK2K

m

THEOREM 5.4. Suppose: (1) G(ί) α^d JS7(s) are defined by (1.2)

( 2 ) /(a?) - Γ G(x - t)φ(t)dt.
J_oo

( 3 ) For some i£ and M \ <p(X) \ ̂  KeMm where M = min | Re α^ |.
( 4 ) S|42 g KQT for some β ^ l .
( 5 ) 9>(α?) - 9?(ί) = o(| ί — α? | M ί — a?.
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(5.3) WmP2m{D)f(x) = φ(x).

Proof. Similar to that of Theorem 5.3.

REMARK. When β of condition (4) of Theorem 5.4 and Theorem
5.3 is equal to one, the condition on φ(t) is mere continuity at a point
t = x.

LEMMA 5.5. // an integer r exists such that for all n \ an+r | >
q\an\ for q > 1, then

( Σ \ak\-1-')1M° ^KQX O ^ δ ^ l

(for δ = 1 we have S2

ιL2 ^ KQ1^).

Proof. Obvious.

COROLLARY 5.5. If the kernel is defined by a2k — 2A;~1(1 + i) and
a2k_γ — — 2&-1(l + i) then (5.3) is valid at any point of continuity.

6* Examples, remarks and generalizations* In this section we
shall show some examples of convolution transform by giving its
related sequence {ak}. When we say G(t) e A(2), B(2, δ) or C(2) we
mean that there is an order for which {ak} e A(2), J3(2, δ) and C(2)
respectively.

EXAMPLE 6.1. {ak} defined by a2k_1 = k, a2k = qkeίθk for q > 1,
0 < δ < τr(l/2), I θk - (π/2) \>δ,\θk + (π/2) | > δ. {ak} e A(2). The kernel

G(t) related to {ak} is not necessarily one of those discussed in [6];
for instance in case θk = (2/5)τr the result of Theorem 5.2 can be
applied as S& ^ L(j)S2m for all j (j = 2 is needed).

EXAMPLE 6.2. G(t) defined by a2k^ = (2k - 1)! a2k = (2k)\ eiθ*
where -π < θk < π, \ θk - (π/2) \ > δ, \ θk + (π/2) \ > δ for some 0 <
δ < π/2 where the ak's are arranged in the order of \ak\. Theorem
5.2 does not apply here as one can easily verify that SίU = o(S2m)
m—> oo for all j > 0. We can apply Theorem 5.1 and get an inversion
formula.

EXAMPLE 6.3. Let ck be real, Σ cϊ2 < °°

α2*-i = cΛ(sin ^O"1^*2 , ^ - cfc(sin θ^e-^

where 0 < 0 lf 6>2 < π/2, 0 <δ, < θ, + θ2 < π/2 - δ2. (1.5) is easily veri-
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fied. (1.6) is valid also since sin2 θt + sin2 θz — 4 sin2 θγ sin2

cos2 θ1 > sin2 θ2 and therefore sin2 θ1 + sin2 θ2 < 1 implies

(l - ^Vsin 2 θ, + sin2 θ2) - 4 sin2 θ, sin2 Θ2^l- .

105

and

Using sin2 0X < cos2 θ2 and sin2 θ2 < cos2 6̂  we get after some calculations
that s i n 2 ^ + θ2) $m\θι - θ2) < sin2 θt + sin2 θ2 - 4 sin2 θ, sin2 #2 which
implies (1.7). It should be noted that the class defined by a2k_x — a2k

and min (| arg a2k \ | arg — a2k |) ^ 7r/4 — δ which includes Garder's class
of transforms [5] as a very special case, is a special case of this
example. Theorem 5.2 can be applied here.

EXAMPLE 6.4. Let ck be real, Σ cϊ2 < °° and a2k_x = cfc(sin θ^e™2.
Uzk = -cA(sin^2)-Vθi where either 0<6 l

1, θ2<π/2, 0<δ, <θλ +02<π/2- d2

or -(ττ/2) < ^ , β2 < 0, -(τr/2) + δ2 < θ1 + β2 < δ, < 0.
The inqualities used in Example 6.3 for the validity of {ak} e A(2)

can also be used here. It should be noted that the class of transforms
defined by Dauns and Widder [1] is the case θx — θ2 here.

EXAMPLE 6.5. Let a2n__t = nr(l + i), a2n = nr(l — i), Ύ > 1/2. In
this case {ak} g A(2) (since (1.6) is not satisfied) but clearly {ak} e C(2).
In this case β of Theorem 5.4 is easily computed as S2m =
(1 + o(l))47m~2^+1, Qm = (1 + o(l))4τm-4r-1 m-> oo and therefore

that is /9 ̂  1 + 1/2(27 — 1). From this one can see easily that: (a)
When 7 = 1 it is enough to have at t = x φ(t) — φ(x) — o(\t — x |1/2)
for Theorem 5.4.

(b) When 7 > 3/4 it is enough to have <p(t) — <p(x) — Q(t — x)
t —> x or it is enough for φ(t) to have a left and right derivative at
t = x.

EXAMPLE 6.6. a2n_, = nr(l + i), a2n = -nr(l + i). For 7 > 3/4

{ak} e B{2,1/3). The following remarks will constitute generalizations
of the Theorems of § 5 in various directions.

REMARK 6.1. In Theorem 5.1 | φ(t) \ £ Kemtι can be replaced by

<p(t)dt £ Kemtι if for every δ > 0 if

(6.1) (S^SΆS^)-1'2 exp ( - δS-1'2) = o(l) m — 00 .

This result can be achieved by a proper change of Theorem 4.2 that
will yield now



106 ZEEV DITZIAN

id O\ I /°" /-A I <*" 71 /ϊί O C(l) C(2)\—1/2 ΛVKΛ / Λ O—1/2 I + \\

REMARK 6.2. In Theorems 5.3 and 5.4 condition (3) can be

replaced by | [φ(t)dt ^ Ke3m if either Q{£ ̂  LQm or if for all η > 0

m —> co

for Theorem 5.3 and (Q^QJ-^exvi-ηS^12) = o(l) m-> co for Theorem
5.4. For the above generalization slight improvements of Theorems
4.6 and 4.7 are needed in case Q^ ^ LQm is not satisfied.

REMARK 6.3. If Sz^12 ̂  KQιl\ then in Theorem 5.4 φ(t) - φ(x) =
0(1) t —> ^ can be replaced by

— φ(x)]dt =• o(h) h—>0.

REMARK 6.4. If in Theorem 5.3 (5) is replaced by

LLJXLf i LLJXtAj ^^ 1 ^ V ^ tΛ/ 1 O r «v )Γ

and

then
limP2m(D)f(x) = h
m—*<χ> £i

REMARK 6.5. If in Theorem 5.3 we have

| |
+l

then φ(t) — φ{x) — o(l) t —>x can be replaced by

\\φ(x ± t) - 9?(α ± 0)dί = o(A) h -> 0 +

and then

limP2m(D)/(.τ) - l [^(x + 0) + φ(x - 0)] .
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