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HOMOMORPHISMS OF SEMI-SIMPLE ALGEBRAS

JAMES D. STEIN, JR.

Let v : IX —> 53 be a Banach algebra homomorphism of a
semi-simple Banach algebra II. The purpose of this paper is
to investigate certain topological properties of v under various
assumptions about II.

Given a Banach algebra homomorphism v : 11 —> 33, let S(v, 33) be
the set of all 6 e 93 such that there is a sequence {xn e 111 n = 1, 2, •}
with lim^oo xn = 0, lim*^ v(xn) = b; and let S(v, U) be the set of all
xeU such that there is a sequence {xn e U | n = 1, 2, •} with
lim^oo χn = 0, lim^^ v(xn) = v(x). Each of these sets is a two-sided
closed ideal, in U or in the closure of y(U), and the closed graph theorem
shows that v is continuous if and only if S(v, 33) = (0).

This paper is divided into two sections. In the first it is shown
that, if U is a B*-algebra, then S(v, U) is the closure of the kernel
of v, thus extending a result of Cleveland ([2], p. 1103), and that, if
U is a commutative regular semi-simple algebra and v is an isomorphism,
then S(v, II) = (0). The second section is devoted to an analysis of
the Bade-Curtis [1] decomposition of homomorphisms of C(X), the
algebra of all continuous complex-valued functions on a compact
Hausdorff space X.

I* Homomorphisms of jB*-algebras* Let v : U —+ 33 be a Banach
algebra homomorphism of a I?*-algebra U, and let 33 be the closure
of v(VL) (this latter condition will remain in force throughout the
paper). Let K denote the kernel of v. We recall that a commuta-
tive B*-algebra is either the algebra of all continuous complex-valued
functions with supremum norm on some compact Hausdorff space,
or those which vanish at infinity on a locally compact Hausdorff space.
We let C(X) denote the former, and Co(-X") the latter.

The first lemma is an easy extension of a well-known result for
compact Hausdorff spaces ([3], p. 93), and is stated without proof.

LEMMA I.I. Let X be a locally compact Hausdorff space, I a
closed ideal in C0(X). Then there is a closed set X^X such that
I = {feC0(X)\f(XI) = 0}.

The following lemma enables us to locate useful elements in a
closed ideal in C0(X), and is a consequence of Theorem 2.7.23 of [4].

LEMMA 1.2. Let X be locally compact Hausdorff, F a finite
subset of X. Let T(F) denote the set of all functions f in C0(X)
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which vanish on some open neighborhood Nf of F, the neighborhood
depending on f, and let M(F) = {feC0(X)\f(F) = 0}. Let A be an
ideal in C0(X) such that A = M(F). Let ge T(F), and assume that
g vanishes outside a compact set. Then g e A.

If xeK, let xn = (l/n)x for n = 1, 2, . Clearly l i m ^ xn = 0
and lim^^ v(xn) = 0 = v(x), so x e S(v, U). Since S(v, U) is a closed
ideal, we therefore have KQS(v, 11).

THEOREM I.I. S(v, U) - K.

Proof. Let S = S(v,U), and assume K φ S. By [4], Theorem 4.9.2,
S is a *-ideal, and is therefore the linear span of its self-ad joint
elements. Since S Φ K, we can therefore find a self-adjoint element
y in S~K. Let tt0 = C0(X) be the Banach algebra generated by y.
Let v0 = v I ΐt0, and let Ko = K n Uo. J?o is a closed ideal in 1IO, and
so there is a closed set F such that KQ — {feU\f(F) = 0}. We now
endeavor to show that F = 0 this will show that Uo £ ίΓ, and con-
sequently that K = S.

We first show that F is finite. If there is an infinite sequence
{xn I n = l, 2, •} contained in .P, we can choose sequences

{Vn\n = l,2, ...} and {Un\n = 1,2, ...}

of open sets such that xne Un^Un^ Vn and m=£w=>FmίΊ F n = 0 .
By Urysohn's Lemma, choose functions fn e C0(X) such that fn{Un) =
1, Λ T O = 0, and 0 ^ /w < 1. Let #TO = /i/3. Since Λ(F) Φ 0, clearly
2;0(/n) ^ 0. But since m Φ n=>gmgn = 0, by [2], Theorem 4.9, there
is an integer N such that n ^ N=*vo(fn) = vo(gl) = 0. So .F must
be finite.

Now assume that F Φ 0 . Since X is locally compact, there is
an open set E such that FQE and E is compact. Choose open sets
U and V such that F g Ϊ/S UQ F g F g .57. Define_ p e C0(X) by
p(ϊ^) = l,p(V) = 0, 0 ^p^ 1. Since p(F) ^ 0, p ^ ^ 0 , and hence
v(p) Φ 0. We note that (p2 - p){U\J V) = 0, so p2 — p vanishes on
a neighborhood of F and outside the compact set E. So, by Lemma
1.2, we see that p2 - peK0, and so v(p2 - p) = 0 => v(p)2 = v{p). We
have thus found an element pe S such that q — v(p) is a nonzero
idempotent in S(v, S3), since it is clear that v(S)SS(v, S3).

Since p e S , there is a sequence {&Λ ell | n = 1, 2, •} such that
lim%_ xn = 0, lim^eo v{xn) = q = v(p). Since limn_oβ arΛ = 0, the spectrum
of a?w, and consequently the spectrum of v(xn), eventually lies in a
small neighborhood of 0. Since q is a nonzero idempotent, the spectrum
of q is either {0,1} or {1} and so, by a result of Newburgh quoted
in [4], p. 37, the spectrum of v{xn) eventually has points arbitrarily
close to 1. This contradiction establishes the theorem.
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Now let v: U —+ 33 be an isomorphism of a commutative regular
semisimple algebra U. We show that S(v, U) = (0).

THEOREM 1.2. S(v, U) = (0).

Proof. Assume there is an s e S(v, ϊt) with s]=£ 0. Then there
is a sequence {xn e It | n = 1, 2, •} such that

l i m ^ xn = 0, lim^oo y(a>Λ) = v(s) .

Let JF7 denote the Bade-Curtis [1] singularity set of v, and let / be a
function in 11 which is zero on a neighborhood of F. If we let Uo

denote the algebra of all functions in U vanishing on that neighborhood,
then by [1], Theorem 3.9, v is continuous on Uo, and so

oo x j = 0 => lim^oo v(a?Λ/) = 0 .

But v(sf) = lim^oo v(xnf) = 0, and since y is an isomorphism, s/ = 0.
Consequently the support of s consists of isolated points. Select one
such isolated point p, and multiply s by a function g which is l/s(p)
on p and zero elsewhere; the product sg is an idempotent and is in
S(v,VL) but is nonzero, a contradiction to [2], p. 1102, and the fact
that v is an isomorphism.

Since there exist discontinuous isomorphisms of commutative re-
gular semi-simple algebras ([1], pp. 597-598), we see that having
§>(v, U) = (0) for an isomorphism is not enough to insure continuity
of that isomorphism.

II* Homomorphisms of C(X). Throughout this section we shall
be concerned with a Banach algebra homomorphism v : C(X) —> 33, X a
compact Hausdorff space. Using the Bade-Curtis [1] decomposition of
v, it is possible to obtain further information about v. We write
v = μ + λ, where μ is the continuous, and λ the singular, part of v.
Let R denote the Jacobson radical of 35 = v(C(X)). By construction
v and μ agree on a dense subalgebra of C(X).

In general, if <£>:!!—• 33 is a Banach algebra homomorphism such
that 33 = φ(U) and U is commutative, then S(φ, 33) is contained in the
Jacobson radical of 33. If for each b e 33 we define

then by [2], p. 1102, we must have the spectral radius of b £ A{b)
for all b e 33. In [2] it is shown that S(φ, 33) = {b e 33 | Δ{b) = 0}, and
since 33 is commutative, it is clear that S(φ, 33) must be contained in
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the Jacobson radical of 33. If 33 is C(X) for some compact Hausdorff
X, then equality holds, as seen by the following proposition.

PROPOSITION II. 1. S(v, 93) = R.

Proof. We need merely show that 2ίgϊS(y, S3). Let reR. By
[1], (Th. 4.3 b), there is a sequence {xn e C(X) \ n = 1, 2, •} such that
lim^^ X(xn) = r. Letting R(F) denote the dense subalgebra of C(X)
consisting of functions constant in some neighborhood of each point of
F, by construction X(R(F)) — 0. Since R(F) is dense, choose yn e R(F)
such that lim^oo || xn - yn \\ = 0. Then

0Oμ(xn-yn) + \imn_coX(xn-yn) =

and so r e S(v, 33).

Since μ and y agree on a dense subalgebra, it is reasonable to
suspect that their kernels are closely related. We have the following
proposition.

PROPOSITION Π.2. Ker (μ) = Ker (v).

Proof. If μ(x) =0, then v(x) = X(x) e R, and if v(x)eR, then
μ(x) = v(x) - X(x)eR, and so μ(x) = 0 by [1], Theorem 4.3 a. But
by Proposition II.1, R = S(v, S3), and so μ(x) = 0 if and only if
v(x)eS(v1

<^&), that is, if and only if xeS(v,U). By Theorem I.I,
however, S(v, IX) = Ker(v).

A Banach algebra homormorphism v : C(X) —> 33 determines two
sets that are of interest—the Bade-Curtis finite singularity set F, and
the closed set Xo that determines closure of the kernel of v, in the
sense of Lemma I.I. We define T(F) to be the algebra of all func-
tions vanishing on some neighborhood of F, the neighborhood varying
with the function.

PROPOSITION Π.3. Ker (v) n T(F) = Ker(i ) n T(F).

Proof. If α GKer(^) n T(F), by Proposition II.2,

x e Ker(μ) n T(F) S Ker (μ) n R(F) .

Since X is zero on R(F), we have μ(x) — X(x) = 0, and consequently
v(x) = 0.

We are now naturally led to inquire whether the singularity set
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F is a subset of Xo. This is indeed the case.

PROPOSITION Π.4. F S I O .

Proof. Let F1 = F n Xo, and let F2 = F ~ F,. In order to show
that F2 = 0 , it suffices to show that y is continuous on RiFJ. Since
iΓ2 η χQ — 0 ^ there exist open sets N1 and N2 with disjoint closures
such that F2QN19X0SN2. Let feR(F^ be arbitrary, and choose
sr G C(X) such that (̂JVO = 1, g(N2) = 0. Since g(iV2) = 0, by Lemma
1.2 fir e Ker(i ). Let h = f - gf. Now HN,) = /(NJ - giNJfM) =
/(JVJ - /(iVJ = 0, and since feRiF,) we see that heR(F). Since
v is continuous on -K(JP), there is a constant M such that

teR(F)=>\\v(t)\\ ^ Jlf | | ί | | ,

and so || v(h) \\£M\\h\\. Since v(g) = 0, v(h) = v(f) - v{g)v{f) =
and we also have || h \\ ^ (1 + || g ||) | | / | [ . Therefore

for all feRiFJ, and so F2 = 0 .

One of the most immediate consequences of the continuity of a
given homomorphism is that its kernel is closed. P. Curtis has observed
to the author that, if every kernel of a homomorphism of C(X) is
closed, then every homomorphism of C(X) is continuous. If every such
kernel were closed, so would every kernel of a homomorphism of C0(Y)
be closed, Y locally compact Hausdorff. By [1], Theorem 4.3 c, λ | M(F)
is a homomorphism; closure of its kernel (which we know contains
R(F)) would therefore contain M(F), and so X(M(F)) = 0. Given
fe C(X), let F = {a)i \ 1 ^ ί ^ n} be the singularity set of v. Choose
{eieC(X)\l^ί ^n} such that i Φ j ==>eieό = 0, 0 ^ e, ^ 1, and
diω) = 1 in a neighborhood of ω^F. Then /— Σ?=i/(ω;)e; e M(F).
Since μ is continuous on C(X), there is a constant M such that
g e C ( X ) = * \\μ(g)\\ ^ M \ \ g | |. S i n c e

we have v(f) - Σ?=i/(^M^) + μ(f - Σ L i / ( ^ K ) and so

thus demonstrating the continuity of v.



594 JAMES D. STEIN, JR,
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