ON RELATIVELY BOUNDED PERTURBATIONS OF ORDINARY DIFFERENTIAL OPERATORS

COLIN CLARK

This paper studies ordinary differential operators of the form

$$(-1)^m D^{2m} + Q_{2m-1} D^{2m-1} + \cdots + Q_0$$

over a finite interval I. The coefficients Q_j are bounded operators in $L_2(I)$. This operator is treated as a perturbation T+A of the operator T, which is generated by the leading term $(-1)^mD^{2m}$ plus suitable boundary conditions. The main hypothesis is that Q_{2m-1} can be written as the sum of a compact operator and a bounded operator of sufficiently small norm. Given that T is a discrete spectral operator, with eigenvalues $\{\lambda_n\}$, it is shown that T+A is also a discrete spectral operator, with eigenvalues $\{\lambda_n'\}$ satisfying $|\lambda_n'-\lambda_n|=O(|\lambda_n|^{k/2m})$, where k is the largest integer $\leq 2m-1$ for which $Q_k\neq 0$. Proofs are based on the method of contour integration of resolvent operators.

If A and T are given, closed operators in a Hilbert space \mathfrak{D} , with $\mathfrak{D}(A) \supset \mathfrak{D}(T)$, we say that A is bounded relative to T if there are constants c_1 , c_2 such that

$$(1.1) || Au || \leq c_1 || Tu || + c_2 || u ||, (u \in \mathfrak{D}(T)).$$

The infimum of numbers c_1 such that (1.1) holds for some c_2 is called the *T-bound* of A, $|A|_T$. If $|A|_T = 0$, then for any $\varepsilon > 0$ one can find a constant C_{ε} such that

$$(1.2) ||Au|| \leq \varepsilon ||Tu|| + C_{\varepsilon} ||u||, (u \in \mathfrak{D}(T)).$$

Operators A and T with $|A|_T = 0$ arise in the theory of differential operators, both ordinary and partial of elliptic type, T being generated by the highest order derivative terms, and A by the lower order terms.

In this paper we consider differential operators of the form

(1.3)
$$(-1)^m D^{2m} + \sum_{j=0}^{2m-1} Q_j D^j \qquad (D = d/dx)$$

over a finite interval I. The Q_k are bounded operators in $L_2(I)$; with the exception of Q_{2m-1} , they can be completely arbitrary. The operator (1.3) is treated as a perturbation of an operator T generated by the leading term $(-1)^m D^{2m}$ together with suitable boundary conditions; T will be assumed to be a spectral operator in the sense of Dunford.

(See Kramer [6] and Dunford-Schwartz [2, Part III] for classification of boundary conditions under which $(-1)^m D^{2m}$ becomes spectral.) The perturbing operator A, given by

(1.4)
$$Au = \sum_{j=0}^{2m-1} Q_j D^j u \qquad (u \in \mathfrak{D}(T))$$
,

is bounded relative to T and satisfies (1.2) with

(1.5)
$$C_{\varepsilon} = O(\varepsilon^{-k/(2m-k)}) \qquad (\varepsilon \rightarrow 0)$$
,

where the integer k is defined by

$$(1.6) Q_{k+1} = Q_{k+2} = \cdots = Q_{2m-1} = 0, Q_k \neq 0.$$

Now suppose that the coefficient Q_{2m-1} can be written in the form

$$Q_{2m-1} = B_1 + B_2$$

where B_1 is a bounded operator of sufficiently small norm, and B_2 is a compact operator. Under certain mild hypotheses about the eigenvalues of T, we will show that then

(1) The eigenvalues λ_j' of T+A are related to the eigenvalues λ_j of T by

$$(1.8) |\lambda_j' - \lambda_j| = O(|\lambda_j|^{k/2m}) (j \to \infty)$$

where k is determined by (1.6), and

(2) T + A is a spectral operator.

The first of these results seems to be new; the second has been obtained recently by R.E.L. Turner [11]. Special cases were treated by J. Schwartz [9] and H. P. Kramer [6]. Our method is a natural extension of the method used by Schwartz; it differs considerably from the method of Kramer, and bears virtually no resemblance to that of Turner. What we do is to construct a family of disjoint circles $\{C_j\}$ in the complex plane, centered at the original eigenvalues λ_j (for large j), and such that each C_j also contains exactly one eigenvalue λ_j' . We therefore have the formula

$$E_{j}^{\prime}-E_{j}=rac{1}{2\pi i}\int_{\sigma_{j}}[R_{\lambda}(T+A)-R_{\lambda}(T)]d\lambda$$

for the spectral projections E'_j and E_j of T+A and T respectively, corresponding to the eigenvalues λ'_j and λ_j . The proof that T+A is a spectral operator depends on suitable estimates of these contour integrals, and is based on a new perturbation theorem due to T. Kato [5].

Section 2 is devoted to perturbation theorems of a general nature,

without reference to differential operators; the latter are treated in § 3.

2. Relatively bounded perturbations. If A is an arbitrary linear operator in the (complex) Hilbert space \mathfrak{D} , we denote by $\rho(A)$ the resolvent set of A, that is the set of all complex numbers λ for which $R_{\lambda}(A) = (\lambda I - A)^{-1}$ exists as a bounded operator in \mathfrak{D} . The complement of $\rho(A)$ in the complex plane is the spectrum $\sigma(A)$. A closed operator A in \mathfrak{D} is called regular if for some $\lambda \in \rho(A)$, the resolvent operator $R_{\lambda}(A)$ is completely continuous. The spectrum of a regular operator consists of a sequence $\{\lambda_n\}$ of eigenvalues of finite multiplicity, having no accumulation point in the complex plane.

The definition of spectral operator is given for example in Schwartz [9], where the following result is proved [9, Lemma 3].

LEMMA 1. Let T be a regular spectral operator in the Hilbert space \mathfrak{H} . Assume that all but a finite number of the eigenvalues of T are simple poles of the resolvent, and also that $\sum E(\lambda_i) = 1$, where $E(\lambda_i)$ are the spectral projections of T. Then there exists a constant c such that for any point $\lambda \in \rho(T)$ not in a fixed neighborhood of the exceptional multiple eigenvalues, we have

LEMMA 2. Let T and A be closed linear operators in \mathfrak{D} , with $\mathfrak{D}(A) \supset \mathfrak{D}(T)$, and suppose that $|A|_T = 0$. Define the operator T + A, with $\mathfrak{D}(T + A) = \mathfrak{D}(T)$, by (T + A)u = Tu + Au. Then T + A is a closed operator, and moreover

(i) if
$$\lambda \in \rho(T) \cap \rho(T+A)$$
 then

$$(2.2) R_{\lambda}(T+A) - R_{\lambda}(T) = R_{\lambda}(T+A) \cdot AR_{\lambda}(T) ;$$

(ii) if $\lambda \in \rho(T)$ and $||AR_{i}(T)|| < 1$, then $\lambda \in \rho(T+A)$ and

$$(2.3) R_{2}(T+A) - R_{2}(T) = R_{2}(T)[I - AR_{2}(T)]^{-1}AR_{2}(T).$$

The assertions of this lemma are easily verified. Note also that if A is T-bounded then for $\lambda \in \rho(T)$, $AR_{\lambda}(T)$ is a bounded operator in \mathfrak{S} :

$$(2.4) \qquad ||AR_{\lambda}(T)u|| \leq c_1 ||(T + \lambda I - \lambda I)R_{\lambda}(T)u|| + c_2 ||R_{\lambda}(T)u|| \leq \{(c_1 |\lambda| + c_2) ||R_{\lambda}(T)|| + c_1\} ||u|| \quad (u \in \mathfrak{Y}).$$

Theorem 1. Let T be a regular spectral operator in \mathfrak{H} , and assume that its eigenvalues $\{\lambda_n\}$ satisfy

$$\begin{array}{cccc} \lambda_n \sim a n^{\alpha} & (n \to \infty) , \\ \lambda_{n+1} - \lambda_n = a(n) n^{\alpha-1} , \end{array}$$

for some constants a > 0, $\alpha > 1$, where

$$0 < c_1 < a(n) < c_2$$
 (large n).

Assume also that $\sum E(\lambda_i) = 1$.

Let A be a closed operator in \mathfrak{D} , with $\mathfrak{D}(A) \supset \mathfrak{D}(T)$, having the following property: for each ε , $0 < \varepsilon < 1$, there exists a real number C_{ε} such that

$$(2.6) || Au || \leq \varepsilon || Tu || + C_{\varepsilon} || u ||, (u \in \mathfrak{D}(T))$$

and

(2.7)
$$C_{\varepsilon} = O(\varepsilon^{-\tau}) \quad as \quad \varepsilon \longrightarrow 0^{+},$$

for some number τ , $0 \le \tau \le \alpha - 1$. For values of n for which $\lambda_n > 0$, let $\Gamma_n(\mu)$, $\mu > 0$, be the circle with centre λ_n and radius $\mu \cdot \lambda_n^{\tau/(1+\tau)}$.

Then the operator T+A (with $\mathfrak{D}(T+A)=\mathfrak{D}(T)$) is a closed regular operator in \mathfrak{H} . If $\tau<\alpha-1$ then for sufficiently large μ , the eigenvalues λ'_n of T+A can be enumerated so that λ'_n lies inside $\Gamma_n(\mu)$, with the possible exception of finitely many values of n. In case $\tau=\alpha-1$, there exists $\mu_0>0$ such that the same is true provided the constant involved in (2.7) is sufficiently small, i.e. provided

$$\xi_{\scriptscriptstyle 0} = \sup_{\scriptscriptstyle 0$$

is sufficiently small.

Proof. We will consider the case in which T is self-adjoint. The proof in the general case involves only slight modifications to cover the possibility of complex eigenvalues and non self-adjoint eigenprojections.

By Lemma 2, T+A is closed. Since T is regular, $R_{\lambda}(T)$ is completely continuous for any $\lambda \in \rho(T)$. Identity (2.3) will then imply that T+A is regular, provided we know that $||AR_{\lambda}(T)|| < 1$ for some $\lambda \in \rho(T)$. By (2.6) and (2.7) we have, for $u \in \mathfrak{H}$, $0 < \varepsilon < 1$ and $\lambda \in \rho(T)$,

$$||AR_{i}(T)|| \leq (\varepsilon |\lambda| + C\varepsilon^{-\tau}) ||R_{i}(T)|| + \varepsilon$$

(cf. (2.4)). Choosing ε so as to minimize the expression in parentheses, we obtain

here the constants c_1 , c_2 depend only on τ ; for $\tau = 0$ we can take $c_1 = 0$.

Since by Lemma 1, $||R_{\lambda}(T)|| \leq (\operatorname{Im} \lambda)^{-1}$, we see that $||AR_{\lambda}(T)|| \leq \operatorname{const.} ||\lambda||^{-1/(\tau+1)}$ for purely imaginary λ , so that $||AR_{\lambda}(T)|| < 1$ for suitable $\lambda \in \rho(T)$. This ensures that T + A is regular.

Consider now the case $\tau < \alpha - 1$. Then $\lambda_n^{\tau/(1+\tau)} = o(n^{\alpha-1}) = o(\min(\lambda_{n+1} - \lambda_n, \lambda_n - \lambda_{n-1}))$. It follows that for any $\mu > 0$, the circles $\Gamma_n(\mu)$ lie outside each other for $n \geq N_1(\mu)$, and the only point of $\sigma(T)$ lying inside $\Gamma_n(\mu)$ is λ_n . Using (2.5), (2.8), and Lemma 1, we find that, for some $N(\mu) \geq N_1(\mu)$,

$$(2.9) \quad ||AR_{\lambda}(T)|| \leq c_1 |\lambda|^{-1/(\tau+1)} + c_2'\mu^{-1} \leq c_3\mu^{-1} \qquad (\lambda \in \Gamma_n(\mu), \, n \geq N(\mu)) .$$

Henceforth let μ satisfy

$$c_{\scriptscriptstyle 3}\mu^{\scriptscriptstyle -1} \leqq rac{1}{3}$$
 .

Let $E(\lambda_n)$ denote the eigenprojection of T corresponding to λ_n , and let $E'_{n,\mu}$ denote the sum of the eigenprojections of T+A corresponding to eigenvalues of T+A lying inside $\Gamma_n(\mu)$. Since $||AR_{\lambda}(T)|| < 1$ on $\Gamma_n(\mu)$, $n \geq N(\mu)$, Lemma 2 (ii) shows that T+A has no eigenvalues on $\Gamma_n(\mu)$, so that

$$E_{n,\mu}'-E(\lambda_n)=rac{1}{2\pi i}\int_{\Gamma_n(\mu)}[R_\lambda(T+A)-R_\lambda(T)]d\lambda$$
 .

Hence by (2.1), (2.3) and (2.9),

$$||E'_{n,\mu}-E(\lambda_n)|| \leq rac{c_3 \mu^{-1}}{1-c_2 \mu^{-1}} \leq rac{1}{2}.$$

Therefore ([2, p. 587]) the ranges of $E'_{n,\mu}$ and $E(\lambda_n)$ have the same dimension, namely 1; i.e. each circle $\Gamma_n(\mu)$, $n \geq N(\mu)$, contains one simple eigenvalue λ'_n of T + A.

Next we construct a contour Γ_0 containing the eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_{N-1}$ only, such that the integral of $||R_{\lambda}(T+A)-R_{\lambda}(T)||$ over Γ_0 is small provided $N \geq N(\mu)$ is sufficiently large. This will show that T+A has N-1 eigenvalues (counting possible multiplicities) inside Γ_0 . Since also $R_{\lambda}(T+A)$ exists for λ outside Γ_0 and all $\Gamma_n(\mu)$, $n \geq N(\mu)$, the assertion of the theorem about the eigenvalues λ'_n will be established.

For Γ_0 we take the rectangle with sides formed by the lines L_1 : Re $\lambda = \zeta_N = (1/2)(\lambda_{N-1} + \lambda_N)$, some $N \ge N(\mu)$; L_2 : Re $\lambda = -\zeta_0 < 0$; L_3 : Im $\lambda = \eta_0 > 0$; L_4 : Im $\lambda = -\eta_0$. Consider first

$$egin{aligned} \int_{L_1} ||\, R_{\lambda}(T+A) \, - \, R_{\lambda}(T) \, ||\, d\lambda & \leq C \!\! \int_{-\infty}^{\infty} \!\! \left\{ rac{1}{(x^2 \, + \, \zeta_N^2)^{1/(au+1)}}
ight. \ & + \, rac{(x^2 \, + \, \zeta_N^2)^{(1/2)\, au/(au+1)}}{(x^2 \, + \, \delta_N^2)^{(1/2)}}
ight\} imes rac{dx}{(x^2 \, + \, \delta_N^2)^{1/2}} \end{aligned}$$

where $\delta_N = (1/2)(\lambda_N - \lambda_{N-1})$. The integral of the first term is easily estimated; the second does not exceed

$$\zeta_N^{-1/(\tau+1)}\!\!\int_{-\infty}^{\infty}\!\frac{(t^2+1)^{(1/2)\,\tau/(\tau+1)}dt}{t^2+\delta_N^2\!\cdot\!\zeta_N^{-2}} \leqq \zeta_N^{-1/(\tau+1)}\!\!\int_{-\infty}^{\infty}\!\frac{(t^2+1)^{(1/2)\,\tau/(\tau+1)}dt}{t^2+c\!\cdot\!N^{-2}}\;.$$

Treating separately the ranges $|t| \leq 1$ and |t| > 1 in the latter integral, we readily verify that its value is small for large N. As for the rest of Γ_0 , simple calculations show, for suitable choices of ζ_0 , η_0 , first that the contribution of L_2 is small, and then that the contribution from the sections L_3 , L_4 lying between L_1 and L_2 is also small. Thus Γ_0 has the required property.

For the case $\tau = \alpha - 1$, notice that the constants c_1 , c_2 in (2.8) are small provided ξ_0 is small. Thus this case can be dealt with in the same way as above, and the proof is complete.

For our next result, the hypotheses about the perturbation A are of a slightly different nature than in Theorem 1. We will suppose that $A = BT^{(\alpha-1)/\alpha}$ where $B = B_1 + B_2$, the sum of a bounded operator B_1 of sufficiently small norm, and a compact operator B_2 . Perturbations of this sort have been considered by Turner [11]. From Lemma 3 below we see that such an operator A is T-bounded, and satisfies (2.6) and (2.7), with $\tau = \alpha - 1$.

The operator T^{θ} (θ real) is defined by means of the functional calculus. Suppose T is a spectral operator with spectral family $\{E_j\}$, such that E_j is one-dimensional for $j \geq 1$, and $E_0 = \sum_0^k E_{0i}$, each E_{0i} being a finite dimensional projection corresponding to an eigenvalue λ_{0i} . If f is a sufficiently smooth function which is uniformly bounded on the spectrum $\sigma(T)$, then f(T) is defined by the formula (cf. [9])

(2.10)
$$f(T) = \sum_{i=0}^{k} \sum_{m=0}^{\mu_i} \frac{f^{(m)}(\lambda_{0i})}{m!} (T - \lambda_{0i})^m E_{0i} + \sum_{j=1}^{\infty} f(\lambda_j) E_j$$

where μ_i is the algebraic multiplicity of λ_{0i} . In this expression, the first sum, being finite dimensional, plays a rather trivial role in analytic arguments, and we will generally omit details. The following is derived by a simple calculation.

Lemma 3. Let T satisfy the above conditions, and let $0 \le \theta \le 1$. Then there exists a constant $C = C(\theta)$ such that

$$||T^{\theta}u|| \leq \varepsilon ||Tu|| + C\varepsilon^{-\theta/(1-\theta)} ||u||$$

for all $u \in \mathfrak{D}(T^{\theta})$ and $0 < \varepsilon \leq 1$.

We also require the following recent result of Kato [5] concerning

perturbation of spectral families. By a p-sequence we mean a sequence $\{P_j\}$ of (not necessarily self-adjoint) projections in a Hilbert space \mathfrak{D} , satisfying the orthogonality conditions

$$P_j P_k = \delta_{jk}$$
 $(j, k \geq 0)$.

A p-sequence $\{E_j\}$ is self-adjoint if $E_j^*=E_j$ for all j. A self-adjoint p-sequence is complete if $\sum E_j=I$.

LEMMA 4 (Kato). Let $\{P_j\}$ be a p-sequence and $\{E_j\}$ a complete self-adjoint p-sequence. Assume that

- (i) dim P_0 = dim E_0 = $m < \infty$,
- (ii) $\sum_{j=1}^{\infty} || E_j(P_j E_j)u ||^2 \le c^2 || u ||^2$

for all $u \in \mathfrak{H}$, where c is a constant, $0 \leq c < 1$. Then $\{P_j\}$ is similar to $\{E_j\}$, i.e. there exists a nonsingular linear operator W such that for all $j \geq 0$, $P_j = W^{-1}E_jW$.

The proof of this lemma is fairly simple: set $W = \sum_{j=0}^{\infty} E_j P_j$; one shows that W is well-defined and bounded, and using standard theorems about the index, that nullity W = defect W = 0. We refer to [5] for details.

THEOREM 2. Let T be a regular spectral operator in \S , and suppose the eigenvalues of T satisfy the hypotheses (2.5) of Theorem 1. Let $A = (B_1 + B_2)T^{(\alpha-1)/\alpha}$ where B_1 is a bounded operator in \S , of sufficiently small norm, and B_2 is a compact operator. Then T + A is a regular spectral operator; moreover the eigenvalues $\{\lambda'_n\}$ of T + A can be enumerated so that λ'_n lies inside the circle $\Gamma_n(\mu)$ (defined in Theorem 1) for large n.

Proof. Expressing $AR_{\lambda}(T)$ by means of the functional calculus, we obtain

$$AR_{\lambda}(T) = B(\lambda) + (B_1 + B_2) \sum_{j=1}^{\infty} \frac{\lambda_j^{(\alpha-1)/\alpha}}{\lambda_j - \lambda_j} E(\lambda_j)$$
,

where $||B(\lambda)|| = O(|\lambda|^{-1})$ as $\lambda \to \infty$. (We are assuming, without loss of generality, that no λ_j vanishes.) We will express the sum in two parts, $\sum_{i=1}^{p} + \sum_{p+1}^{\infty}$. In the second of these, we can replace $(B_1 + B_2)$ by $(B_1 + B_2)\widetilde{E}_p$ where $\widetilde{E}_p = \sum_{p+1}^{\infty} E(\lambda_j)$. Since B_2 is a compact operator we have $||B_2\widetilde{E}_p|| = \varepsilon_p \to 0$ as $p \to \infty$. The sum $\sum_{i=1}^{p}$ can be combined with $B(\lambda)$, and we reach the following estimate:

(2.11)
$$||AR_{\lambda}(T)||^{2} \leq c(||B_{1}|| + \varepsilon_{p})^{2} \sum_{j=p+1}^{\infty} \frac{|\lambda_{j}|^{2(\alpha-1)/\alpha} ||E(\lambda_{j})||^{2}}{|\lambda_{j} - \lambda|^{2}} + C_{p} |\lambda|^{-2}.$$

For $\lambda \in \Gamma_n(\mu)$, the sum in (2.11) is bounded independently of p (a more detailed estimate for this sum appears below). Hence with $||B_1|| + \varepsilon_p$ sufficiently small, we can choose N so that $||AR_i(T)|| \le \delta < 1$ for $\lambda \in \Gamma_n(\mu)$, $n \ge N$. By (2.3) this implies that $||R_i(T+A)|| < \text{const.}$ r_n^{-1} . Therefore (with the notation of Theorem 1) we have

$$\|(E'_{n,\mu}-E(\lambda_n))u\| = \|\frac{1}{2\pi i}\int_{\Gamma_n(\mu)}R_{\lambda}(T+A)[I-AR_{\lambda}(T)]^{-1}AR_{\lambda}(T)ud\lambda\|$$

$$\leq c\sup_{\lambda\in\Gamma_n(\mu)}\|AR_{\lambda}(T)u\|\leq \frac{1}{2}\|u\|$$

provided $||B_1||$ is sufficiently small and n sufficiently large. This proves the assertion about the eigenvalues λ'_n .

We pass now to the proof that T+A is spectral. If E_0 , $E(\lambda_1)$, $E(\lambda_2)$, \cdots are the spectral projections for $T(E(\lambda_i))$ being one-dimensional), then according to the theorem of Lorch-Mackey-Wermer [12], this family is similar to a complete self-adjoint p-sequence $\{E_j\}$. There is no loss of generality in supposing the similarity to be the identity transformation. By taking dim E_0 large enough we may also suppose that the circles $C_n = \Gamma_n(\mu)$, n > 0, are separated, and that their radii satisfy $r_n \geq c \cdot n^{\alpha-1}$ (with c > 0).

Let P_n denote the eigenprojection of T+A corresponding to \mathcal{N}_n . We wish to verify that the hypotheses of Kato's lemma are satisfied. First we can show that $\dim E_0 = \dim P_0$ provided sufficiently many of the eigenprojections E_j are included in E_0 . The proof is the same as in Theorem 1, modified to utilize the compactness of B_2 in the same way as above.

Next, it is obviously sufficient to show that for some integer N we have

$$\sum_{n=N}^{\infty} ||E_n(P_n-E_n)u||^2 \le c^2 ||u||^2$$
 $(c^2 < 1)$.

Using (2.11) we have for any integer p > 1

$$\begin{split} \sum_{n=N}^{\infty} || E_n(P_n - E_n) u ||^2 \\ & \leq c \sum_{n=N}^{\infty} \sup_{\lambda \in \mathcal{C}_n} \left(|| B_p(\lambda) u ||^2 + (|| B_1 || + \varepsilon_p)^2 \right. \\ & \cdot \sum_{k=p+1}^{\infty} || \lambda_k |^{2(\alpha-1)/\alpha} || \lambda_k - \lambda |^{-2} || E_k u ||^2 \right) \\ & \leq c_p \left(\sum_{n=N}^{\infty} || \lambda_n ||^{-2} \right) || u ||^2 \\ & + c'(|| B_1 || + \varepsilon_p)^2 \left[\sum_{n=N}^{\infty} \sum_{p+1 \leq k \neq n} || \lambda_k ||^{2-2/\alpha} || \lambda_k - \lambda_n ||^{-2} || E_k u ||^2 \right. \\ & + \sum_{n=N}^{\infty} r_n^{-2} || \lambda_n ||^{2-2/\alpha} || E_n u ||^2 \right]. \end{split}$$

The three sums here (from N to ∞) are fairly easily estimated. Assume that p has been chosen, and $||B_1|| + \varepsilon_p$ is suitably small. Since $\lambda_k \sim ak^{\alpha}$, the first sum in square brackets can be approximated by

$$\mathrm{const.}\left\{ \sum_{k=1}^{\infty} k^{-2} \!\! \left[\sum_{1 \leq n \neq k} \mid \! 1 - (n/k)^{\alpha} \mid^{-2} \right] \!\! \cdot \mid \mid \! E_k u \mid \mid^2 \right\} \leqq \mathrm{const.} \sum_{k=1}^{\infty} \mid \mid \! E_k u \mid \mid^2 ,$$

because by an elementary calculation, the sum in the square brackets here is $O(k^2)$. Since the first and last sums above are trivial to estimate, we finally obtain

$$\sum_{n=N}^{\infty} ||E_n(P_n - E_n)u||^2 \leq c^2 ||u||^2$$

where $c^2 < 1$ provided $||B_1||$ is small and N large. This completes the proof.

COROLLARY. Suppose that A and T satisfy the hypotheses of Theorem 1, and that $\tau < \alpha - 1$. Then T + A is a spectral operator.

Proof. It follows from (2.6) and (2.7) that

$$(2.12) ||Au|| \leq C ||Tu||^{\tau/(\tau+1)} ||u||^{1/(\tau+1)}, u \in \mathfrak{D}(T).$$

If we assume, as we may without loss of generality, that $\sigma(T)$ lies entirely in the open right half-plane, we can apply a theorem of Krasnoselsky and Sobolevsky [7, Th. 5] to conclude that $AT^{-\sigma}$ is a bounded operator, for any $\sigma > \tau/(\tau+1)$. In particular, we can choose σ such that $\tau/(\tau+1) < \sigma < (\alpha-1)/\alpha$, and write

$$A = BT^{(\alpha-1)/\alpha}$$
 with $B = (AT^{-\sigma})(T^{\sigma-/(\alpha-1)/\alpha})$.

Since T^{μ} is compact for any $\mu < 0$ (see [7]), we see that B is a compact operator. It follows from the Theorem, therefore, that T+A is spectral.

REMARK. If $\tau < \alpha - 1$ is given, the proof of Theorem 1 will yield explicit constants $C(\tau)$ and $N(\tau)$ such that

$$|\lambda_n' - \lambda_n| < C(\tau) |\lambda_n|^{\tau/(\tau+1)}$$

for $n \ge N(\tau)$. The same information cannot be derived via the above Corollary, since $||AT^{-\sigma}||$ may approach infinity in an unspecified fashion as $\sigma \to \tau/(\tau+1)^+$. The case $\tau=\alpha-1$ is, of course, not covered at all by the Corollary.

3. Application. Let $I = [x_0, x_1]$ be a finite closed interval, $x_0 < x_1$, and consider the Sobolev space $H^m(I)$ consisting of all $f \in L_2(I)$ having generalized derivatives $D^j f$ also in $L_2(I)$, for $j \leq m$. The norm

in $H^m(I)$ is given by

$$||f||_m = \left\{ \sum_{j=0}^m \int_I |D^j f(x)|^2 dx \right\}^{1/2}$$
.

We denote by $H_0^m(I)$ the closure in $H^m(I)$ of $C_0^{\infty}(I^0)$, the space of infinitely differentiable functions whose support is a compact subset of the open interval (x_0, x_1) . If W is any closed subspace such that

$$H^{\scriptscriptstyle 2m}_{\scriptscriptstyle 0}(I)\subset W\subset H^{\scriptscriptstyle 2m}(I)$$
 ,

we define an operator $T_{\scriptscriptstyle W}$ in $\mathfrak{H}=L_{\scriptscriptstyle 2}(I)$ by

Explicit forms of boundary conditions determining W have been studied extensively, cf. [2, Ch. XIII]. In particular, it is known that under quite general conditions T_W is a regular spectral operator, with eigenvalues satisfying (2.5) for $\alpha = 2m$; see [2], [6], and [8] for details.

The perturbing operator A is now defined as the closure of the operator A_0 :

$$\mathfrak{D}(A_{\scriptscriptstyle 0}) = W \ A_{\scriptscriptstyle 0}f = \sum_{k=0}^{2m-1} Q_k(D^k f)$$
 ,

the Q_k denoting arbitrary bounded operators in \mathfrak{D} .

LEMMA 5. Let j, k be nonnegative integers, $j < k, k \ge 2$. Then there exists a constant $C = C_{jk}$ such that for all ε , $0 < \varepsilon < 1$, and all $f \in H^k(I)$,

(3.3)
$$\begin{cases} \left\{ \int_{I} |D^{j}f(x)|^{2} dx \right\}^{1/2} \\ \leq \varepsilon \left\{ \int_{I} |D^{k}f(x)|^{2} dx \right\}^{1/2} + C\varepsilon^{-j/(k-j)} \left\{ \int_{I} |f(x)|^{2} dx \right\}^{1/2}. \end{cases}$$

This result can be proved by elementary but tedious calculations; a complete proof (in n dimensions) is given in [1, pp. 17-25]. The following is obvious.

COROLLARY. There exists a constant C, independent of the operators Q_k , such that for $0 < \varepsilon_i < 1$ $(i = 1, 2, \dots, 2m - 1)$ and $f \in W$,

$$\begin{aligned} (3.4) & ||Af|| \leqq \left(\sum_{k=0}^{2m-1} \varepsilon_k ||Q_k||\right) ||Tf||_0 \\ & + C\!\left(\sum_{k=0}^{2m-1} ||Q_k|| \varepsilon_k^{-k/(2m-k)}\right) ||f||_0 \ . \end{aligned}$$

THEOREM 3. Let T_w and A be given by (3.1) and (3.2) respectively, and assume that T_w is a spectral operator, with eigenvalues $\{\lambda_n\}$ satisfying (2.5). Let $\{\lambda'_n\}$ be the eigenvalues of the regular operator $T_w + A$. Assume that $Q_{2m-1} = B_1 + B_2$ where $||B_1||$ is sufficiently small and B_2 is a compact operator, and that the remaining coefficients Q_j are bounded operators. Then for large n,

$$|\lambda_n' - \lambda_n| \leq c |\lambda_n|^{k/2m},$$

where k is defined by (1.6). Moreover $T_w + A$ is a spectral operator.

Proof. Suppose first that $k \leq 2m-2$. Letting $\varepsilon_0 = \varepsilon_1 = \cdots = \varepsilon < 1$ in (3.4) we obtain

$$||Af|| \leq c_1 \varepsilon ||Tf|| + c_2 \varepsilon^{-k/(2m-k)} ||f||$$

for $f \in \mathfrak{D}(T_{\scriptscriptstyle |V})$. Hence the hypotheses of Theorem 1 are satisfied, with $\tau = k/(2m-k)$, i.e. $\tau+1 \leq m = \alpha/2 \leq \alpha-1$. Hence the results in this case are immediate consequences of Theorem 1 and the Corollary to Theorem 2.

For the case k=2m-1, let us write $A_0=Q_{2m-1}D^{2m-1}$ and $A=A_0+A_1$. By the first part of the proof, T_W+A_1 is a spectral operator with eigenvalues $\{\lambda_{n_1}\}$ satisfying (3.5) for k=2m-2. The eigenvalues $\{\lambda_{n_1}\}$ therefore satisfy the hypotheses (2.5) of Theorem 1.

Now we can write $A_0 = (B_1' + B_2') T^{(2m-1)/2m}$, where

$$B_i' = B_i D^{2m-1} T^{-(2m-1)/2m}$$
 .

Since $T^{-(2m-1)/2m}$ is a continuous linear map from $L_2(I)$ to $H^{2m-1}(I)$ (cf. [2, Ch. XIII]) and D^{2m-1} is continuous from $H^{2m-1}(I)$ to $L_2(I)$, we see that B_1' is a bounded operator in $L_2(I)$ with $||B_1'|| \le c ||B_1||$; also B_2' is compact. An application of Theorem 2 to the operator $T_W + A = (T_W + A_1) + A_0$ then yields the desired conclusions, and the proof is complete.

The author wishes to thank Professor Tosio Kato for several valuable suggestions. The general idea of the proof of Theorem 2 is due to him.

REFERENCES

- 1. S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, 1965.
- 2. N. Dunford and J. Schwartz, *Linear Operators* I; II; III, Interscience, New York, 1958; 1963; in press.
- 3. K. O. Friedrichs, On the perturbation of continuous spectra, Comm. Pure Appl. Math. 1 (1948), 361-406.
- 4. T. Kato, Perturbation theory of linear operators, Grundlehren der Math. Wiss. 132, Springer-Verlag, Heidelberg, 1966.

- 5. ——, Similarity for sequences of projections, Bull. Amer. Math. Soc. 73 (1967), 904-905.
- 6. H. P. Kramer, Perturbation of differential operators, Pacific J. Math. 7 (1957), 1405-1435.
- 7. M. A. Krasnoselski and P. E. Sobolevski, Fractional powers of operators defined in Banach spaces, Dokl. Akad. Nauk SSSR 129 (1959), 499-502.
- 8. M. A. Naimark, Linear Differential Operators, Gosud. Izdat. Tek.-Teor. Lit., Moscow, 1954.
- 9. J. Schwartz, Perturbations of spectral operators, and applications, I. Bounded perturbations, Pacific J. Math. 4 (1954), 415-458.
- 10. A. E. Taylor, Introduction to Functional Analysis, Wiley, New York, 1958.
- 11. R. E. L. Turner, Perturbation of ordinary differential operators, Journal of Math. Anal. Appl. 13 (1966), 447-457.
- 12. J. Wermer, Commuting spectral measures on Hilbert space, Pacific J. Math. 4 (1954), 355-361.

Received November 29, 1966. Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant Nr. AF-AFOSR 379-65.

THE UNIVERSITY OF BRITISH COLUMBIA