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ON COMMUTATIVE, NONPOTENT
ARCHIMEDEAN SEMIGROUPS

RICHARD G. LEVIN

In this paper we will study commutative, archimedean,
nonpotent (i.e., without an idempotent) semigroups, obtaining
several results concerning finitely generated ones. The main
theorem of this paper is the following: a finitely generated,
commutative, archimedean, nonpotent semigroup is power
joined. The main theorem is derived by considering the
decomposition of the semigroup S into a union of disjoint
semilattices; the congruence />&, defined by xpby if and only
if there exist positive integers n and m such that bnx — bmy9

determines the union, whereas congruence classes are semi-
lattices under the partial order ^δ defined by x^by if and
only if y — bnx or y = x. The set of maximal elements relative
to ^ δ generates S. The following is a crucial lemma in the
proof of the main theorem: let S be a finitely generated,
commutative, nonpotent, archimedean semigroup; then the set
of maximal elements of S relative to ^5 is a finite set.

Let S be a commutative, nonpotent, archimedean semigroup. We
will define a congruence p on S and state several results concerning
S/ρ and the congruence classes of S modulo p. The remarks and
definitions which precede Definition 5 will be used in several instances;
a complete discussion can be found in [5]. See [6] and [7] for an
abstract of these results. Proofs of all other results in this paper
are supplied.

DEFINITION 1. Let beS. The binary relation ρb on S is defined
by xpby if and only if there exist positive integers n and m such that
bnχ — bmy.

The relation pb is a congruence relation on S and b is called the
standard element determining the corresponding decomposition of S.
Furthermore, for any 6, S/ρb is a group; the congruence class modulo
pb containing b is the identity element of S/pb and it is a subsemigroup
of S. We call S/pb the structure group of S with respect to 6.

DEFINITION 2. Let Sa be an arbitrary congruence class of S (mod pb).
The following relation, ^ 6 is a partial order on Sa. Let x,yeSa. We
define ^ 6 on Sa by x ^b y if and only if there exists a positive integer
n such that y = bnx, or y = x.

DEFINITION 3. A discrete tree R is a lower semilattice (i.e., a
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partially ordered set in which every pair of elements have a greatest
lower bound) satisfying:

(a) for all x,y,zeR,x < z and y < z imply x <̂  y or y ^ x, and
(b) the set {x \ x e R and b <£ x <£ c} is a finite set for any pair

6, ceiϋ.
Let S« be a congruence class of S modulo pb. Then Sa is a dis-

crete tree with respect to the partial order ^>6.

DEFINITION 4. An element x of S is called a prime element of S
relative to the congruence pb if x is not divisible by b. Or, alternately,
x is a prime element if x is a maximal element of a congruence class
Sa of JSΓ (mod ft) relative to the partial order ^ δ defined on Sa.

The following two remarks are particularly useful.

REMARK 1. Let aeS. Then

Π anS = 0 .
n=l

REMARK 2. Let a, be S. Then

a Φ ab .

DEFINITION 5. Let R be an arbitrary semigroup. We define the
binary relation ^ on i? by α ^ δ if and only if there exists x e R
such that a = bx, or a = b. If a Φ b and α <£ 6 we generally write
α < 6.

LEMMA 1. Lβί S be a finitely generated, commutative, nonpotent,
archimedean semigroup. Then the relation ^ on S is a partial
order and S satisfies the ascending chain condition relative to ^ .

Proof. It follows from the definition that reflexivity is satisfied.
Suppose that a,beS and a ^ b and b ^ α. Then either a — bx and
b = α̂ /, or α = 6. Consider the former. We conclude that

(1) a =

But (1) contradicts Remark 2. Therefore a = b. Thus, ^ is antisym-
metric. Suppose a ^ & and 6 ^ c. We suppose also that a Φ b and
6 Φ c. Then α = bx and b — cy for some x,yeS. Therefore,

( 2 ) α = (c2/)α? = c(yx) .

Thus, α ^ c, and now it is obvious that <£ is transitive.
Suppose there exists a sequence of elements of S, {αTC | w > 0},
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satisfying

( 3 ) ax < α2 < α3 < < an .

Let T = {au a2, , an} be a finite generating set of S. The sequence
(3) reduces to the set of equations:

( 4) an = an+1xn+1 , for all n^l, where xn+ι e S .

The set of equations (4) leads to the set

( 5 ) αx = a2x2 = a3x2x3 — = α%£2#3 xn = .

For all &, #fc can be expressed as

( 6) xk =

and r fc i ^ 0 for j = 1, 2, , w, and there exists j0,1 <^ jo<* n such
that rkjQ > 0. Multiplying the xk's, we arrive at

x2 —

( 7 ) x2xz =

where 0 ^ r 2 i ^ p 3 i ^ p4y ^ ^VkjS , for i satisfying 1 ^ j ^ ^.
If for some j,l ^ j ^ nt we have

( 8 ) lim pnj = + 00 ,
tt->oo

then we can write

( 9 ) αx = α ^ = {aό)
2y2 = (α,-)8^ = = K )*m = ,

and we conclude that

This contradicts Remark 1. We set

(10) R3 = lim PnJ ,

and

(11) Λf=max{β l f Λ 2 , •••,12.}.

The number Λf is finite and it is now obvious that there exists an
integer N ^> M such that

This contradicts Remark 2, and the contradiction establishes that S
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satisfies the ascending chain condition relative to the relation g .

LEMMA 2. Let S be a commutative, nonpotent, archimedean semi-
group and let ^ be the partial order on S defined above (see Defini-
tion 4). Let S satisfy the ascending chain condition relative to ^ .
Then the set of maximal elements relative to ^ is a generating set
for S and is contained in every other generating set of S.

Proof. Let S' be an arbitrary generating set for S and let S"
be the set of all the maximal elements of S relative to ^ . Let β e S".
Then

(12) β = aλa2 an , where a{ e S'

Suppose n > 1. Then β = aγ{a2 an). This implies that β < a19

Since this is impossible, n = 1 and β e S\ That is, S" S S'.
Let xeS. Then

(13) x = ata2 •••«», where α̂ ί e S' for 1 ̂  i ^ n .

Fix £, 1 S t ^ π. Suppose at is not a maximal element. Then there
exists βt e S" such that at < βt and ̂ ί = βtxt for some α̂^ e S. If a?t

is not a maximal element then there exists a maximal element /Ŝ
such that xt = βn%n By definition of i£,xt < xtl. We continue in
this fashion. After N steps we arrive at the equation

t2

(14) at = βtβtlβt

and the sequence of inequalities

(15) at<xt< xtl < xt2 < a^- ! ,

where /Sί>fc is a maximal element for 1 ̂  k ^ ΛΓ — 1. Since £ satisfies
the ascending chain condition, we conclude that this procedure must
lead to a maximal element xttM in (14) and (15). Setting M = N — 1
in (14) and substituting (14) into (13) we express x as a product of
maximal elements. We conclude that S" generates S and that S" is
the smallest generating set of S.

PROPOSITION 3. Let S be a finitely generated, commutative, non-
potent, archimedean semigroup. Then the set of maximal elements
(relative to ^ ) of S is a finite set.

Proof. According to Lemma 1, S satisfies the ascending chain
condition relative to ^ . By Lemma 2, the set of maximal elements
of S is a subset of every generating set of S. Since S is finitely
generated, the set of maximal elements of S must be a finite set.
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PROPOSITION 4. Let S be a finitely generated, commutative, non-
potent, archimedean semigroup. Let a e S. Then the set of prime
elements of S, with respect to the standard element α, is a finite set.

Proof. Suppose there are an infinite number of primes. Let
Sf — {bu b2j •••,&&, •••} be a countably infinite subset of the set of
primes of S. Let T — {au α2, , an) be the set of all maximal elements
of S. Every element of S' admits a representation of the form

(16) b5 = αfikifi aξn aμj% μSi ^ 0 .

Consider the sequences

(17) μ«, μu, μ*i, , /*«, , where l ^ i ^ n .

For at least one i between 1 and n the corresponding sequence (17)
will be unbounded. Otherwise we immediately conclude that S' is a
finite set. Suppose the sequence for i0 is unbounded. Choose a sub-
sequence

satisfying

(19) μh,i0 < μh,i0 <

For convenience, we will change the notation. Set

(20) r, = μtj>iQ , for i ^ 1 .

We now have

(21) 6iA = α { ) . . . α Γ * . . . α ί > , for fc ^ 1 .

For all ft, δiA; Φ axk for any ^^ e S. But since <S is an archimedean
semigroup, there exists an integer I, I > 0 such that

(22) (ai0Y - αμ .

There exists k0 > 0 such that rk > I for all ft ^ ft0. Therefore we have

(23) = α ί > . . . α ί o α ξ f - ' . . . α ί >

= αμ(α{} α**-1 a(

n

]) , for all ft ^ ft0

This contradiction establishes that the set of primes is a finite set.

PROPOSITION 5. Let S be a finitely generated, commutative, non-
potent, archimedean semigroup. Let pb be the congruence relation of
Definition 1. Then S/pb is a finite group.
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Proof. The elements of S/pb are congruence classes. Each con-
gruence class is a tree and contains at least one prime element. If
S/Pb were an infinite group, then S would contain an infinite number
of prime elements. This would contradict Proposition 4. Thus S/pb

is a finite group.

THEOREM 1. A finitely generated, commutative, nonpotent, ar-
chimedean semigroup is power joined.

Proof. Let ae S. Consider S/pa. Let x,yeS. Let a, β e S/ρa

such that xeSa and yeSβ. Since S/pa is a finite group, there exist
positive integers n and m such that an = ε, βm = ε, where ε is the
identity of S/ρa. Therefore, xn e Sε and ym e Sε. Let {P,, P2, , Pr}
be the set of prime elements of S which are contained in Sε. Let

P=flr l&{P l f P l f . . . ,P r } f

where the partial order in Sε is ^ α (see Definition 1). Set

T = {Z\ZeSε,Z^aP} .

T is a finite set because Sε is a discrete tree. Since S is nonpotent,
the powers of xn and ym are all distinct. Therefore there exist positive
integers r, t such that P :>α (α?w)r and P ̂ a (ymy. Further, for all Z,
where P^aZ, there exists a positive integer s such that Z — as.
Therefore,

(24) (xn)r = aμ\ (ymY = av* ,

and

(25) (xnr)vι = (ymt)μί .

We conclude that S is a power joined semigroup.

THEOREM 2. Let S be a commutative, nonpotent, archimedean
semigroup. Let ae S and let Ga ( = S/pa) be the corresponding structure
group. Then, S is power joined if and only if Ga is a periodic group
and Sε is power joined (where Sε is the congruence class of S mod pa

which contains a).

Proof. Let S be power joined. Let aeGa,yeSa. There exist
positive integers n and m such that yn = am. Since am e Sε, so is yn.
Therefore an = ε and we conclude that Ga is periodic. The set Sε is
power joined because it is a subsemigroup of S.

To prove the converse, let x,y e S. There exist a, β eGa such
that x eSa,ye Sβ and an = ε, βm = ε. Therefore, xn e Se, y

m e Sε. Since
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Sε is power joined, there exist positive integers k and I such that

(26) (xn)k = (ym)1 .

We conclude that S is power joined.

THEOREM 3. Let S be a commutative, nonpotent, archimedean
semigroup. Then S is power joined if and only if every finitely
generated subsemigroup is archimedean.

Proof. Let S be power joined. Let S' be a finitely generated
subsemigroup of S. Then S' is also power joined. Let x, y e S\
Then there exist positive integers n, m such that xn = ym. Set μ =
ym-\ v — xn~ι. We get xn = yμ and ym = xv. The elements μ and v
are also in S'. In case n or m equals 1, we can easily arrange the
desired equations by multiplying both sides of the equation xn = ym by
x or y as required. Therefore S' is archimedean.

Let x,yeS. Let S' be the subsemigroup of S generated by x
and y. Since S' is finitely generated, it is archimedean. Thus, S' is
a finitely generated, commutative, nonpotent, archimedean semigroup,
and by Theorem 1 we conclude that S' is power joined. Therefore,
there exist positive integers n and m such that xn — ym. Since x and
y were arbitrary elements of S, we now conclude that S is power
joined.
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