ON WITT'S THEOREM FOR UNIMODULAR QUADRATIC FORMS

D. G. James

Abstract

In this paper we give an integral generalization of Witt's theorem for quadratic forms. If J and K are sublattices of a unimodular lattice L, we investigate conditions under which an isometry from J to K will extend to an isometry of L.

Let L be a free Z-module (that is a lattice) of finite rank and $\Phi: L \times L \rightarrow \boldsymbol{Z}$ a unimodular symmetric bilinear form on L. We denote $\Phi(\alpha, \beta)$ by $\alpha \cdot \beta$, so that $\alpha \cdot \beta=\beta \cdot \alpha$. A bijective linear mapping $\varphi: J \rightarrow K$, where J and K are sublattices of L, is called an isometry if $\varphi(\alpha) \cdot \varphi(\beta)=\alpha \cdot \beta$ for $\alpha, \beta \in J$. Witt's theorem concerns the extension of such an isometry to an isometry of L (onto L). The set of isometries of L form the orthogonal group $O(L, Z)$ of L.

Vectors α and β in L are called orthogonal if $\alpha \cdot \beta=0 ; \alpha^{2}$ denotes $\alpha \cdot \alpha$, the norm of α. Any nonzero vector $\alpha \in L$ may be written as $\alpha=d \beta$ with $\beta \in L, d \in \boldsymbol{Z}$ maximal. If $d=1, \alpha$ is called primitive; d is the divisor of α. It is clear that an isometry φ of L must leave invariant the divisors of all vectors; that is, α and $\varphi(\alpha)$ have the same divisor.

A sublattice U of L is called primitive if all the vectors of U which are "primitive in U " are also "primitive in L ". In particular the basis vectors of U must be primitive (in L). In considering the extension of an isometry $\varphi: J \rightarrow K$ to an isometry of L, it clearly suffices to consider the case where J and K are primitive sublattices.

A primitive vector $\alpha \in L$ is called characteristic if $\alpha \cdot \beta \equiv \beta^{2}$ $(\bmod 2)$ for all $\beta \in L$. Again it is clear that an isometry must map a characteristic vector into a characteristic vector.

Let $r(L)$ and $s(L)$ denote the rank and signature of L. Then we shall prove the following.

Theorem. Let $\varphi: J \rightarrow K$ be an isometry between the primitive sublattices J and K of L, where

$$
\begin{equation*}
r(L)-|s(L)| \geqq 2(r(J)+1) \tag{1}
\end{equation*}
$$

Then φ extends to an isometry of L if and only if:
α a characteristic vector $\Leftrightarrow \varphi(\alpha)$ a characteristic vector (for each α in J).

This result is a generalization of Wall [1]; in fact we shall use
similar arguments and many of the results contained in Wall's paper.

1. Let $\left\langle\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right\rangle$ denote the lattice spanned by the vectors $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$. If L is the orthogonal direct sum of the sublattices U and V we write $L=U \bigoplus V$. In this case we say U (or V) splits $L . \quad U^{\perp}$ will denote the orthogonal complement of U.

We show first how to reduce the proof to the case where $s(L)=0$. Let $s(L)=s$. We consider the case $s>0$ ($s<0$ is similar). Enlarge the lattice L to

$$
L^{\prime}=L \oplus\left\langle\zeta_{1}\right\rangle \oplus \cdots \oplus\left\langle\zeta_{s}\right\rangle
$$

where $\zeta_{i}^{2}=-1,1 \leqq i \leqq s$, so that $s\left(L^{\prime}\right)=0$. Let

$$
J^{\prime}=J \oplus\left\langle\zeta_{1}\right\rangle \oplus \cdots \oplus\left\langle\zeta_{s}\right\rangle
$$

and

$$
K^{\prime}=K \oplus\left\langle\zeta_{1}\right\rangle \oplus \cdots \oplus\left\langle\zeta_{s}\right\rangle
$$

J^{\prime} and K^{\prime} are primitive sublattices of L^{\prime}. Furthermore if L satisfies (1)

$$
r\left(L^{\prime}\right)-s\left(L^{\prime}\right)=r(L)+s \geqq 2\left(r\left(J^{\prime}\right)+1\right)
$$

Also, extending φ to J^{\prime} by $\varphi\left(\zeta_{i}\right)=\zeta_{i}$, we see immediately that $\alpha \in J^{\prime}$ is characteristic if and only if $\varphi(\alpha) \in K^{\prime}$ is characteristic. (Notice that if $\alpha \in L^{\prime}$ is characteristic, all the coefficients of the ζ_{i} in α must be odd.) If, therefore, we establish the theorem when the signature is zero, we know φ extends to an isometry of L^{\prime}. Restricting back to L will establish the general result.

From now on we assume $s(L)=0$. Let H denote a hyperbolic plane of the form $\langle\lambda, \mu\rangle$ where $\lambda^{2}=\mu^{2}=0$ and $\lambda \cdot \mu=1$; and let I denote a sublattice of the form $\langle\xi, \rho\rangle=\langle\xi\rangle \oplus\langle\xi-\rho\rangle$ where $\xi^{2}=$ $\xi \cdot \rho=1$ and $\rho^{2}=0$. Then it is well known that any unimodular lattice of zero signature is either an orthogonal direct sum of H^{\prime} s (if improper) or an orthogonal direct sum of $I^{\prime} \mathrm{s}$ (if proper); see Wall [1, Th. 5]. We might also mention that if L is improper there are no primitive characteristic vectors.

Before proving the theorem we give an example to show the necessity of the restriction (1) we have placed on the ranks of L and J.

Example. Let

$$
L=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{n}
$$

where $H_{i}=\left\langle\lambda_{i}, \mu_{i}\right\rangle, 1 \leqq i \leqq n$. Take

$$
J=\left\langle\lambda_{1}, \cdots, \lambda_{n-1}, \lambda_{n}+u v \mu_{n}\right\rangle
$$

and

$$
K=\left\langle\lambda_{1}, \cdots, \lambda_{n-1}, u \lambda_{n}+v \mu_{n}\right\rangle
$$

where u and v are integers $(\neq \pm 1)$ such that $(u, v)=1$. We shall show that the isometry $\varphi: J \rightarrow K$ defined by

$$
\begin{gather*}
\varphi\left(\lambda_{i}\right)=\lambda_{i}, \quad 1 \leqq i \leqq n-1, \tag{2}\\
\varphi\left(\lambda_{n}+u v \mu_{n}\right)=u \lambda_{n}+v \mu_{n},
\end{gather*}
$$

does not extend to an isometry of L. For if it did, (2) and the conditions $\lambda_{i} \cdot \varphi\left(\mu_{n}\right)=\varphi\left(\lambda_{i}\right) \cdot \varphi\left(\mu_{n}\right)=\lambda_{i} \cdot \mu_{n}=0,1 \leqq i \leqq n-1$, would force

$$
\varphi\left(\mu_{n}\right)=x_{1} \lambda_{1}+x_{2} \lambda_{2}+\cdots+x_{n-1} \lambda_{n-1}+x \lambda_{n}+y \mu_{n}
$$

and

$$
\begin{aligned}
\varphi\left(\lambda_{n}\right)= & -u v x_{1} \lambda_{1}-u v x_{2} \lambda_{2}-\cdots-u v x_{n-1} \lambda_{n-1} \\
& +u(1-v x) \lambda_{n}+v(1-u y) \mu_{n}
\end{aligned}
$$

for some integers $x_{1}, \cdots, x_{n-1}, x, y$ as yet undetermined. But $\varphi\left(\mu_{n}\right)^{2}=$ $\mu_{n}^{2}=0$ implies that $x y=0$; while $\varphi\left(\lambda_{n}\right) \cdot \varphi\left(\mu_{n}\right)=1$ implies $x v+y u=1$. These two conditions are incompatible with our choice $u, v \neq \pm 1$. Thus we need, at least, $r(L)>2 r(J)$.

We shall now proceed with the proof of the theorem. There will be three stages in the proof.
(i) First we establish the result when L is improper. In this case there are no characteristic vectors to consider.
(ii) Secondly, we consider L proper, but with J and K containing no characteristic vectors.
(iii) Finally, we treat the general proper case.

Notation. The following notation will be used for an isometry. Let

$$
L=\left\langle\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right\rangle \oplus U=\left\langle\beta_{1}, \beta_{2}, \cdots, \beta_{m}\right\rangle \oplus U
$$

where $\alpha_{i} \cdot \alpha_{j}=\beta_{i} \cdot \beta_{j}, 1 \leqq i, j \leqq m$. Then

$$
\theta:\left\langle\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right\rangle \rightarrow\left\langle\beta_{1}, \beta_{2}, \cdots, \beta_{m}\right\rangle
$$

is the isometry of L defined by $\theta\left(\alpha_{i}\right)=\beta_{i}, 1 \leqq i \leqq m$, with θ restricted to U being the identity map.

Many of the isometries will be used repeatedly. We will label them $\theta_{1}, \theta_{2}, \cdots$ as they are defined so that we may refer back to them.
2. Throughout this section we let L be of the form

$$
L=\left\langle\lambda_{1}, \mu_{1}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{n}, \mu_{n}\right\rangle
$$

where each $\left\langle\lambda_{i}, \mu_{i}\right\rangle$ is a hyperbolic plane. The following lemma follows immediately from Wall [1, Th. 1].

Lemma 1. Let $r(L) \geqq 4$. For each primitive vector $\alpha \in L$ there exists an isometry $\psi \in o(L, \boldsymbol{Z})$ such that

$$
\psi(\alpha)=\lambda_{1}+\frac{1}{2} \alpha^{2} \mu_{1} .
$$

As a first step in the proof of the theorem we show there exists an isometry $\psi \in o(L, Z)$ such that $\psi(J)=\left\langle\alpha_{1}, \cdots, \alpha_{m}\right\rangle$, where

$$
\left\{\begin{align*}
\alpha_{1}= & \lambda_{1}+c_{1} \mu_{1} \tag{3}\\
\alpha_{2}= & a_{12} \mu_{1}+\lambda_{2}+c_{2} \mu_{2} \\
& \cdots \cdots \cdots \cdots \cdots \cdots \\
\alpha_{m} & =a_{1 m} \mu_{1}+a_{2 m} \mu_{2}+\cdots+a_{m-1 m} \mu_{m-1}+\lambda_{m}+c_{m} \mu_{m}
\end{align*}\right.
$$

We use induction on m. The case $m=1$ is Lemma 1. Assume now $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{h}$ have been constructed using an isometry ψ_{1}; that is $\psi_{1}(J)=\left\langle\alpha_{1}, \cdots, \alpha_{h}, \beta, \gamma, \cdots\right\rangle$. Adding to β linear combinations of $\alpha_{1}, \cdots, \alpha_{h}$ (if necessary) we may assume β has the form

$$
\beta=\sum_{i=1}^{n} b_{i} \mu_{i}+\sum_{i=h+1}^{n}\left(a_{i} \lambda_{i}+b_{i} \mu_{i}\right)
$$

By applying Lemma 1 on $E=\left\langle\lambda_{h+1}, \mu_{h+1}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{n}, \mu_{n}\right\rangle$ to the component of β in $E(r(E) \geqq 4$ by (1)), we may assume

$$
\begin{equation*}
\beta=\sum_{i=1}^{h} b_{i} \mu_{i}+a \lambda_{h+1}+b \mu_{h+1} \tag{4}
\end{equation*}
$$

If $(a, b)=1$ we may obtain α_{k+1} by using Lemma 1 on the component $a \lambda_{h+1}+b \mu_{h+1}$ in E. Otherwise we proceed as follows. We may assume β primitive, so that $\left(b_{1}, \cdots, b_{h}, a, b\right)=1$. Apply the isometry (writing k for $h+2$);

$$
\begin{aligned}
& \theta_{1}:\left\langle\lambda_{1}, \mu_{1}\right\rangle \oplus\left\langle\lambda_{2}, \mu_{2}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{h}, \mu_{h}\right\rangle \oplus\left\langle\lambda_{k}, \mu_{k}\right\rangle \rightarrow \\
& \quad\left\langle\lambda_{1}-c_{1} \mu_{k}, \mu_{1}+\mu_{k}\right\rangle \oplus\left\langle\lambda_{2}-a_{12} \mu_{k}, \mu_{2}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{h}-a_{1 h} \mu_{k}, \mu_{h}\right\rangle \\
& \quad \oplus\left\langle\lambda_{k}-\lambda_{1}+c_{1} \mu_{1}+a_{12} \mu_{2}+\cdots+a_{1 h} \mu_{h}+c_{1} \mu_{k}, \mu_{k}\right\rangle .
\end{aligned}
$$

Then, we see, $\theta_{1}\left(\alpha_{i}\right)=\alpha_{i}$ for $1 \leqq i \leqq h$, and $\theta_{1}(\beta)=\beta+b_{1} \mu_{k}$. Applying Lemma 1 to the component of $\theta_{1}(\beta)$ in E, namely $a \lambda_{h+1}+b \mu_{k+1}+b_{1} \mu_{k}$, we can transform it back to the form of (4), but now with

$$
\left(b_{2}, b_{3}, \cdots, b_{h}, a, b\right)=1
$$

Repeating this process, this time in $\left\langle\lambda_{1}, \mu_{1}\right\rangle^{\perp}$, we may obtain a new β this time with $\left(b_{3}, \cdots, b_{h}, a, b\right)=1$. Ultimately, we obtain a β with $(a, b)=1$, so that we may finish by using lemma 1 as before.

It now suffices to prove the theorem with $J=\left\langle\alpha_{1}, \cdots, \alpha_{m}\right\rangle$. We shall prove the theorem by induction on $r(J)$. When $r(J)=1$, the result follows from Wall (our Lemma 1). For the general case we may assume K has the form $\left\langle\alpha_{1}, \cdots, \alpha_{m-1}, \alpha\right\rangle$, with $\varphi: J \rightarrow K$ being the mapping defined by $\varphi\left(\alpha_{i}\right)=\alpha_{i}$ for $1 \geqq i \leqq m-1$, and

$$
\begin{equation*}
\varphi\left(\alpha_{m}\right)=\alpha=\sum_{i=1}^{m-1}\left(x_{i} \lambda_{i}+y_{i} \mu_{i}\right)+u \lambda_{m}+v \mu_{m} . \tag{5}
\end{equation*}
$$

(It suffices to consider $u \lambda_{m}+v \mu_{m}$ by Lemma 1). It remains to find an isometry $\psi \in o(L, Z)$ such that $\psi\left(\alpha_{i}\right)=\alpha_{i}$ for $1 \leqq i \leqq m-1$, and $\psi\left(\alpha_{m}\right)=\alpha$.

We show first that we may take $u=1$. Using Lemma 1, we may assume u divides v. Now $\alpha-\sum_{i=1}^{m-1} x_{i} \alpha_{i}$ is primitive (since K is a primitive lattice), so that

$$
\begin{equation*}
\left(u, z_{m-1}, \cdots, z_{2}, z_{1}\right)=1 \tag{6}
\end{equation*}
$$

where

$$
\left\{\begin{array}{c}
z_{m-1}=y_{m-1}-x_{m-1} c_{m-1} \tag{7}\\
\quad \cdots x_{m-1} a_{2 m-1} \\
z_{2}=y_{2}-x_{2} c_{2}-x_{3} a_{23}-\cdots \cdots-x_{m-1} a_{1 m-1} \\
z_{1}=y_{1}-x_{1} c_{1}-x_{2} a_{12}-\cdots \cdots x_{1}
\end{array}\right.
$$

We apply the isometry θ_{1} again, but with h replaced by $m-1$ and $k(=h+2)$ by $m+1$. As before $\theta_{1}\left(\alpha_{i}\right)=\alpha_{i}$ for $1 \leqq i \leqq m-1$, but now

$$
\theta_{1}(\alpha)=\alpha+z_{1} \mu_{m+1}
$$

Using Lemma 1 on $u \lambda_{m}+v \mu_{m}+z_{1} \mu_{m+1}$ in $\left\langle\lambda_{m}, \mu_{m}\right\rangle \oplus\left\langle\lambda_{m+1}, \mu_{m+1}\right\rangle$, we may replace α by a new α in which u divides z_{1}. By repeating this argument, now in $\left\langle\lambda_{1}, \mu_{1}\right\rangle^{\perp}$, we can get a new u again, this time also dividing z_{2}. Eventually, from (6), we may reduce u to 1 .

Finally, we reduce the x_{1}, \cdots, x_{m-1} in (5), in turn to zero. Apply the isometry

$$
\begin{aligned}
& \theta_{2}:\left\langle\lambda_{1}, \mu_{1}\right\rangle \oplus\left\langle\lambda_{2}, \mu_{2}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{m-1}, \mu_{m-1}\right\rangle \oplus\left\langle\lambda_{m}, \mu_{m}\right\rangle \rightarrow \\
& \quad\left\langle\lambda_{1}-x_{1} c_{1} \mu_{m}, \mu_{1}+x_{1} \mu_{m}\right\rangle \oplus\left\langle\lambda_{2}-x_{1} a_{12} \mu_{m}, \mu_{2}\right\rangle \\
& \quad \oplus \cdots \oplus\left\langle\lambda_{m-1}-x_{1} a_{1 m-1} \mu_{m}, \mu_{m-1}\right\rangle \\
& \quad \oplus\left\langle\lambda_{m}-x_{1} \lambda_{1}+x_{1} c_{1} \mu_{1}+x_{1} a_{12} \mu_{2}+\cdots+x_{1} a_{1 m-1} \mu_{n-1}+x_{1}^{2} c_{1} \mu_{m}, \mu_{m}\right\rangle
\end{aligned}
$$

Then we have $\theta_{2}\left(\alpha_{i}\right)=\alpha_{i}$ for $1 \leqq i \leqq m-1$, and

$$
\begin{aligned}
\theta_{2}(\alpha)= & \left(y_{1}+x_{1} c_{1}\right) \mu_{1}+x_{2} \lambda_{2}+\cdots+x_{m-1} \lambda_{m-1} \\
& +\left(y_{m-1}+x_{1} a_{m-1}\right) \mu_{m-1}+\lambda_{m}+w \mu_{m}
\end{aligned}
$$

so that the coefficient of λ_{1} is now zero. By repeating this process all the coefficients of $\lambda_{1}, \cdots, \lambda_{m-1}$ may be reduced to zero. But then, using the conditions $\alpha_{i} \cdot \alpha=\alpha_{i} \cdot \alpha_{m}$ for $1 \leqq i \leqq m-1$, and $\alpha^{2}=\alpha_{m}^{2}$, we find that we have succeeded in mapping α into α_{m}, while leaving α_{i}, $1 \leqq i \leqq m-1$, invariant. This completes the proof of the theorem when L is improper.
3. For the rest of this paper L will be considered to be a proper lattice with zero signature. Thus we have

$$
L=\left\langle\xi_{1}, \rho_{1}\right\rangle \oplus \cdots \oplus\left\langle\xi_{n}, \rho_{n}\right\rangle
$$

where $\xi_{i}^{2}=\xi_{i} \cdot \rho_{i}=1$ and $\rho_{i}^{2}=0$ for $1 \leqq i \leqq n$. By (1) we must have $n \geqq 2$. A primitive vector $\alpha=\sum_{i=1}^{n}\left(a_{i} \xi_{i}+b_{i} \rho_{i}\right)$ is characteristic if and only if $a_{i} \equiv 0(\bmod 2)$ and $b_{i} \equiv 1(\bmod 2)$ for each i. (We see this by applying the condition $\alpha \cdot \beta \equiv \beta^{2}(\bmod 2)$ with β ranging through the basis vectors ξ_{i}, ρ_{i}).

Lemma 2. A primitive vector $\alpha \in L$ may be embedded in a binary sublattice B which splits L. If α is characteristic then B is proper and B^{\perp} is improper. If α is not characteristic, then B is proper if α^{2} is odd, and B is improper if α^{2} is even.

Proof. From Wall [1, p. 333], if $\alpha^{2}=2 \alpha+1$ (and hence α is not characteristic), we can map α into $\xi_{1}+a \rho_{1}$. Thus an isometric image of α is contained in $\left\langle\xi_{1}, \rho_{1}\right\rangle$. Apply the inverse isometry to L. This will embed α in the inverse image of $\left\langle\xi_{1}, \rho_{1}\right\rangle$. If α is not characteristic and $\alpha^{2}=2 a$, then we may map α into

$$
\beta=(a-1) \rho_{1}+\xi_{1}+\xi_{2} .
$$

Then $\beta \cdot \rho_{2}=1$. Put $\zeta=\beta-a \rho_{2}$, so that $\zeta^{2}=0$ and $\zeta \cdot \rho_{2}=1$. Then $\beta \in H=\left\langle\zeta, \rho_{2}\right\rangle$, a binary sublattice splitting L. Thus α may similarly be embedded in an improper binary sublattice which splits L.

Finally, we consider the case where α is characteristic with norm $8 b$. Take a splitting of L of the form

$$
L=\langle\xi\rangle \oplus\langle\eta\rangle \oplus H_{2} \oplus \cdots \oplus H_{n}
$$

where $\xi^{2}=-\eta^{2}=1$. The vector $\beta=(2 b+1) \xi+(2 b-1) \eta$ is characteristic with norm $8 b$. Therefore α may be mapped by an isometry into $\beta \in\langle\xi\rangle \oplus\langle\eta\rangle$, and the result follows as before. This completes the proof of the lemma.

We will now consider the case where J and K do not contain characteristic vectors. We obtain an embedding of an isometric image of J as close as possible to that obtained in $\S 2$. Suppose we have already obtained $\psi(J)=\left\langle\alpha_{1}, \cdots, \alpha_{h}, \beta_{1}, \cdots, \beta_{k}\right\rangle$ where $\alpha_{1}, \cdots, \alpha_{h}$ are of the form given in (3) and thus embedded in a sublattice

$$
L_{h}=\left\langle\lambda_{1}, \mu_{1}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{h}, \mu_{h}\right\rangle
$$

which splits L. Assuming that $k \geqq 3$, we now show how to obtain α_{h+1} (and as a special case α_{1}, to start the construction).

At least one of the three vectors $\beta_{1}, \beta_{3}, \beta_{1}+\beta_{3}$ must have even norm. We may therefore assume, changing the basis of $\psi(J)$ if necessary, that β_{1}^{2} and β_{2}^{2} are even. Write

$$
\beta_{i}=\sigma_{i}+d_{i} \tau_{i}, \quad 1 \leqq i \leqq k
$$

where $\tau_{i} \in L_{\frac{1}{h}}$ is primitive and $\sigma_{i} \in L_{h}$. It is possible that the τ_{i}, while not characteristic vectors in L, may be characteristic vectors in $L_{h}^{\frac{1}{n}}$. However, replacing β_{1} by a linear combination of β_{1} and β_{2} if necessary, we may assume τ_{1} at least is not characteristic in $L_{h}^{{ }_{h}}$. (We may achieve this by eliminating a suitable basis vector ρ between τ_{1} and τ_{2}). There are two cases to consider.

Case 1. τ_{1}^{2} even. Then by Lemma 2, τ_{1} may be embedded in an improper binary sublattice H_{1} of $L_{\frac{1}{h}}$. Since $k \geqq 2$, we have from (1) that the rank of $\left(L_{h} \oplus H_{1}\right)^{\perp}$ is at least 4. Therefore, there exists another hyperbolic plane H_{2} such that

$$
L=L_{k} \oplus H_{1} \oplus H_{2} \oplus U
$$

But now $\left\langle\alpha_{1}, \cdots, \alpha_{h}, \beta_{1}\right\rangle \subseteq L_{h} \oplus H_{1} \oplus H_{2}$ and we may transform β_{1} into the form α_{k+1} using the results already established for improper lattices in $\S 2$.

Case 2. $\tau_{1}^{2}=2 a+1$ odd. Then since β_{1}^{2} is even, $d_{1}^{2} \tau_{1}^{2}$ is also even. As in the proof of Lemma 2, τ_{1} may be embedded in a sublattice $I=\langle\xi, \rho\rangle$ with $\tau_{1}=\xi+a \rho$. Again, from (1), we know the rank of $\left(L_{h} \oplus I\right)^{\perp}$ is at least 4 , so that we may write L in the form

$$
L=L_{k} \oplus I \oplus H \oplus U
$$

where $H=\langle\lambda, \mu\rangle$ is a hyperbolic plane. Adding a linear combination of $\alpha_{1}, \cdots, \alpha_{h}$ to β_{1}, we may assume β_{1} has the form

$$
\beta_{1}=\sum_{i=1}^{h} b_{i} \mu_{i}+d_{1}(\xi+a \rho)
$$

where $\left(b_{1}, \cdots, b_{h}, d_{1}\right)=1$. The next step is to apply isometries to
$L_{n} \oplus I \oplus H$ that leave $\alpha_{1}, \cdots, \alpha_{k}$ invariant, but change β_{1} into a form as above with $d_{1}=1$. As in §2, we may use θ_{1} on $L_{k} \oplus H$ and Lemma 2 to achieve this. Applying θ_{1} on $L_{k} \oplus H$, we transform β_{1} into $\beta_{1}+b_{1} \mu$, so that $d_{1} \tau_{1}$ becomes $d_{1} \tau_{1}+b_{1} \mu=d^{\prime} \tau^{\prime}$ (say), where $d^{\prime}=\left(d_{1}, b_{1}\right)$. If now $\tau^{\prime 2}$ is even we use case 1. Otherwise, as in Lemma 2, we transform τ^{\prime} into $\xi+a^{\prime} \rho$, and repeat the argument, this time introducing $b_{2} \mu$ by working in $\left\langle\lambda_{1}, \mu_{1}\right\rangle^{\perp}$. Ultimately, since we may reduce d_{1} to 1 , we must get a form with τ_{1}^{2} even, so that we can use Case 1.

In this manner we may apply a succession of isometries to J until we obtain $\psi(J)=\left\langle\alpha_{1}, \cdots, \alpha_{m-2}, \beta, \gamma\right\rangle$ where $\alpha_{1}, \cdots, \alpha_{m-2}$ are embedded in an improper sublattice L_{m-2} of L. Furthermore, we may assume β^{2} is even. Write $\beta=\sigma+d \tau$ where $\tau \in L_{m-2}^{\perp}$ is primitive, and $\sigma \in L_{m-2}$. By adding a linear combination of $\alpha_{1}, \cdots, \alpha_{m-2}$ to β, we may assume

$$
\begin{equation*}
\beta=\sum_{i=1}^{m-2} b_{i} \mu_{i}+d \tau \tag{8}
\end{equation*}
$$

and since J is primitive, we have ($\left.b_{1}, \cdots, b_{m-2}, d\right)=1$. τ may or may not be a characteristic vector in $L_{m-2}^{L_{1}}$. We show first how to reduce d to unity. By Lemma 2τ may be embedded in a binary lattice B. Again by (1), the rank of ($\left.L_{m-2} \oplus B\right)^{\perp}$ is at least 4 , so that we may write

$$
L=L_{m-2} \oplus B \oplus H \oplus U
$$

where $H=\langle\lambda, \mu\rangle$ is a hyperbolic plane. Using θ_{1} on $L_{m-2} \oplus H$ and Lemma 2, we reduce d to 1 as before. Then τ^{2} is even.

If τ is not characteristic in L_{m-2}^{\perp} we may use the argument of case 1 above to transform β into α_{m-1}. Suppose therefore τ is characteristic in L_{m-2}^{\perp}. But we know β is not characteristic in L. In (8), with $d=1$, it therefore follows that at least one of the coefficients b_{i} must be odd. For if they were all even, β would be characteristic in L. Say b_{s} is odd. We apply an isometry of type θ_{1} to

$$
\left\langle\lambda_{s}, \mu_{s}\right\rangle \oplus\left\langle\lambda_{s+1}, \mu_{s+1}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{m-2}, \mu_{m-2}\right\rangle \oplus H .
$$

Then $\theta_{1}\left(\alpha_{i}\right)=\alpha_{i}$ for $1 \leqq i \leqq m-2$, and $\theta_{1}(\beta)=\beta+b_{s} \mu$. Then τ becomes $\tau+b_{s} \lambda$ which is no longer characteristic in L_{m-2}^{b}. Therefore β may always be transformed into the form α_{m-1} as before.

It therefore suffices to consider the case $J=\left\langle\alpha_{1}, \cdots, \alpha_{m-1}, \gamma\right\rangle$. We treat $K=\varphi(J)$ in a similar manner. Since the norms of the vectors $\varphi\left(\alpha_{1}\right), \cdots, \varphi\left(\alpha_{m-1}\right)$ are even, and they are not characteristic vectors, they may be embedded in an improper sublattice L_{m-1}^{\prime} which splits L. Adding hyperbolic planes to L_{m-1} and L_{m-1}^{\prime} (they exist
since the rank of L_{m-1}^{\perp} is at least 4) and applying our theorem, already established for the improper case, we may assume $\varphi\left(\alpha_{i}\right)=\alpha_{i}$ for $1 \leqq i \leqq m-1$. Thus it suffices to consider K of the form $\left\langle\alpha_{1}, \cdots, \alpha_{m-1}, \delta\right\rangle$. There are now two cases depending on whether $\gamma^{2}=\delta^{2}$ is odd or even.

Case 1. $\gamma^{2}=\delta^{2}$ odd. Using Lemma 2 and $\alpha_{1}, \cdots, \alpha_{m-1}$ to eliminate the coefficients of $\lambda_{1}, \cdots, \lambda_{m-1}, \gamma$ may be written as

$$
\begin{equation*}
\gamma=\sum_{i=1}^{m-1} u_{i} \mu_{i}+d\left(\xi^{\prime}+a \rho^{\prime}\right) \tag{9}
\end{equation*}
$$

where $\left(u_{1}, \cdots, u_{m-1}, d\right)=1$. L may be split thus

$$
L=L_{m-1} \oplus\left\langle\xi^{\prime}, \rho^{\prime}\right\rangle \oplus\langle\xi, \rho\rangle \oplus U
$$

We show first how to reduce d to unity. Apply the isometry

$$
\begin{aligned}
& \theta_{3}:\left\langle\lambda_{1}, \mu_{1}\right\rangle \oplus\left\langle\lambda_{2}, \mu_{2}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{m-1}, \mu_{m-1}\right\rangle \oplus\langle\xi, \rho\rangle \rightarrow \\
& \quad\left\langle\lambda_{1}-c_{1} \rho, \mu_{1}+\rho\right\rangle \oplus\left\langle\lambda_{2}-a_{12} \rho, \mu_{2}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{m-1}-a_{1 m-1} \rho, \mu_{m-1}\right\rangle \\
& \quad \oplus\left\langle\xi-\lambda_{1}+c_{1} \mu_{1}+a_{12} \mu_{2}+\cdots+a_{1 m-1} \mu_{m-1}+c_{1} \rho, \rho\right\rangle
\end{aligned}
$$

We may easily check that $\theta_{3}\left(\alpha_{i}\right)=\alpha_{i}$ for $1 \leqq i \leqq m-1$. Furthermore $\theta_{3}(\gamma)=\gamma+u_{1} \rho$. Mapping $d\left(\xi^{\prime}+a \rho^{\prime}\right)+u_{1} \rho$ back into $\left\langle\xi^{\prime}, \rho^{\prime}\right\rangle$ we may restore γ to the form (9), but now with d dividing u_{1}. Now repeating this process in $\left\langle\lambda_{1}, \mu_{1}\right\rangle^{\perp}$, we may obtain a new γ with d also dividing u_{2}. Since $\left(u_{1}, \cdots, u_{m-1}, d\right)=1$ we ultimately reach a form with $d=1$.

Using again Lemma 2, we may arrange for δ to have the form

$$
\begin{equation*}
\delta=\sum_{i=1}^{m-1}\left(x_{i} \lambda_{i}+y_{i} \mu_{i}\right)+f\left(\xi^{\prime}+e \rho^{\prime}\right) \tag{10}
\end{equation*}
$$

We may assume $\delta-\sum_{i=1}^{m-1} x_{i} \alpha_{i}$ is primitive (since K is primitive) and therefore, using the notation of (7)

$$
\left(f, z_{1}, z_{2}, \cdots, z_{m-1}\right)=1
$$

Applying θ_{3}, we find $\theta_{3}(\delta)=\delta+z_{1} \rho$. By the usual chain of arguments we may assume $f=1$ in (10).

Finally we apply isometries that reduce x_{1}, \cdots, x_{m-1} in turn to zero. Define

$$
\begin{aligned}
& \theta_{4}\left\langle\lambda_{1}, \mu_{1}\right\rangle \oplus\left\langle\lambda_{2}, \mu_{2}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{m-1}, \mu_{m-1}\right\rangle \\
& \quad \oplus\left\langle\xi^{\prime}, \rho^{\prime}\right\rangle \rightarrow\left\langle\lambda_{1}-c_{1} x_{1} \rho^{\prime}, \mu_{1}+x_{1} \rho^{\prime}\right\rangle \\
& \quad \oplus\left\langle\lambda_{2}-x_{1} a_{12} \rho^{\prime}, \mu_{2}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{m-1}-x_{1} a_{1 m-1} \rho^{\prime}, \mu_{m-1}\right\rangle \\
& \oplus\left\langle\xi^{\prime}-x_{1} \lambda_{1}+x_{1} c_{1} \mu_{1}+x_{1} a_{12} \mu_{2}+\cdots+x_{1} a_{1 m-1} \mu_{m-1}+x_{1}^{2} c_{1} \rho^{\prime}, \rho^{\prime}\right\rangle
\end{aligned}
$$

Then $\theta_{4}\left(\alpha_{i}\right)=\alpha_{i}$ for $1 \leqq i \leqq m-1$, and

$$
\begin{aligned}
\theta_{4}(\delta)= & \left(y_{1}+x_{1} c_{1}\right) \mu_{1}+x_{2} \lambda_{2}+\cdots+x_{m-1} \lambda_{m-1} \\
& +\left(y_{m-1}+x_{1} a_{1 m-1}\right) \mu_{m-1}+\xi^{\prime}+e^{\prime} \rho^{\prime}
\end{aligned}
$$

We have thus reduced the coefficient of λ_{1} to zero. Proceeding in this manner we may reduce all the coefficients of $\lambda_{1}, \cdots, \lambda_{m-1}$ to zero. Using the conditions $\alpha_{i} \cdot \gamma=\alpha_{i} \cdot \delta$ and $\gamma^{2}=\delta^{2}$, we find we have mapped δ into γ, and hence K into J, by an isometry of L. This completes the proof in this case.

Case 2. $\gamma^{2}=\delta^{2}$ even. Write $\gamma=\sigma+d \tau$ where $\tau \in L_{m-1}^{\perp}$ is primitive and $\sigma \in L_{m-1}$. We first show that we may take $d=1$. We use a combination of the previous methods. We may assume γ has the form (compare (8))

$$
\gamma=\sum_{i=1}^{m-1} u_{i} \mu_{i}+d \tau
$$

where $\left(u_{1}, \cdots, u_{m-1}, d\right)=1$. If τ is characteristic in $L_{m-1}^{\frac{1}{m}}$, we may embed τ in a proper binary lattice B such that

$$
L_{m-1}^{\perp}=B \oplus H_{1} \oplus \cdots \oplus H_{t}
$$

Applying the isometry θ_{1} on $L_{m-1} \oplus H_{1}$, as before, we may assume d divides u_{1}. If τ is not characteristic in $L_{m-1}^{\frac{1}{1}}$, we embed τ in a binary lattice B so that L splits thus

$$
L=L_{m-1} \oplus B \oplus\langle\xi, \rho\rangle \oplus U
$$

Applying θ_{3} on $L_{m-1} \oplus\langle\xi, \rho\rangle$, as before, we may assume d divides u_{1}. Proceeding in this manner we reduce d to unity. Then τ^{2} is even and may be embedded in a hyperbolic plane H (after another isometry if τ is characteristic in L_{m-1}^{\perp}), so that, in fact, γ takes the form α_{m} given in (3).

By similar reasoning δ may be written

$$
\delta=\sum_{i=1}^{m-1}\left(x_{i} \lambda_{i}+y_{i} \mu_{i}\right)+d \tau,
$$

d reduced to unity, and τ embedded in H. Finally we reduce the coefficients x_{1}, \cdots, x_{m-1} to zero by applying θ_{2}, exactly as at the end of § 2.

This completes the proof of the theorem when J and K contain no characteristic vectors.
4. It remains for us to consider the case where J and K contain characteristic vectors. As in $\S 3, L$ has the form

$$
L=\left\langle\xi_{1}, \rho_{1}\right\rangle \oplus \cdots \oplus\left\langle\xi_{n}, \rho_{n}\right\rangle
$$

where $\xi_{i}^{2}=\xi_{i} \cdot \rho_{i}=1$ and $\rho_{i}^{2}=0,1 \leqq i \leqq n$.
We may choose a basis for J that contains only one characteristic vector; for example, eliminate the coefficients of ρ_{1} in all but one of the basis vectors. Applying the results of the previous section, it therefore suffices to consider the special case where

$$
J=\left\langle\alpha_{1}, \cdots, \alpha_{m-2}, \beta, \gamma\right\rangle \quad \text { and } \quad K=\left\langle\alpha_{1}, \cdots, \alpha_{m-2}, \beta, \delta\right\rangle
$$

with the α_{i} as in (3), $\delta=\varphi(\gamma)$ is characteristic, and with β either α_{m-1} (if β^{2} is even) or of the form given in (9) with $d=1$. There are therefore two cases to consider depending on whether the norm of β is even or odd.

Case 1. β^{2} even; so that $\beta=\alpha_{m-1}$ and $J=\left\langle\alpha_{1}, \cdots, \alpha_{m-1}, \gamma\right\rangle . \quad \gamma$ may be assumed to have the form

$$
\gamma=\sum_{i=1}^{m-1} u_{i} \mu_{i}+d(2 \xi+(2 e-1) \rho)
$$

(after using the α_{i} to eliminate the coefficients of the λ_{i}, and Lemma 2 to simplify the component of γ in $\left.L_{m-1}^{\perp}\right)$. L may now be written

$$
L=L_{m-1} \oplus\langle\xi, \rho\rangle \oplus U
$$

where U is an orthogonal sum of hyperbolic planes. By the usual argument we may reduce d to unity. Similarly, we can transform δ into

$$
\delta=\sum_{i=1}^{m-1}\left(x_{i} \lambda_{i}+y_{i} \mu_{i}\right)+2 \xi+(2 f-1) \rho
$$

It therefore remains to transform δ into a form where the coefficients of λ_{i} are zero. Since δ is characteristic

$$
x_{i}=\delta \cdot \mu_{i} \equiv \mu_{i}^{2} \equiv 0(\bmod 2), \quad 1 \leqq i \leqq m-1
$$

Now apply the isometry

$$
\begin{aligned}
\theta_{5}:\left\langle\lambda_{1}, \mu_{1}\right\rangle & \oplus\left\langle\lambda_{2}, \mu_{2}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{m-1}, \mu_{m-1}\right\rangle \\
& \oplus\langle\xi, \rho\rangle \rightarrow\left\langle\lambda_{1}-\frac{1}{2} x_{1} c_{1} \rho, \mu_{1}+\frac{1}{2} x_{1} \rho\right\rangle \\
& \oplus\left\langle\lambda_{2}-\frac{1}{2} x_{1} a_{12} \rho, \mu_{2}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{m-1}-\frac{1}{2} x_{1} a_{1 m-1} \rho, \mu_{m-1}\right\rangle \\
& \oplus\left\langle\xi-\frac{1}{2} x_{1} \lambda_{1}+\frac{1}{2} x_{1} c_{1} \mu_{1}+\frac{1}{2} x_{1} a_{12} \mu_{2}+\cdots\right. \\
& \left.+\frac{1}{2} x_{1} a_{1 m-1} \mu_{m-1}+\frac{1}{4} x_{1}^{2} c_{1} \rho, \rho\right\rangle
\end{aligned}
$$

Then $\theta_{5}\left(\alpha_{i}\right)=\alpha_{i}$ for $1 \leqq i \leqq m-1$, and

$$
\begin{aligned}
\theta_{5}(\delta)= & \left(y_{1}+x_{1} c_{1}\right) \mu_{1}+x_{2} \lambda_{2}+\cdots+x_{m-1} \lambda_{m-1} \\
& +\left(y_{m-1}+x_{1} a_{1 m-1}\right) \mu_{m-1}+2 \xi+\left(2 f^{\prime}-1\right) \rho .
\end{aligned}
$$

We have thus reduced the coefficient of λ_{1} to zero. Proceeding in this manner, we may reduce all the coefficients of the λ_{i} in turn to zero. Finally, since $\alpha_{i} \cdot \gamma=\alpha_{i} \cdot \delta$ and $\gamma^{2}=\delta^{2}$, the coefficients of δ now match those in γ, so that we have mapped δ into γ, and so K into J. This completes the proof in this case.

Case 2. β^{2} odd. Then β may be chosen as

$$
\beta=\sum_{i=1}^{m-2} b_{i} \mu_{i}+\xi+b \rho .
$$

Using $\alpha_{1}, \cdots, \alpha_{m-2}$ and β to eliminate the coefficients of $\lambda_{1}, \cdots, \lambda_{m-2}$ and ξ, we may write γ as

$$
\gamma=\sum_{i=1}^{m-2} u_{i} \mu_{i}+u \rho+d\left(2 \xi^{\prime}+(2 e-1) \rho^{\prime}\right)
$$

L is now split into the form

$$
L=L_{m-2} \oplus\langle\xi, \rho\rangle \oplus\left\langle\xi^{\prime}, \rho^{\prime}\right\rangle \oplus H \oplus U
$$

where $H=\langle\lambda, \mu\rangle$ and U is an improper lattice (see Lemma 2). We now reduce the coefficient d to unity. Isometries on $L_{m \rightarrow 2} \oplus\langle\xi, \rho\rangle \oplus H$ of the type

$$
\begin{aligned}
\theta_{6}: & \left\langle\lambda_{1}, \mu_{1}\right\rangle \oplus\left\langle\lambda_{2}, \mu_{2}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{m-2}, \mu_{m-2}\right\rangle \oplus\langle\xi, \rho\rangle \\
& \oplus\langle\lambda, \mu\rangle \rightarrow\left\langle\lambda_{1}-c_{1} \mu, \mu_{1}+\mu\right\rangle \oplus\left\langle\lambda_{2}-a_{12} \mu, \mu_{2}\right\rangle \oplus \cdots \\
& \oplus\left\langle\lambda_{m-2}-a_{1 m-2} \mu, \mu_{m-2}\right\rangle \oplus\left\langle\xi-b^{1} \mu, \rho\right\rangle \\
& \oplus\left\langle\lambda-\lambda_{1}+c_{1} \mu_{1}+a_{12} \mu_{2}+\cdots+a_{1 m-2} \mu_{m-2}+b_{1} \rho+c_{1} \mu, \mu\right\rangle
\end{aligned}
$$

leave $\alpha_{1}, \cdots, \alpha_{m-2}$ and β invariant. γ is transformed into $\gamma+u_{1} \mu$, so that with the usual argument we may assume d divides u_{1}. We may transform γ in this manner into a form where $(u, d)=1$.

Since γ is characteristic we know $\gamma \cdot \xi^{\prime} \equiv 1(\bmod 2)$, and hence that d is odd. Now apply the isometry

$$
\begin{aligned}
\theta_{7}:\langle\xi, \rho\rangle & \oplus\langle\lambda, \mu\rangle \rightarrow\langle\xi-2 b \mu, \rho+2 \mu\rangle \\
& \oplus\langle\lambda-2 \xi+2(1+b) \rho+2(2 b+1) \mu, \mu\rangle
\end{aligned}
$$

This leaves $\alpha_{1}, \cdots, \alpha_{m-2}$ and β invariant and transforms γ into $\gamma+2 u \mu$. Since $(2 u, d)=1$, we may reduce d to 1 in γ.

As above we may also put $\delta=\varphi(\gamma)$ into the form

$$
\delta=\sum_{i=1}^{m-2}\left(x_{i} \lambda_{i}+y_{i} \mu_{i}\right)+v \xi+w \rho+2 \xi^{\prime}+(2 f-1) \rho^{\prime} .
$$

Since δ is characteristic, we have $x_{i} \equiv y_{i} \equiv 0(\bmod 2)$ for each i, $v \equiv 0(\bmod 2)$ and $w \equiv 1(\bmod 2)$.

It now remains to reduce the coefficients $x_{1}, \cdots, x_{m-2}, v$ to zero. First apply the isometry

$$
\begin{aligned}
\theta_{8}:\left\langle\lambda_{1},\right. & \left.\mu_{1}\right\rangle \oplus\left\langle\lambda_{2}, \mu_{2}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{m-2}, \mu_{m-2}\right\rangle \oplus\langle\xi, \rho\rangle \oplus\left\langle\xi^{\prime}, \rho^{\prime}\right\rangle \rightarrow \\
& \left\langle\lambda_{1}-\frac{1}{2} x_{1} c_{1} \rho^{\prime}, \mu_{1}+\frac{1}{2} x_{1} \rho^{\prime}\right\rangle \oplus\left\langle\lambda_{2}-\frac{1}{2} x_{1} a_{12} \rho^{\prime}, \mu_{2}\right\rangle \oplus \cdots \\
\oplus & \left\langle\lambda_{m-2}-\frac{1}{2} x_{1} a_{1 m-2} \rho^{\prime}, \mu_{m-2}\right\rangle \oplus\left\langle\xi-\frac{1}{2} x_{1} b_{1} \rho^{\prime}, \rho\right\rangle \\
\oplus & \left\langle\xi^{\prime}-\frac{1}{2} x_{1} \lambda_{1}+\frac{1}{2} x_{1} c_{1} \mu_{1}+\frac{1}{2} x_{1} a_{12} \mu_{2}+\cdots\right. \\
& \left.+\frac{1}{2} x_{1} a_{1 m-2} \mu_{m-2}+\frac{1}{2} x_{1} b_{1} \rho+\frac{1}{4} x_{1}^{2} c_{1} \rho^{\prime}, \rho^{\prime}\right\rangle .
\end{aligned}
$$

Then $\theta_{8}\left(\alpha_{i}\right)=\alpha_{i}$ for $1 \leqq i \leqq m-2, \theta_{8}(\beta)=\beta$, and in $\theta_{8}(\delta)$ the coefficient of λ_{1} is zero. Working now in $\left\langle\lambda_{1}, \mu_{1}\right\rangle^{\perp}$ we reduce the coefcient of λ_{2} to zero. We may therefore assume

$$
x_{1}=x_{2}=\cdots=x_{m-2}=0
$$

The final step, the reduction of v to zero appears to be more difficult. If $v \equiv 0(\bmod 4)$ we may apply the isometry

$$
\begin{aligned}
\theta_{9}:\langle\xi, \rho\rangle & \oplus\left\langle\xi^{\prime}, \rho^{\prime}\right\rangle \rightarrow\left\langle\xi-\frac{1}{2} v b \rho^{\prime}, \rho+\frac{1}{2} v \rho^{\prime}\right\rangle \\
& \oplus\left\langle\xi^{\prime}-\frac{1}{2} v \xi+\frac{1}{2} v(1+b) \rho+t \rho^{\prime}, \rho^{\prime}\right\rangle
\end{aligned}
$$

where $2 t=(1 / 4) v^{2}(1+2 b)$. (If $v \equiv 2(\bmod 4)$ then $\left.t \notin Z\right)$. Then θ_{9} leaves $\alpha_{1}, \cdots, \alpha_{m-2}$ and β invariant, while the coefficient of ξ in $\theta_{9}(\delta)$ is reduced to zero. From the various products $\delta \cdot \alpha_{i}=\gamma \cdot \alpha_{i}$, $1 \leqq i \leqq m-2, \delta \cdot \beta=\gamma \cdot \beta$ and $\delta^{2}=\gamma^{2}$ we see that all the coefficients of δ (actually an isometric image of our original δ) now match those of γ. Thus we have mapped δ into γ and so K into J.

If, however, $v \equiv 2(\bmod 4)$ we must modify the above argument. We first change the basis of L so that $G=\left\langle\xi^{\prime}, \rho^{\prime}\right\rangle \oplus\langle\lambda, \mu\rangle$ becomes $G=\left\langle\xi_{1}, \rho_{1}\right\rangle \oplus\left\langle\xi_{2}, \rho_{2}\right\rangle$ where $\xi_{i}^{2}=\xi_{i} \cdot \rho_{i}=1$ and $\rho_{i}^{2}=0$ for $i=1,2$. Since the characteristic vector $2 \xi^{\prime}+(2 f-1) \rho^{\prime}$ in G can be mapped into any other characteristic vector of G by an isometry, we may assume δ has the form

$$
\delta=\sum_{i=1}^{m-2} y_{i} \mu_{i}+v \hat{\xi}+w \rho+2 \xi_{1}+\left(2 e_{1}-1\right) \rho_{1}+2 \xi_{2}+\left(2 e_{2}-1\right) \rho_{2}
$$

where e_{1} is chosen such that

$$
2 e_{1}+w-1 \equiv 0(\bmod 4)
$$

(recall that $w \equiv 1(\bmod 2)$ since δ is characteristic).
We now apply the isometry

$$
\begin{aligned}
\theta_{10}:\langle\xi, \rho\rangle \oplus & \left\langle\xi_{1}, \rho_{1}\right\rangle \rightarrow \\
& \left\langle(1-b) \xi+b(1+b) \rho+b \xi_{1}+b(b-1) \rho_{1}\right. \\
& \left.\xi-b \rho-\xi_{1}+(1-b) \rho_{1}\right\rangle \\
\oplus & \left\langle-b \xi+b(1+b) \rho+(1+b) \xi_{1}+b(b-1) \rho_{1}\right. \\
& \left.-\xi+(1+b) \rho+\xi_{1}+b \rho_{1}\right\rangle
\end{aligned}
$$

Again $\alpha_{1}, \cdots, \alpha_{m-2}$ and β are left invariant by θ_{10}. But the coefficient of ξ is changed from v to $v^{\prime}=v-v b+w-2 b-\left(2 e_{1}-1\right)$. But now

$$
\begin{aligned}
v^{\prime} & \equiv 2-2 b+w-2 b-2 e_{1}+1 \\
& \equiv 2 e_{1}-1+w \equiv 0(\bmod 4) .
\end{aligned}
$$

After restoring G to the form $\left\langle\xi^{\prime}, \rho^{\prime}\right\rangle \oplus\langle\lambda, \mu\rangle$ we are in a position to finish the proof by means of the isometry θ_{9} as above.

Reference

1. C. T. C. Wall, On the orthogonal groups of unimodular quadratic forms, Math. Ann. 147 (1962), 328-338.

Received August 23, 1967. This research was partially supported by the National Science Foundation through grant GP-6663.

The Pennsylvania State University

