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A CO-TOPOLOGICAL APPLICATION
TO MINIMAL SPACES

GIOVANNI VIGLINO

A space (X, z) which satisfies a topological property P is
said to be minimal-P if T ={<' |7 is a P-topology on X
o' 7= @. For example, a Hausdorff space (X, 7) is minimal
Hausdorff if there exists no Hausdorff topology on X which
is strictly weaker than ., The purpose of this paper is to
show that for certain properties one need only consider a
subset of 7' ““induced >’ by ¢ to determine if (X, ) is minimal-P,

Notation. Let B be an open base for the space (X, 7). 7, will
denote the topology on X generated by the subbase {X\CI!.B|Be (}.

REMARK. J. de Groot in his investigation for a general classifica-
tion of Baire spaces considered the above topologies (cf. [1], [4]).
These topologies have come to be known as co-topologies.

DEFINITIONS. A filter base is regular if it is open and equivalent
to a closed filter base.

A filter base % is Urysohn if for each nonadherent point a, there
exists a neighborhood V and G € % such that CI.V N Cl.G = @.

REMARK. In this paper, the Bourbaki convention for the topolo-
gical separation properties will be observed; specifically, all spaces are
assumed to be Hausdorff.

The proof of the following lemmas are left to the reader. A proof
for the regular case of Lemma 1 is similar to the proof of Theorem
2 in [3].

LEMMA 1. Let (X, ) be a Hausdorff (Urysohn; regular) space;
let 22 = {U,lucs be a monconvergent open (Urysohn; regular) filter
base with unique adherent point x,, let B = _4" U _~Z where

A4 ={N|Net and 2, CI.N}
and
A ={M|Mect and Mc X\Cl.U, for some ae A} .

Then (i) B 1s a base for t; and
(i) 7, 1s a Hausdorff (Urysohn; regular) topology strictly
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weaker than t.

LEmMMmA 2. Let (X,7) be a nmormal (completely mormal) space;
let Zz be a monconvergent regular filter base with unique adherent
point x,; let B be defined as in Lemma 1. Then 7, is a normal
(completely normal) topology strictly weaker than t.

In the following theorem P denotes any of the following proper-
ties: (i) Hausdorff, (ii) Urysohn, (iii) regular, (iv) completely regular,
(v) normal, (vi) completely normal, (vii) locally compact. In [2], [3],
[5] it is shown that there exist minimal Hausdorff, minimal Urysohn,
and minimal regular spaces which are not compact, while for proper-
ties (iv) through (vii) mininal-P is equivalent to compactness.

THEOREM. A P-space (X, t) ts minimal-P if and only if {t;| s
s Pyt =t =@

Proof. Necessity, in each case, follows from the fact that 7, < 7
for every open base S.

Sufficiency for property (i) through (iii): Suppose (X, 7) is not
minimal Hausdorff (Urysohn; regular). Then there exists an open
(Urysohn; regular) filter base % = {U,}... with uniques adherent point
%,, which does not converge (see [5],[2]). By Lemma 1, there exists
a base B for r such that 7, = 7 and 7, is Hausdorff (Urysohn; regular).

Sufficiency for completely regular®: Suppose (X, 7) is not compact.

Let (Y, 7') denote a compact extension of (X,7). Take and fix
pe Y\X. Let < be the filter base of open neighborhoods of p, and
&% denote the trace of & in X. Considered as a filter base in
(Y,7), &°* has a unique adherent point, namely p. Thus .&* has
no adherent point in (X,7). Fix and element z, in X. Let
B=_14"U._# where J ={N|Nerandx,cCl.N}tand 7 ={M|Mec<
and M c X\CI.S* for some S*e &”*}. One can show B is an open
base for . Similarly one can show that o ={X/Cl.H|He 4" U .7}
is a base for z,.

We will now show that 7, = 7 and (X, 7;) is completely regular.
Let us first note that since (X, 7) is regular and since _/~ 3, then
Ge7; whenever Gert and x,¢ G. Hence if f is continuous on (X, 7)
then f is continuous everywhere on (X, 7;) except possibly at x,, Now
there exists S*e¢ .<”* such that x,¢Cl.S*. Since 7 is regular, then
there exists Uect such that x,¢ U and CI.UN CI.S* = . Since any
element of 7, which contains x, must meet S*, then U¢r;. Thus
mult for p = Hausdorff was independently obtained by G. Strecker.

2 The technique used by Berri in [2] to show that a space is compact if it is
minimal completely regular is extensively used in this proof.
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We complete the proof by showing 7, is completely regular. Take
beX and X\Cl.He .2 where b¢ X\ClI.H and He. /" U . 2. We
wish to show there exists a continuous, real-valued function f on
(X, 75), such that f(b)) =1 and f(x) =0 for all xeCl.H. Suppose
He_y4°. Then z,eCl,H. Let S*e.o”* be such that b ¢ Cl,S*; Since
(X, 7) is regular, then there exists Vet such that be V and

Cl.VnC(HUS*) =@ .

Since (X, 7) is completely regular, then there exists a continuous,
real-valued function f such that f(b) = 1 and f(z) = 0 for all ze X\V.
By a previous remark, f is continuous at every point of (X, t;) except
possibly at x =x,. We will now show f is continuous at ¢ = x,. Now
for all x e X\V, f(x) = 0. Since CI.VNCI.(HUS*) = @, then f(x) =0
for all 2 e X\Cl.V. Thus f is continuous at all x € X\CI.V, and hence
at all xeCl.(H U S*). Therefore f is continuous at x,.

Similarly one can show that if He _.7, then there exists a real-
valued continuous function f on (X, z;) such that f(b) =1 and f(x) = 0
for each x e Cl.H.

Sufficiency for properties (v) and (vi): Suppose the normal (com-
pletely normal) space (X, 7) is not compact. Then X is not minimal
regular since a minimal regular normal (completely normal) space is
minimal completely regular. Hence there exists a nonconvergent
regular filter base % with a unique adherent point z,. By Lemma 2,
there exists a base 8 for ¢ such that v; = ¢ and 7, is normal (com-
pletely normal).

Sufficiency for locally compact: Suppose (X, 7) is not minimal
locally compact (i.e., not compact). Let (Y, 7’) denote the Alexandroff
compactification of X with ¥ = X U {p} where p¢ X. Fix an element
%, in X and construct 8= _7/"U _# as in the proof of sufficiency
for completely regular spaces. One can show 7, = = and 7z, is locally
compact, and in fact, compact.
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