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EULER CHARACTERISTICS

J. L. KELLEY AND E. H. SPANIER

Given a suitable category of 22-modules, a generalized
Euler characteristic is defined for each finite sequence of
modules in the category, and is characterized by simple pro-
perties. For many categories, including the category of all
finitely generated ϋNmodules, this generalized characteristic
has the following two properties. First, it assigns the same
value to isomorphic sequences. Second, for any chain complex
of ϋNmodules in the category, the characteristic of the se-
quence of chain modules equals the characteristic of the se-
quence of homology modules. For such categories our results
imply that any function having these two properties is itself
a function of the characteristic so that the generalized Euler
characteristic is essentially the only such function. For the
special case of the category of all finitely generated modules
over a principal ideal domain the generalized Euler character-
istic can be identified with the integer valued function which
is the classical Euler characteristic. By considering the
special case of the category of all finitely generated torsion
modules over the polynomial ring F[x] over a field F we
obtain a generalized Euler characteristic for the case of a
linear endomorphism of a finite sequence of finite dimensional
vector spaces over F. In this case we establish the relations
between the characteristic and the sequence of Lefschez num-
bers of the endomorphism and its iterates.

Our results are proved in a general setting which we now discuss.
For certain categories ^/ί, a Grothendieck group G is defined, based
on the following idea. We want to identify an object B of ^f with
the free sum of A and C in case A is a "sub-object" of B and C is
a "quotient object" of B modulo A. We also want to identify B with
objects which are equivalent to B in ^y£. Thus G is defined as a
free abelian group modulo certain relations. In all of the cases we
consider, addition in the free group is identical with that induced by
a sum or product in the category ^ .

In particular, suppose ^ is a class of modules that is closed
with respect to submodules and quotient modules. The Grothendieck
group of ^/ί is defined as the quotient group of the free abelian group
generated by the isomorphism classes [A] of modules A in ^ίf by the
subgroup generated by the elements [B] — [A] — [C] for every short
exact sequence 0—*A—>B~+C—>0 in ^t. There is then an Euler
characteristic assigning an element of G to a finite sequence of
modules in ^£, and this Euler characteristic has the two properties

317



318 J. L. KELLEY AND E. H. SPANIER

of the classical Euler characteristic. Again, any function having these
two properties is itself a function of this Euler characteristic.

In addition to specializing to the case of the classical Euler char-
acteristic this more general result also specializes to the case of a
finite sequence of finite dimensional vector spaces d over a field F,
each with a linear operator Ti9 Since a finite dimensional vector space
over F together with a linear operator is equivalent to a finitely
generated torsion module over the polynomial ring F[X], the class ^€
in this case is the class of finitely generated torsion modules over F[\].
The corresponding Euler characteristic can be identified with the
rational form

RP(T2i)/JlP(Tzi+ί)
i i

where P(Tά) is the characteristic polynomial of Tά (see Corollary 5.3).
For every k the Lefschetz number Λk = Σ ( - 1 V T r (τj)k has the two
properties of the Euler characteristic. It follows that Ak is a function
of the above rational form. We determine the precise form of this
relationship and also show that in case F has characteristic zero the
numbers Λk determine the rational form.

We actually define the Euler characteristic of a finite sequence of
modules of a class ^ which need not be closed with respect to
submodules or quotient modules. This Euler characteristic is charac-
terized by two other properties which are equivalent to the previously
mentioned properties in case ^ is closed with respect to submodules
and quotient modules. This more general Euler characteristic is related
to the obstruction to finiteness of a CTF-complex which has been
considered by Wall [3]. We show in Theorem 5.6 that a finitely
generated protective chain complex over an associative ring R with a
unit is chain equivalent to a finitely generated free chain complex
over R if and only if the image of its Euler characteristic in the
protective class group of R is zero.

The first two sections are devoted to general considerations of
Grothendieck groups. Various special cases are considered, and we
compute the Grothendieck groups of all finitely generated modules (in
Example 2.5) and of all finitely generated torsion modules (in Example
2.6) over a principal ideal domain. The third section is devoted to
special results concerning the Grothendieck group of linear operators
on finite dimensional vector spaces over a field and to connections
with the sequence of traces of powers of the operator. The fourth
section introduces Euler equivalence of chain complexes, the correspond-
ing equivalence classes forming an abelian group called the Euler
group. In the fifth section it is shown (Theorem 5.1) that the Euler
characteristic is an isomorphism of the Euler group of chain complexes
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with the Grothendieck group of corresponding modules. The above
mentioned results are then derived from this isomorphism.

l Grothendieck equivalence. In a category ^ with sums (or
products) the Grothendieck equivalence relation is generated by requir-
ing that for certain sequences A —•> B —> C in ^ the object B is equiv-
alent to the sum (or product) of A and C. The corresponding equiv-
alence classes usually form an abelian semi-groups with respect to sum
(or product). In this section we study this semigroup and compute it
for the case of finitely generated modules over a principal ideal domain.

Given a set S and a subset <% of the cartesian product S x S
the equivalence relation on S generated by & is the smallest equiv-
alence relation ~ such that if (α, b) e & then a — b. It is charac-
terized by the following property. Given a,beS then a ~ b if and
only if a = 6 or there is a finite sequence α0, αu , an e S with n ^ 1
such that a = α0, an — b and for 1 ^ j ^ n either (αif α ^ ) e ^? or
( α ^ , αy) e .^?. We shall have occasion to consider equivalence relations
generated in this way in the sequel.

Let Λ? be a category with initial objects, one being denoted by
0, and having finite sums, the sum of A and B being denoted by A V B.
Assume there is given a collection £S of sequences of morphisms
A __> β _ Q i n ^ s u c h that the following hold:

(1) If B > C is an equivalence in ^ , then 0 —• B —̂—» C is in Sf.

(2) If A - ^ B -^-> C is in ^ and X is in ^ , then

is also in 6^.
The Grothendieck equivalence relation on ^ ^ corresponding to Sf

is the equivalence relation generated by the collection R = {(B, A V C) \
A^+ β^+ Q i s i n cf}% it follows from (1) that if A, B are equivalent
in ^/f then A — B. It follows from (2) and (1) that there is a well-
defined operation + on the collection [^f, S^\ of equivalence classes
such that

[A] + [B] = [AVB]

making [^C, S?\ into an abelian semigroup with [0] as unit.
Similarly let ^// be a category with terminal objects, one being

denoted by P, and having finite products, the product of A and B
being denoted by A/\B. Assume there is given a collection £f' of
sequences of morphisms A —> B —> C in ^fέ such that:

(1)' If A—°^> B is an equivalence in ^//, then A >B~+P is
in &".



320 J. L. KELLEY AND E. H. SPANIER

(2)' If A -^-> B -£-> C is in S? and X is in ^ , then

is in &".
The Grothendίeck equivalence relation on ^ ^ corresponding to *5^'

is the equivalence relation generated by the collection R = {(B, AΛC)\
A-+B-+C is in &"}. The collection of equivalence classes is denoted
by [^f, S^f] and for A in ^ its equivalence class is denoted by [A].
There is a well-defined operation + on [^f, &"] such that

[A] + [B] = [AAB]

and making [^^, S^f] into an abelian semigroup with [P] as unit
element.

Of particular interest is the case where ^Jί? is a category of modules
containing zero and closed with respect to finite sum, over an associative
ring R with a unit and Sf is the class of all sequences A —* B —> C in ^
such that 0—> A—>B—>C—>0 is exact. In this case, because finite
sums and products coincide, the two types of Grothendieck equivalence
agree and the corresponding semigroup is denoted by \^P\. Let Λ?'
be a full subcategory of ^/ί such that, given any short exact sequence
0—>A—>B—>C—*0 in ^f, if two of the three modules A,B,C are
in ^f', then the third is also. In this case there is an imbedding of
the semigroup [^tf] into the semigroup \^\ sending [A]^, to [A]^
for all A in ^f'.

We calculate an example. Let R be a principal ideal domain and
let ^£ be the category of all finitely generated modules over R. If
<Λf' is the full subcategory of finitely generated torsion modules, it has
the property stated above so that [^C] is a subsemigroup of \^/ί\.

There is a well-defined epimorphism,

rank: [^T] >Z+ ,

where Z + is the semigroup of nonnegative integers, such that
rank [A] = rank A. (It is standard that if 0—> A—* B—>C—>0is exact
then rankΰ = rank A + rankC.) Clearly \^'\ — kernel of rank.

LEMMA 1.1. If rank A = ranki? > 0, then A~B.

Proof. It suffices to prove that if rank A = m > 0 then A is
Grothendieck equivalent to a free module of rank m. By the structure
theorem, if A has rank m, then A is isomorphic to
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where sL9 , sq are nonzero elements of R. Thus, it suffices to show
that R φ R/sR ~ R, but this follows from the exactness of the sequence

0 > R-?->R-^->R/sR > 0

where a is multiplication by s and β is the canonical quotient map.

It follows from the lemma that rank is an isomorphism of the
semigroup \Λ?\ — \Λ&'\ onto the semigroup of positive integers. To
complete the description of \^\ we need to compute \^//S'\.

Let R! be the multiplicative semigroup of R modulo its subsemi-
group U of units of R. If A is a finitely generated torsion module,
then A is isomorphic to R/sλR φ φ R/sgR where s19 , sg are non-
zero elements of R. We define the characteristic of A, char A e R', by

char A — (sι sq) U .

Then char 0 = U. We present another description of the charac-
teristic to show that it is well-defined and is invariant under Grothen-
dieck equivalence.

It φ is an endomorphism of a finitely generated free R module F,
then the determinant of a matrix representing φ in some basis is inde-
pendent of the choice of basis. We let \φ\ denote the corresponding
element of R'. The map sending φ to | φ | is a homomorphism,

End (F) > R ,

and if φ is an automorphism, j φ \ = U. Note that rank (im φ) = rank F
if and only if \φ\φQ,

Represent a torsion module A as the quotient F/G where F is a
free finitely generated module and G is a submodule (necessarily free
and of the same rank as F). Let <p:F~>G be any epimorphism.
Regarding φ as an element of End(F) we obtain the element \φ\eR!.
If ψ:F—>G is another epimorphism, it is necessarily an isomorphism
and so ψ~ι°φ is an automorphism of F. Therefore,

1^1 = I ψ I I ψ~ι o φ I = I ψ o ψ"1 o φ | = \ φ \ .

Therefore \φ\ is independent of the choice of the epimorphism φ.
Finally, if elf , en is a basis for F such that α^, , anen is a basis
for G, we can choose φ(e^ — a^, in which case | φ\ = aλ anU.
Since A & RjaJR φ φ R/anR, we see that | φ \ = char A. We
therefore have the following description of the characteristic:

LEMMA 1.2. // A is a finitely generated torsion module isomor-
phic to F/G, where F is a free finitely generated module, then
char A = \φ\ where φ:F—*G is any epimorphism.



322 J. L. KELLEY AND E. H. SPANIER

COROLLARY 1.3. // A is a finitely generated torsion module
and A' c A, then

char A = (char A')(char A/A') .

Proof. Let A w F/G where F is a free finitely generated module
and choose F' with GaF'aF such that A w F'/G. Then F/F' ^
A/Af. Let φ: F—> F' and ψ: Ff — G be epimorphisms. Then ψ o ̂ >: i*7 —>
G is an epimorphism and since 9? and φ~ιoψoφ are endomorphisms of
F we have

char A = | ^ ° <P | — l^° ί1 "̂1 ° Ψ ° 9>) I — I 9> I I 9>"~1 ° ψ* ° ψ I

Since φ is an isomorphism of F with i*7', we see that for the endo-
morphism ψ of Ff and the endomorphism φ ^ o f o φ of F we have

= I φ-1 o^roφ\. Therefore,

char A = \φ\\ψ\ = char (A/A') char A .

It follows from the corollary that there is a homomorphism

such that char [A] — char A (it is a homomorphism because char (A φ
B) = char A charU, trivially). It is easy to see that char is an epi-
morphism of [^C] onto R'\ indeed, for each nonzero member r of R,
char R/rR — rU. The following proposition shows that char is an iso-
morphism of

PROPOSITION 1.4. If A is a torsion module and r e char A, then
A is Grothendieck equivalent to R/rR.

Proof. Notice that if s and t are nonzero members of R then
the Noether isomorphism theorem yields an exact sequence

0 • sR/stR > R/stR > R/sR • 0 .

Consequently R/stR — sR/stR 0 R/sR, and since sR/stR w R/tR, we
see that R/stR - R/sR 0 R/tR. It follows by induction that if s19 , s(

are nonzero members of JK, then
Q

R/sfi 0 0 R/sqR - R/(Sl sq)R .

But every finitely generated torsion module A is isomorphic to such a
direct sum of cyclic modules, and the proposition follows.

Summing up our results:

THEOREM 1.5. Let ^// he the category of finitely generated
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modules over a principal ideal domain JS, and let ^f' be the sub-
category of torsion modules. Then rank and char are complete in-
variants for Grothendieck equivalence. Rank is a homomorphism
of [^f] onto Z+ with kernel equal to [^ff] and char is an isomor-
phism of [^f'] onto the multiplicative semigroup of nonzero
members of R modulo units.

2 Grothendieck groups* In the last section Grothendieck equi-
valence was used to construct semigroups. In the present section we
pass from semigroups by a standard method. Several examples are
then discussed.

If S is an abelian semigroup its Grothendieck group G(S) is an
abelian group which is universal with respect to homomorphisms
from S to abelian groups. That is, there is a canonical homomor-
phism 7: S —» G(S) such that for each homomorphism φ of S to an
abelian group G there is a unique homomorphism φf\ G(S) —» G with
φ — φΌ 7. It is easy to see that G(S) and 7, if they exist, are es-
sentially unique; we show existence by an explicit construction.

Define an equivalence relation Ξ in S x S by the condition
(a, b) = (α', bf) if and only if there is c e S with

Let {(α, b)} denote the equivalence class of (α, b). There is a well-
defined operation + in the set of equivalence classes such that

{(α, b)} + { « V)} - {(a + α', b + V)} .

The set of equivalence classes with this operation forms an abelian
group G(S), and a homomorphism

J:S >G(S)

is defined by 7(α) = {(α, 0)}. This has the desired universal property
because, given a homomorphism φ; S—>G, where G is an abelian group,
the unique homomorphism φ'\ G(S) —> G such that φ' o 7 = φ is charac-
terized by the equation

9>'{(α, 6)} = φ(a) - φ(b) .

In the above, in case S is a semigroup with cancellation, 7 is an
imbedding of S in G(S), and the construction is merely a generaliza-
tion of the usual construction of Z from Z+.

We can apply this construction to obtain Grothendieck groups
G[^f, £f\ corresponding to the semigroups [ ^ , £f] defined by
Grothendieck equivalence. Then G[^t, Sf\ is generated, as a group,
by the collection y[A] for A in ^£. Furthermore, if A—>B—>C is
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in £f then Ί\E\ = y[A] + y[C]. Also either τ[A] + y[B] =
or τ[A] + y[B] — τ[ A Λ B] depending on which of the two types of
Grothendieck equivalence we start with.

There is a different way of describing the Grothendieck groups
for the categories ^// and collections ^ which concern us. Suppose
^/ί is a category with sums and a zero object satisfying conditions
(1) and (2) of § 1, and further satisfying

(3) If X and Y belong to Λ€ then there is a sequence X—•
XVY—Y in Sf.

Let G' be the free abelian group with generators the objects of
modulo the subgroup generated by all B — (A + C) for A —> B —> C in
£f, and let ψ(M) for Me^f, be the canonical image of M in G'.
Then (3) implies that ψ is a monoid homomorphism of ^/ί with V
into G', and it can be verified that if A is Grothendieck equivalent to
B then ψ(A) = ^(5). Consequently τ/r induces a homomorphism α/r' of
\^\ into G' and, in view of the universal property of G(^), we
see that there is a canonical homomorphism φ of G(^/ί) into G[ so
that the diagram

is commutative. It follows easily that φ is, in fact, an isomorphism
of the Grothendieck group onto G'. Similar considerations apply to
the Grothendieck group of a category with products.

EXAMPLE 2.1. Let _̂ ~ be the category of compact polyhedra with
base points. Any one-point object in ^ is an initial object and
has finite sums. Let Sf be the collection of sequences

where a is an imbedding of A as a subpolyhedron in B and β ° a(A) =
base point of C and β\B — a(A) is a bijection from B — a(A) to C
— basepoint of C. The corresponding Grothendieck group G[^~, £f\
has been considered by Watts [4] who showed that there is a well-
defined function χ: G[^", £f\ —> Z which assigns to τ[A] the Euler
characteristic of A and this is an isomorphism between the two groups*

EXAMPLE 2.2. Let ^"' be the category of path-connected topolo-
gical spaces having abelian fundamental groups and finitely generated
homotopy groups. Any one-point object in ^~> is a terminal object
and ^7~f has finite products. Let 6^f be the collection of sequences
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A __?!_> β __£_> c in ^ Γ t such that there is a homomorphism 3: π*(C)
of degree —1 for which there is an exact triangle

\

There is a well-defined homomorphism χ': G\J7~f, £f\ —* Z such that

and this homomorphism can be seen to be an isomorphism (by using
Postnikov sequences to see thatG \^~\ £ff\ is generated by y[A] where
A is a polyhedron having at most one nonzero homotopy group, and
then observing that if A is a polyhedron having one nonzero homotopy
group equal to Z in dimension n >̂ 1 and B has one nonzero homotopy

group equal to Zp in dimention n, there is a sequence A —̂ -> A • B
in Sf whence G[^~r, &*f\ is cyclic generated by y[A]).

EXAMPLE 2.3. Let X be a topological space and let ^/S be the
category of all real (or complex) vector bundles over X. The unique
O-dimensional bundle is an initial object and Whitney sum is a sum in
the category ^ C . Let Sf be the collection of all short exact sequences
0-+A-+B-+C-+0 i n ^ T . Then G[^e, Sf\ is denoted by KO(X) (or
K{X)) and plays an important role in algebraic topology. These K
groups were the first Grothendieck groups extensively studied from
this point of view [1],

EXAMPLE 2.4. Let R be an associative ring with a unit and let
^€ be the category of all finitely generated projective R modules (a
module is projective if and only if it is isomorphic to a direct sum-
mand of a free module). Let S? be the class of all A—+B—>C such
that 0—>A—»JB—>C—>0 is exact. Then the group G\^/ί\ is usually
denoted by KQ(R). It contains a subgroup H generated by Ί[R] and
the quotient group K0(R)/H is denoted by K0(R) and called the projec-
tive class group of R. It can be shown that K0(R) is isomorphic to
the group of stable equivalence classes of finitely generated projective
modules (two such modules A and A! being stably equivalent if and
only if there are free modules F and Ff such that i φ F ^ i ' φ ί 7 ' )
with addition induced by direct sum. For a finitely generated projec-
tive module A we see that y[A] maps to zero in K0(R) if and only if
A is stably equivalent to a free module (in which case A is said to
be stably free).
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EXAMPLE 2.5. Let R be a principal ideal domain. Then the
Grothendieck group G [ ^ ] of all finitely generated R modules is iso-
morphic to Z by

where rank y[A] = rank A. This follows from Lemma 1.1 and the
observation that J[A] — 0 if A is a torsion module (because in this
case Ύ[R] + y[A] =

EXAMPLE 2.6. Let R be a principal ideal domain and let ^f/f be
the class of finitely generated torsion R modules. Let Qr be the mul-
tiplicative group of nonzero elements of the field of quotients of R
modulo the group U of units of R. Then Qr is easily seen to be the
Grothendieck group of the semigroup of nonzero elements of R modulo
units. It follows from Theorem 1.5 that there is an isomorphism

char: G|>T'] w Qf

such that char y[A] = char A.

3* The Grothendieck group of linear operators* Throughout
this section F will denote a field. Given a finite dimensional vector
space A over F and a linear operator T: A — A we can regard A as
a finitely generated module over the principal ideal domain F[X] by
defining p(X)a = p(T)(a) for p(X) e F[X] and for aeA. Because A is
finite dimentional it is easy to see that A is a torsion module over
F[X].

On the other hand, if A is a finitely generated torsion module
over F[X], then it is easy to see that A is a finite dimensional vector
space over F, and if we define T: A—* A by T(a) = Xa for ae A, then
A is just the F[X] module constructed from T. Thus there is a
natural equivalence of the category <g> of linear operators on finite
dimentional vector spaces over F (a morphism A—*B being required
to commute with the respective operators) and the category ^/fίf of
finitely generated torsion modules over F[X]. Under this equivalence
of categories the Grothendieck equivalence relation on ^f, with Sf
the class of sequences A —• B —* C with 0—> A—> B-+C-+0 exact,
corresponds to Grothendieck equivalence on Λ?'\ We have a complete
invariant, char, for the latter, and we now identify the corresponding
invariant for £f%

For each linear operator T on a finite dimensional vector space A
let [A, T] be the Grothendieck equivalence class of the corresponding
torsion module over F[X], Then char [A, T] is a nonzero member of
F[X] modulo the nonzero members of F. We show:
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PROPOSITION 3.1. If T is a linear operator on a finite dimensional
vector space over a field Fy then char [A, T] is the set of nonzero
scalar multiples of the characteristic polynomial of T.

Proof. As a finitely generated torsion module over F[X] we have
A ** F[λ]M(λ)F[λ] 0 0 F[X]/pm(X)F[X] where the polynomials ^.(λ)
may be assumed to have leading coefficient 1. Under this isomorphism
T M Tx φ 0 Tm where Tt: F(X)/pi(X)F[X] -> F[X]/Pi(X)F[X] is the
operator multiplying each element by λ. If degree Pi(X) — ni9 there
is a basis 1, λ, , λ^-1 of F[X]/Pi(X)F[X] over F and relative to this

/0 1 <h

basis Ti is represented by the matrix Λf̂  = 10 . I I where the bot-

\. .'o/
torn row has entry in jth column equal to minus the coefficient of Xj

in Pi for 0 ^ j < nim It is then clear that
jX - 1 0\ / 0 - 1

det (XI - Mi) = det I 0 * *

and so ^(λ) is the characteristic polynomial of TV Therefore, p^X)
pm(X) is the characteristic polynomial of T, and from the definition of

] A we obtain the result.

COROLLARY 3.2. The function (A, T) \-+ characteristic polynomial
{T) is a complete invariant for Grothendieck equivalence on the
category £? of linear operators on finite dimentional vector spaces
over a field F. The Grothendieck group of £f is isomorphic to the
multiplicative group of quotients of monic polynomials.

It is not hard to see that the trace function, which assigns to a
linear operator T on a finite dimensional vector space A the trace of
T, is invariant under Grothendieck equivalence on the category £f of
such operators. (This amounts to noticing that if A! is a subspace of
A which is invariant under T, then the trace of T is the sum of the
trace of the restriction of T to A' and the trace of the operator in-
duced by T on A/A'.) In fact, if & is a nonnegative integer then
Ύτk, where Tr^ {A, T) is trace Ak, is Grothendieck invariant, and in-
•duces a homomorphism of [£f] into F. In view of the foregoing the
function Ύvk must be itself a function of the characteristic polynomial.
We now establish the explicit relationship between the sequence
{Trfc (A, T)} and the characteristic polynomial of T.

Let i^[[λ]] denote the integral domain of formal power series over
F with indeterminate λ. The formal derivative ' is a derivation in
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and can be extended via the usual formula for the derivative
of a quotient to a derivation on the field of quotients Q[λ]. Each
element r e Q[λ] has a unique canonical representation of the form
r = λm Σ ~ &Λ5 with aQ Φ 0 for some integer ra. (It is easy to see that
r is in the field of quotients of F[X] if and only if {r, λr, λV, •••}
spans a finite dimensional subspace of

THEOREM 3.3. Let /(λ) = characteristic polynomial of a linear
operator T:A-+A and let r(λ) = /(1/λ) e Q[λ]. Then

r'jr = -

Proo/. Note that

Extending F if necessary, we may assume that \I — \T\ splits into
linear factors, say | / — λ Γ | = 77̂ (1 — λ^) for elf >-,emeF, where
m = dim A. Then

r'jr = (-dim A)λ-χ - Σ βi/(l - λβ, ) .

Since β, /(l — Xeό) = es + λe* + X*e) + we see that

r'/r = -dim A\'1 - Σ ( Σ βA

The proof of the result is thus reduced to showing that ΣΓ=i β£ =
Tr(Γy)> ^ u ^ t ^ s follows easily on using the Jordan normal form of
the matrix of T.

It is worthwhile to notice the algebraic nature of the relationship
just established. Let Q'[λ] be the multiplicative group of quotients
of monic polynomials (an isomorph of the Grothendieck group G[^f])»
Let <p be the function which assigns to [A, T] e [J*f] the formal series,
λ^ΣΓ-oTrίTO^ Then φ is a homomorphism of \£f\ into the addi-
tive abelian group S of formal series λ"1Σ?=o^Λ i, and consequently
there is a homomorphism φ' of Q'[A] into S so that the following
diagram is commutative.

Q[\] .
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The preceding theorem yields the following description of φ'ι To obtain
φ'(r), where r e Q'[X], (a) apply the multiplicative automorphism
p(X) \-+ p(l/X) of Q[X], then (b) the formal logarithmic derivative
r(λ) h-> r'(λ)/r(λ), which is a homomorphism carrying multiplication
into addition, and then (c) apply the isomorphism carrying each member
of Q[X] into its canonical series. Thus φ' is exhibited as a multipli-
cation-to-addition homomorphism.

In case F has characteristic zero, the homomorphism φ' is an iso-
morphism, as we now show. If F has characteristic zero, exp λ =
ΣΓ=oλ'"/i! is a well-defined element of F[[X]]. If s(X) e F[[X]] has zero
constant term, say s = Σ,~=1 a5X\ then the "composed series" exp s =
ΣΓ=o (ΣΓ=i aj^>j)k/kl is well-defined since each coefficient of a fixed power
of X is a finite sum. Furthermore, (exp s)' = (exp s)s'. The following
shows how the sequence {Ύv (Tj)} determines the characteristic poly-
nomial of T.

THEOREM 3.4. Let T: A—> A be a linear operator on a finite
dimensional vector space A over a field of characteristic zero and let
f(X) be the characteristic polynomial of λ. // r(λ) = /(1/λ), then

Proof. Let s = X~dimΛ exp [ - Σ ϊ U ( T r (T*)/j)\s]. Then it is easily
seen that r'/r — s'/s whence (r/s)' = 0. Since r and s both have the
form λ~dim^ times a power series with constant term 1, it follows
that r = s.

It follows from the last theorem that if F has characteristic zero
the sequence {Tr(Tj)} is a complete set of invariants for Grothendieck
equivalence of the corresponding F[X] modules. This is not the case
if F has nonzero characteristic p. For example, if A is a p-dimen-
sional vector space and I is the identity operator on A, then the
characteristic polynomial of A is the polynomial (λ — l)p but Tr (Ij) = 0
for all j . Thus, the zero operator and I are distinguished by their
characteristic polynomials but not by the sequence of traces.

If /(λ) is the characteristic polynomial of T: A —> A and r(λ) —
/(1/λ), then we can expand r(λ) in canonical representation

r = λ-dim^[l + a,X + α2λ
2 + •] .

The coefficients aά are called the canonical coefficients of T.

COROLLARY 3.5. Let {a^j^ be the canonical coefficients of T. If
ad = 0 for l^j < s, then Ύr(Tj) = 0 for 1 ^ j < s and sas = -Ύr(Ts).
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// F has characteristic 0 and Tr (Tj) = 0 for 1 ^ j < s, £λew a3 = 0
for 1 <^ j < &.

Proof. Since r = X~dimΛ(l + Σ~=i αyλ'") we see that

r'/r = -dimA/λ + f s i α ^ ^ V l + Σ αy

Combining this with Theorem 3.3 we have

Σ i α Λ ' -1 = ( l + Σ α y λ Λ ( - Σ T r ( Γ 0 λ ^ 1 )

and the corollary follows.

4* Euler equivalence* In this section we consider equivalence
relations on a category <& of finitely nonzero chain complexes. First
we consider Grothendieck equivalence, and it turns out that two chain
complexes are Grothendieck equivalent if and only if all their correspond-
ing chain modules are Grothendieck equivalent as modules. Next we
consider the more interesting Euler equivalence, generated by adjoin-
ing to Grothendieck equivalence the addition or delection of a split
acyclic chain complex. The Euler equivalence classes form an abelian
group and, in case the modules used in <& are closed with respect to
submodules and quotient modules, we give an alternate description of
Euler equivalence.

Let ^ be a category of modules over an associative ring R with
unit and assume ^// contains the trivial module and is closed with
respect to finite sums. Let ^ be the category of finitely nonzero
chain complexes with chain modules in ^£. Thus, an object C of ^
is a collection C = {Cn, dn} indexed by the set of integers such that:

(1) Cn is an object of ^ and Cn = 0 except for finitely many n'&.
(2) dn:Cn^Cn_1

(3) dnodn+1 = 0.

The morphisms in ^ are the chain maps. Thus, a morphism τ\C-+G
is a collection τ = {τn} indexed by the set of integers such that:

(4) τn: Cn — C; is in ^f
(5) d'noτn = τn^odn.

Note that & contains a zero chain complex and is closed with respect
to finite sums.

The Grothendieck equivalence relation on ^ is generated by

& = {C, C φ C") I 0 > C > C > C" > 0 is exact in

Denoting equivalence by ~ , note that C ~ C implies C(&C" ~ C
for any C".
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LEMMA 4.1. Given C in ^ and an integer q, let Cq be the chain
complex in ^ with

and with (dq)n the trivial map for all n. Then Cq is the trivial
chain complex except for finitely many q's and C is Grothendieck
equivalent to φ g C

g.

Proof. We prove the lemma by induction on the number of non-
zero chain modules in C. If C has no nonzero chain module, then Cq

also has no nonzero chain module, whence, Cg is trivial for all q and
C = φ 9 C

q so the lemma is valid in this case. If C has one nonzero
chain module, say Cp Φ 0, then Cq is trivial unless q — p and Cp = C
so the lemma is valid in this case also.

Assume the lemma valid for chain complexes having fewer than
m nonzero chain modules where m > 1 and let C be a chain complex
with m nonzero chain modules. Let p be the smallest integer such
that Cp Φ 0. Then Cp is a chain subcomplex of C and the quotient
complex C/Cp has the same chain modules as C except in degree p.
Since there is a short exact sequence in ^

0 > Cp > C > C\CP > 0

we have C ~ Cp 0 CjCp. Since C/Cp has m — 1 nonzero chain modules,
the lemma holds for it and so

C/Cp ~ φ g (C/Cp)q = © f f * p Cq

the last equality because (C/Cp)q = Cq if q Φ p and (C/Cp)p = 0. There-
fore, we have

c~cp® c/cp - e« cq

and the proof is complete.

COROLLARY 4.2. // C, C are chain complexes in ^ such that
Cn w C'n for all n, then C is Grothendieck equivalent to C".

Proof. The hypothesis implies that Cq &C'q for all q. Therefore,
by the lemma we have C ~ ®qC

g ~ @g C
fq — C\ which is the desired result.

The preceding results show that the Grothendieck equivalence
class of a chain complex C is entirely independent of the boundary
operator of C. Thus C is Grothendieck equivalent to C" if and only
if Cn is Grothendieck equivalent to Cn in the category ^// for each
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n. We now concern ourselves with an equivalence relation which con-
tains that of Grothendieck. The suspension S(C) of a chain complex
C is defined by S(C)n = C w and dn on S(C) equal to dn_, on C, for
each integer n. The Euler equivalence relation is generated by
& U ̂ ' where

^ - {(C, C 0 C") I 0 > C > C > C" > 0 is exact in

and

C 0 C 0 S ( C ) I C, C in

Notice that C" 0 S(C') is always of very special form. By redefining
the boundary maps, which according to the lemma does not change
the equivalence class, C" 0 S(C) is always exact, and in fact a sequence
which splits (i.e. each boundary map is the direct sum of an isomor-
phism and a zero map). It is also easy to see that split exact com-
plexes are isomorphic to C 0 S(C) for some C. Thus members of Euler
equivalence classes are obtained from members of Grothendieck equiva-
lence classes by "adjoining or removing as direct summands the split
exact chain complexes."

We shall, for the rest of this section, use ~ to denote Euler
equivalence. For C in <& let [C] denote its equivalence class. There
is a well-defined operation + on equivalence classes such that

This is clearly commutative and associative and has the equivalence
class of the trivial complex as unit element. Furthermore,

so that inverses exist. Thus, the set of equivalence classes is an
abelian group with respect to + . This group is called the Euler group
of i f and denoted by E(<ίf).

If C is a chain complex its homology module H(C) is the sequence
{Hn(C)} where Hn(C) = ker 3n/im3n+1. C is said to be acyclic if
Hn(C) = 0 for all n. Note that H{C) need not be a collection of
modules of ^ ' . We shall sometimes refer to the homology complex
H(C), it being understood that the boundary homomorphisms are the
zero homomorphisms. A chain complex is a special chain complex if
and only if kerd,,, im3w and Hn(C) all belong to ^ for every n.

LEMMA 4.3. Each special chain complex is Euler equivalent to
its homology complex.

Proof. Let C be a special chain complex, Z = {Zn} where Zn =
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ker 3n, and let B = {Bn} where Bn = im 3W+1. We consider Z and 1? to
be chain complexes with trivial boundary maps. Since there is a short

exact sequence 0 —»> Zn —* Cn — -̂> - B ^ —• 0 for every n it follows that
there is an exact sequence (in ^ because C is special)

0 > Z > C > S(B) > 0 .

Therefore, C ~ ZφS(B).
Since there is also an exact sequence 0 —• Bn —• Zn —• iί%(C) —> 0

for every w it follows that there is an exact sequence (in <& because
C is special)

0 >B >Z >H(C) >0 .

Therefore, Z~ BφH(C). Combining these we have

C - ΰ φ H(C) 0 S(B) ~ H(C) .

It follows from the preceding lemma that for special complexes
Euler equivalence is a homology invariant, in the sense that if C and
C" are special and H(C) is isomorphic (or even Euler equivalent) to
H{C) then C is Euler equivalent to C". It seems unlikely that iso-
morphism of the homology complexes always implies Euler equivalence.
However

PROPOSITION 4.4. If ^ has the property that each acyclic com-
plex is special, and if τ is a chain map of C into C such that
τ*: H(C) f* H(C), then C and C are Euler equivalent.

Proof. Let Cfί be the mapping cone of τ [2, p. 166]. Then C" =
C,-! θ C; and 3"(s, y) = (-d(x), τ{x) + d'(y)) for x e Cn^ and yeC'n. Let
a: C —> C" be the chain map a(y) = (0, y). Then α imbeds C as a
subcomplex of C" and the quotient complex C"ja(Cf) has the property
that (C"/aC'))n ^ Cn^ ^ (S(C))n for all n. Therefore, C"/a(C) is Euler
equivalent to S(C). From the short exact sequence

0 > C -^ C" > C"/a(C) > 0

we see that C" is Euler equivalent to C (BC"/a(C). Because
τ*\ H(C) ** H(C) it follows that H{C") = 0. By the lemma, C" is
Euler equivalent to H{C") = 0. Therefore, C φ S(C) ia Euler equiva-
lent to C 0 C"/a(C')f which is Euler equivalent to 0. Since C © S(C)
is also Euler equivalent to 0, it follows that C is Euler equivalent to C".

The preceding proof actually establishes a slightly stronger result:
if ^ has the property that each acyclic complex is Euler equivalent
to 0 and if a chain map τ:C—+C induces an isomorphism of homology,
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then C and C are Euler equivalent.
A category ^£ of modules is closed if every submodule and every

quotient module of a module in ^^ is also in ^ C . If ^ is closed,
every chain complex in ^ is special, and we have the following
description of Euler equivalence.

THEOREM 4.5. // ^/έ is closed, Euler equivalence is generated
by &" U &"' where

gg» = {(C, C) I Cn ** C; all n)

&"> = {(C, H(C)) \C in

Proof. By the lemma above &'" is contained in the Euler equiva-
lence relation and by the corollary previously, ^ p " is contained in the
Euler equivalence relation. To complete the proof it suffices to show
that the equivalence relation generated by &" U &f" (which we
denote by ΞΞ) contains & U &f.

Given any C, C let C" be the chain complex with

and with 3;'(α, 2/, «) = (0, z, 0). Then

and so

C" = H(C") = C .

Since C" Ξ C φ C ' φ S(C') we see that C Ξ C 0 C ® S(C). There-
fore, = contains ^ ' .

Given a short exact sequence 0 —> C" —̂ -> C ~+ C" —+ 0 let C be the
chain complex with Cn = Cn φ Ci 0 CLi and with

), 0, 0) .

Then

o) ̂  c; 0 c:.

Therefore, C = H(C) = C®C". Since it is clear that C = CφC'φS(C'),
by the fact that = contains &' we have

® ® ( ) = c = σ®c"

therefore, = contains &.

5* The Euler characteristic* In this section we define the Euler
characteristic and prove that it is an isomorphism of the Euler group
with a corresponding Grothendieck group. We deduce several con-
sequences from this.
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Given a chain complex C of ^ defined with respect to a category
of modules, its Euler characteristic χ(C) is the member of the

Grothendieck group G{^£) defined by

where 7 is the Grothendieck mapping. It is easy to verify that if
C, O are Euler equivalent then χ(C) = χ(C"). Hence, there is a well-
defined function

such that χ[C] — χ(C), and this function is easily seen to be a homo-
morphism.

THEOREM 5.1. The Euler characteristic induces an isomorphism

χ: E{^) ~ G(^t)

of the Euler group of <& with the Grothendieck group of

Proof. Any element of G(^f) can be expressed in the form
y[A] — Ύ[B] where A, B are modules in ^ C . Let C be any chain
complex with CQ = A, d = B and C5 = 0 for j Φ 0, 1. Then χ(C) =
Ί[A] — 7[B] showing that χ is an epimorphism.

We show that χ is a monomorphism. Note that for any chain
complex C in <g" we have

c~c@ s(o e s(S(O) - s(S(O).

From this it follows that if C has exactly one nonzero chain module
in degree qy then C is Euler equivalent to a chain complex having the
same nonzero chain module but occuring in degree 0 if q is even and
in degree 1 if q is odd. Thus, if C is any chain complex in ^ and
C is any chain complex with (C')o = φ , C2j, (C")i = φ , C2j+ί and
C'q = 0 if q Φ 0,1 we see that

C~^qO~ 0 y C2^ 0 0 , C2'+1 - (C')° 0 (C'Y - C .

Therefore, to prove % is a monomorphism it suffices to assume that
χ(C) = 0, and that C is such that Cn = 0 if n Φ 0, 1, and then to
show that [C] = 0.

Thus, we have τ(C0) — 7(Ci) = 0. From the explicit construction
of G(^f) it follows that there is a module A in ^f such that Co 0 A
is Grothendieck equivalent to C10 A. If C" is any chain complex

with C: = ft φ A JJ J Q' J then C - C" (in fact (C, C) belongs to

^ ' ) . By using equivalences in ^ we can replace any chain module
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in C" by one which is Grothendieck equivalent to it without changing
the Euler equivalence class. Thus, C" ~ C" where

JO if » * 0 , l
n \C0®A if n = 0 , Γ

Since C" = CJ' it follows that C" - 0 and so we see that C ~ 0 and
χ is a monomorphism.

If _, ̂  is the category of finitely generated modules over a prin-
cipal ideal domain, then ^ is closed and so Theorem 4.5 applies. In
this case, since there is an isomorphism, rank: G\^f\ **** Z, we can in-
terpret the Euler characteristic in the usual way as the function
χ(C) = Σ( — I)'" rank (Cy). Combining these remarks we have the
following

COROLLARY 5.2. Let <& be the category of finitely generated
chain complexes over a principal ideal domain. If Φ is a function
on & such that:

(a) If Cn ** C'n for all n, then Φ(C) = Φ(C).
(b) Φ(C) = Φ(H(C)) for all C.

Then Φ is a function of the Euler characteristic in the sense that
Φ — Ψ°ΊL where φ is some function on Z.

Let F be a field and let (C, T) be a finitely generated chain com-
plex C over F with a chain map T: C —+C. Then (C, T) is equivalent
to a finitely generated chain complex over the principal ideal domain
i^[λ]. By Theorem 4.5, Euler equivalence of two such complexes
(C, T) and (C, T"), regarded as finitely generated chain complexes over
F[X], is generated by the following (wherein C, C" are regarded as
chain complexes over F with respective chain maps T, T'):

(a) C is equivalent to C" if Tn: Cn -> Cn is isomorphic to T'n: C'n -> C'n
for all n (i.e. there is an isomorphism S%: Cn^Cf

n such that T'noSn = S'n° Tn).
(b) C with T is equivalent to H(C) with T* (where T* is the

linear map on homology induced by T).

The characteristic rational form χ' of (C, Γ) is defined by

X'(C, Γ) = Π charpoly (Γ2g)/Π charpoly (Γ2,+1) .

It follows from § 3 that the Euler characteristic of (C, T) is equiva-
lent to χ\ Combining all of these remarks we obtain the following.

COROLLARY 5.3. Let ^ be the category of (C, T) where C is a
finitely generated chain complex over a field F and T: C —> C is a
chain map. If Φ is a function on <£* such that:
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(a) // Tn: Cn -> Cn is isomorphic to T'n: C'n —> C'n for all n, then
Φ'(C, T) = Φ(C, T).

(b) Φ(C, T) = Φ(H(C), Γ,) /or any (C, Γ).
Then Φf is a function of the characteristic rational form in the sense
that Φf — φΌχ where φf is some function.

Note that for each n the Lefschetz number Λ(Tn) defined by
Λ(Tn) = ^(-l) yTr((Γy)*) is a function satisfying (a) and (b) of the
last theorem. The form of the relationship between the sequence
{Λ(Tn)} and χ'(C, T) is the same as the relationship between the
sequence {Tr (Sn)} and the characteristic polynomial of S (where S is
a linear operator on a finite dimensional vector space over F) given
in § 3. Similarly, in case F has characteristic zero, two objects (C, T)
and (C, T) in <if are Euler equivalent if and only if A(Tn) = Λ(T'n)
for all n.

We now turn to the case where ^// is the category of all finitely
generated projective modules over an associative ring R with a unit.
Let ^ be the class of finitely generated protective chain complexes
over R. Recall that K0(R) is the quotient of the Grothendieck group
G\^/έ\ modulo the subgroup generated by 7[R]. We define the Wall
characteristic Θ(C) e K0(R) to be the image of χ(C) under the quotient
homomorphism. We shall give an interpretation of the Wall chacteristic.

Note that any direct summand of a protective module is itself
pro jective and any direct summand of a finitely generated module is
itself finitely generated. Therefore, any direct summand of an object
in ^f is itself in

LEMMA 5.4. Each acyclic projective complex C is a special chain
complex.

Proof. Since Hn(C) = 0, we have ker dn = im dn+1 for all n. Thus
it suffices to show that ker dn is in ^ for all n. This is true for n
small enough because C is finitely nonzero. We show that if kerdn

is in ^ then ker3n + 1 is also in ^ and this will complete the
proof.

If ker3TO is in ^/ίf, then im3%+1 = ker3w is also in ^//. Since
there is a short exact sequence

0 > ker dn+ι • Cn+ί > im dn+ί • 0

and i m 3 w + 1 is projective, i t follows t h a t

Cn+ί ^ ker dn+10 im dn+1 .

Therefore, keτdn+1 being a direct summand of Cn+U belongs to
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As an immediate corollary to the preceding and Proposition 4.4
we have:

COROLLARY 5.5. // τ\ C —> C is a chain map of a member of
into another such that τ*: H(C) F& H(C'), then C is Euler equivalent
to C.

In particular, chain equivalent complexes are Euler equivalent.

THEOREM 5.6. Let C be a finitely generated projective chain
complex over R. Then C is chain equivalent to a finitely generated
free chain complex over R if and only if Θ(C) — 0.

Proof. It follows from the corollary above that if C is chain
equivalent to a finitely generated free chain complex C, then χ(C) =
χ(C') and so Θ{C) = Θ(C) = 0.

If C is a finitely generated projective chain complex, then for
any n there is a finitely generated projective module A such that
C , 0 4 is free. If C is the chain complex with

Ό j Φ n, n + 1

A j = n, n + 1

and d'n+1 = 1̂ , then the inclusion map C czC 0 C is a chain equivalence
and (C 0 C')n = Cn 0 A is free. By repeated use of this technique
we see that C is chain equivalent to a finitely generated projective
chain complex in which every chain module is free except possibly for
the nonzero one of highest degree.

Thus, to complete the proof it suffices to show that if C is a
finitely generated projective chain complex in which Cs is free if j Φ m,
for some fixed m, and Θ(C) = 0, then C is chain equivalent to a free
chain complex. The condition Θ(C) = 0 is equivalent to the condition
that Cm be stably free, and thus there are free modules, F, Fr such
that Cm 0 F ** Fr. Let C be the chain complex with

_ JO, j Φ m, m + 1
3 ~~ IF, j = m, m + 1

and with d'j+1 = 1F. Then C is chain equivalent to C0 C" and C φ C
is a finitely generated free chain complex.

This last result shows that Θ(C) is an obstruction to realizing C
by a finitely generated free complex. This is the way that Wall [3]
was led to introduce Θ(C).

We are indebted to B. Halpern and V. Singh for helpful conversations.
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