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A LINEAR TRANSFORMATION THEOREM FOR
ANALYTIC FEYNMAN INTEGRALS

J. KUELBS

The behavior of the analytic Feynman integral under
translation has been studied in the recent work of R. H.
Cameron and D. A. Storvick. The purpose of this paper is
to continue the development of this transformation theory.
In particular, the behavior of the analytic Feynman integral
under certain linear transformations is determined and, using
this linear transformation theory, a "generalized Schroedinger
equation" is solved in terms of an analytic Feynman integral.

2* Preliminaries* The analytic Wiener and analytic Feynman
integrals were defined in [4] and [6] as follows:

DEFINITION 2.1. Let the complex number λ0 satisfy Be\0 ^ 0 and
λ0 Φ 0, so that λ0 = I λ01 exp (i#) for some θ on the interval [ — π/2,
π/2]. Let F(x) be a functional defined on C[a, b] (the space of con-
tinuous functions on [α, 6] which vanish at a) such that the Wiener
integral

J(λ) = ί F(X~hx)dx
Jc7[α,&]

exists for all real λ in the interval | λ01 < λ < | λ01 + δ for some δ > 0.
Then if J(λ) can be extended so that it is defined and continuous on
the closed region

S = {λ = pe*: I λ01 ^ p ^ | λ01 + (1 - yθ^δ ,

Ύe[0,θ] or 7G[^,0]} ,

and analytic in its interior, we define

(2.2) [anVχ°F(x)dx = J(λ 0)

and we call the left member of (2.2) the analytic Wiener integral of
F(x) with parameter λ0. If θ — 0 we interpret S to be the interval
[λ0, λ0 + δ], omit the analyticity requirement since the interior of S
is empty, and define the analytic Wiener integral to be J(λ^). If
λ0 = — i the integral (2.2) will be called the analytic Feynman integral
and we write

\anf F(x)dx = J(~i) .
C[α,δ]

339
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The additional concept of uniform analytic Wiener (and Feynman)
integrability is needed and is defined as in [6].

DEFINITION 2.2. Let λ0 and Θ be given as in Definition 2.1, let A
be any nonempty set, and let F(x\a) be a functional defined on
C[α, b] x A. Suppose that there is a positive δ (independent of a) and
a corresponding set S as given in (2.1) and a function J(X | a) defined
o n S x i such that

( i ) J(λ I a) is analytic in λ in the interior of S for each fixed
aeA,

(ii) J(X I a) is uniformly continuous in λ on S uniformly with
respect to α in i , and

(iii) for all real λ 6 (| λ01, | λ01 + 8) and all aeA

J(X 1 a) = \ F(X-h I a)dx .
JC[α,&]

Then we say F(x\a) is analytic Wiener integrable with parameter λ0

uniformly with respect to a in A. If λ0 = — i we say F(x \ a) is ana-
lytic Feynman integrable uniformly with respect to a in A.

In order to prove our results we need the following lemma regard-
ing the analytic continuation of a function of several complex variables.
This lemma is related to the results in [5] and a recent communica-
tion with R. H. Cameron informed me that he and D. A. Storvick
have also obtained this result.

LEMMA 2.1. Let A and M be open simply connected subsets of
the X-plane and the μ-plane, respectively, and such that the intersec-
tion of A and the real axis of the X-plane is an interval I. Further,
if / ( \ μ) is a function defined and bounded on all compact subsets
ofΛxM such that

( i ) for every XeI we have /(λ, μ) analytic in μe M and
(ii) for every μe M we have /(λ, μ) analytic inXe A, then /(λ, μ)

is analytic on Λ x M.

Proof. Let λ0 e / and μQ e M. Let A and D2 be discs centered
at λ0 and μQ, respectively, such that AD^Λ and 4D 2 gM. Using
Lemma 1 of [5, p. 7] and the note following the lemma we see that
/(λ, μ) is analytic on D1 x D2. Then using the generalized Hartog's
lemma [2, p. 141] with D = D,x D2, D = Ax D2, A{μ) = Dlf and 2{μ) = A
we find /(λ, μ) analytic on A x D2. It now follows that /(λ, μ) is ana-
lytic on A x M. That is, if p e A x M then there exists a neighbor-
hood of p, namely A x D2 where D2 is a sphere about the μ coordinate
of p, on which /(λ, μ) is analytic.
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3* The analytic Feynman integral under linear transfor-
mation* The linear transformation theorem for the analytic Feynman
integral is based on the following theorem of Woodward [8] which
appears in this form in [7, p. 268-69], Before stating the theorem
several definitions are needed.

Let I — [α, b] and by BVH denote the class of functions on / x /
which are of bounded variation in the sense of Hardy-Krause. That
is, KeBVH if there exists (s0, tQ)eI x I such t h a t K(s0, t) and K(s, tQ)

are of bounded variation on /, and

SUP Σ Σ I K(8i9 ts) - K(8t, t^) - K(8^l9 tj) + K(8^u t^) I
ί=i j=ι

is finite where, of course, the supremum is taken over all grids of

Ix I.
The Fredholm determinant for a kernel k in BVH evaluated at

— 1 is given by

Σ - M ••• ί
»=i nl ji Ji

K(su Sί) K(su β.)

\K(sn,Sι)" K(Sn,Sn)

THEOREM A (Woodward). Let

T(x)(t) = x(t) + \ \K(u, v)dudx(v)

dsι dsn .

be a transformation defined on C[α, 6] and suppose that there exist
functions M and J such that

K(s, t) -

(M(8, t) 8<t

M(8, t) + J(s)/2 s = t

M(s, t) + J(s) s > t

where Me BVH on I x I and J is of bounded variation on I. Sup-
pose further that D(K) Φ 0. Then the transformation T carries
C[a, b] onto C[a, b] in a one-to-one fashion and if F is a Wiener
integrable functional on C[α, 6] then

(3.1) ( F(x)dx = I D(K) I ( F( T(x)) exp {- a(x)/2}dx

where

(3.2) a(x) = ί \ ΪK(s, t) + K(t, s) + \κ(u, s)K(u, t)du\dx{s)dx{t) .

Futhermore, if F(T(x)) is Wiener integrable then
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(3.3) ( F(T(x))dx = I D(K) \-ι\ F(x) exp{-β(x)/2}dx
JC[α,6] JC[α,6]

where

(3.4) β(x) = ί ί Γjfif(β, ί) + X(ί, β) + ί K(u, s)K(u, t)du\dx(s)dx(t)

and K is the Volterra reciprocal kernel of K.

The behavior of the analytic Feynman integral under linear trans-
formation is described in the following theorems.

THEOREM 1. Let Λ and Ω be subsets of the X-plane and μ-plane,
respectively, such that for some positive d less than one

A = jλ - peίθ: \p-l\<d(l-—\θ\), -π/2 < θ < d\

and

Ω = {μ = re**: \ r - 11< d(l - — | φ \), -π/2 < φ < d\ .

Let

T(x)(t) = x(t) + ['['Kiu, v)dudx(v)

where K(u, v) satisfies the hypothesis of Theorem A and let β(x) be
defined as in (3.4). Then, if F is a functional on C[a, b] satisfying
the three conditions below, it follows that the integrals in (3.5) exist
and that equality holds:

(3.5) F(T(x))dx = I D(K) I"1 F(x) exp {i/2β(x)}dx .
J<7[α,δ] JC[α,δ]

The conditions on the functional F are:
(1) The integral

S anw )
F(x)exv{-μ/2β(x)}dx

C[α,δ]

is bounded on all compact subsets ofΛxΩ and l i m J ( λ , μ) exists
for all XeΛ. μ7*Ω

(2) For μ in Ω and in some neighbourhood of μ— —i the integral

I D(K) I"1 \ n f F(x) exp{-μ/2β(x)}dx
JC[α,6]

exists uniformly and approaches a finite as μ —• — i inside Ω.
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(3) F(X~ix) is Wiener integrable for real X in A.

Proof. We will denote the subset of Ω described in the second
condition on F by M. As a result of condition (2) there exists a d > 0
and a set S of the form (2.1) with λ0 = — i such that S is a subset
of A and such that a function Φ(λ, μ) can be defined on S x M satis-
fying (i) Φ(X, μ) is analytic in λ on the interior of S for every μ in
M, (ii) Φ(X, μ) is uniformly continuous in Xe S uniformly for μ e M,
(iii) for real Xe S and all μeM

(3.7) Φ(λ, μ) = I D(K) I"1 ( jP(λ-*a?) exp {-μj2β(χ-*x)}dx ,

and (iv) lim<P( —i, μ) exists as a finite number.
μeΩ

From (3.6) and the monodromy theorem we have J(λ, μ) analytic
on A for each μeΩ, and for real λ in Λ and μ in Ω we have

(3.8) J(λ, μ) = I DtBΓ) I"1 ( F(X*x) exp {-
JC[α,δ]

existing. Thus for real λ in Λ it follows from (3.8) that J(λ, μ) is
analytic in μ on Ω. That is, let Γ be any rectifiable closed curve in
Ω. Then there exists an ε > 0 such that ε < d and μ e Γ implies
0 < REμ < 1 + ε. Hence (3.8) implies

(3.9) I D{K) \~Λ I FQsΓ*x) | exp {- (1 + ε)/2β(\'iχ)}dx
JC7[o,6]

exists for all real λ in A, and since λ real implies

(3.10) I exp {- μ/2β(X~ h)} \ ̂  1 + exp {- (1 + e)/2β(\-*x)}

we have by applying (3.9), condition (3), and the dominated conver-
gence theorem that J(λ, μ) is a continuous function of μ e Ω for
0 ^ Reμ < 1 + ε. Moreover, for real X in A

J(λ, μ)dμ - ( I D(K) \~ι [ F(X~h) exp {-μ/2β(X~iχ)}dxdμ
Γ JΓ JC[α,6]

= I D(K) I"1 ( F(X~?x)[ exp {-μl2β(\~iχ)}dμdx
JCίa,b] JΓ

= 0

where the interchange of integration follows because of Fubini's
theorem, (3.9), and (3.10). Since Γ was an arbitrary closed curve in
Ω we have, by Morera's theorem, that J(λ, μ) is analytic for μ in Ω
when X is real.

Applying Lemma 2.1, since J(λ, μ) is bounded on compact subsets
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of A x Ω, we find J(λ, μ) analytic on A x Ω. Furthermore, by (3.7)
and (3.8) we have that J(λ, μ) = Φ(λ, μ) for λ e A Π S and μeM.
Hence Φ(λ, μ) can be extended to be analytic on D x Ω where
D = S- {ί}.

We now show that Φ(λ, — i) = limΦ(λ, μ) is analytic in D and

continuous on S. By condition (1) (since J(λ, μ) = Φ(λ, μ)) we know
Φ(λ, —i) exists for λ e S , and by condition (2) we have Φ(λ, μ) uniformly
continuous for λ in S uniformly in μ e M. Let ε > 0 be given. Choose
γ > 0 such that λ, XeS and |λ — λ| < τ imply |Φ(λ,μ) — Φ(X,μ)\ < e/3
for all μ in ikΓ. Let Xu , Xn be points in S such that for every XeS
we have min {| X — Xk j : k — 1, , n] < 7. Then for μ, μ0 e M we have
for all XeS

I Φ(λ, /*) - Φ(λ, jMo) I ̂  I Φ(\ μ) ~ Φ(λ4, j«) I + I Φ(λfc, ^) - Φ(λ,, /i0) I

+ I Φ(Xk, μ0) - Φ(λ, /i0) I

where Xk is such that | X — Xk \ < 7. Hence for μ, μQ e M

sup I Φ(λ, μ) - Φ(λ, j«0) I ̂  2ε/3 + sup | Φ(Xkf μ)
λeS l^k%

H o w e v e r , s i n c e l i m Φ ( λ , μ ) e x i s t s f o r a l l X e S a n d ε > 0 w a s a r b i t r a r y
iμ

μeS

h
μ

we have that the convergence is uniform in λ as μ —• — i within Ω.
Since each Φ(λ, μ), μeM, is analytic in D and continuous in S we
have Φ(λ, — i) with analogous properties.

Using Theorem Ay condition (1), and that T(x) is linear we have
for real XeS that F(T(χ-h)) = i^(λ-*T(^)) is Wiener integrable and

(3.11) ( F{T(X-^x))dx = I D(K) I"1 ( F(X~h) exp\-—β(x)\dx
JC[α,δ] JCTα.δ] 1 2 J

= Φ(λ, λ).

Now Φ(λ, λ) is analytic on D and since lim Φ(λ, μ) exists uniformly
λeM

for μeM and limΦ(λ, ^) exists for XeS we have

Φ ( - i , — i) = lim Φ(X, μ)
U,μ)-+{-i,-i)

existing where, of course, the limit is taken over S x M. Thus Φ(λ, λ)
is continuous on S and
(3.12) [anf F(T(x))dx = Φ(-i, -i)

e x i s t s .
N o w Φ ( λ , — i) i s c o n t i n u o u s o n S, a n a l y t i c o n D, a n d f o r r e a l XeS
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, -i) = limΦ(λ, μ)

(3.13) ^ p
- lim I J9(iΓ) I"1 F(λ"^) exp {- μ/2β(X~*x)}dx .

μ-*~i JC[α,δ]
μeM

Thus since F ( λ ^ ) and FiX^x) exp{-l/2/S(-^)} are both Wiener in-
tegrable it follows that the dominated convergence theorem applies to
the last limit in (3.13). Hence for real λ e S we have

, -i) = I £>(#) I-1 ( F(λ~^) exp {i/2β(X~h)}dx
JC[α,6]

and using the properties of Φ(λ, — i) we see

(3.14) I D(K) r Γ ' JP(αj) exp {i/2£(α)} = Φ(-i,-i) .
JC[α,δ]

Combining (3.12) and (3.14) the theorem follows.

THEOREM 2. Lβί yί and Ω be as defined in Theorem 1, let

T(x)(t) = x(t) + Ϋ\!κ(u, v)dudx(v)

where K(u, v) satisfies the hypothesis of Theorem A, and let a{x) be
defined as in (3.2). Then, if F is a functional on C[a, b] satisfying
the three conditions below, it follows that the integrals in (3.15)
exist and that equality holds:

(3.15) \anf F(x)dx=\D(K)\\anf F(T(x)) exp {i/2a(x)]dx .
JC[α,&] JC[α,6J

The conditions on the functional F are:
(1) The integral

(3.16) J(λ, μ) = I D(K) \ F(T(x)) exp {-μj2a{x)}dx
JCίa,b]

is bounded on all compact subsets ofΛxΩ and lim J(λ, μ) exists for

all XeΛ. %~®

(2) For μ in Ω and in some neighborhood ofμ= —i the integral

\D(K)\ \ f F(T(x))exv{-μ/2a(x)}dx
JC[a,b]

exists uniformly and approaches a finite limit as μ—*—i inside Ω.
(3) F(X~^T(x)) is Wiener integrable for real λ in A.

Proof. The proof follows the argument used to prove Theorem 1
very closely and will not be produced here.
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Sufficient conditions on a functional F(x) which assure that the
three conditions of Theorem 1 are satisfied will be given in the next
theorem.

THEOREM 3. Let A and Ω be defined as in Theorem 1, let Dλ =
A U { — i], D2 = Ω U { — i), and suppose F( ) is a functional defined on
C[α, b] such that:

( i ) F(X~^x) is an analytic function of X in Λ and continuous
in Dγ for each xeC[a,b].

(ii) F(X~^x) is Wiener measurable for XeD1 and Wiener in-
tegrable for real XeΛ.

(iii) the functional

(3.17) sup I F(X~hx) exp {-μ/2Xβ(x)} \
(X,μ)eD1XD2

is Wiener integrable where β(x) is as given in Theorem 1. Then
F(x) satisfies conditions 1 - 3 o/ Theorem 1 with A and Ω defined in
terms of df < d instead of d.

Proof. Since exp {— μ/2Xβ(x)} is a measurable functional on C[a, b]
and by condition (ii) F(X~^x) is measurable for λ e Dx we have by
applying the dominated convergence theorem and (iii) that

F(X~h) exp {-μ/2Xβ(x)}

is Wiener integrable on (λ, μ)eD1x D2. Further, by (iii)

Φ(λ, μ) = I D(K) I"1 ί F(X~hx) exp {- μ/2Xβ(x)}dx

is defined, bounded, and jointly continuous for (λ, μ) eD1 x C2. Using
Morera's theorem as in Theorem 1 we can verify that Φ(X, μ) is an
analytic function of X e A for each μe D2 Combining this with the
joint continuity on Dι x D2 and (ii) we obtain (1), (2), and (3) of
Theorem 1 with A and Ω defined in terms of d' < d instead of d.

4. In [1] a generalized analytic Feynman integral is defined for
Gaussian Markov processes. Applying our linear transformation
theorem we will evaluate a certain class of these integrals in terms
of analytic Feynman integrals based on the Wiener integral as given
in Definition 2.1. Furthermore, in Theorem 5 we are able to show
that certain analytic Feynman integrals are solutions of a "generalized
Schroedinger equation."

Let μR denote the Gaussian measure on the Borel subsets of
C[a,b] with mean function identically zero and covariance function
R(s, t) given by
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(4.1) R(s, ί) = 1 , . w v

(u(t)v(s) s ^> t
where

(4.2) w(α) - 0 ,

(4.3) v(t) > 0 on [a, b] ,

(4.4) u" and v" exist and are continuous on [α, b] ,

(4.5) v(ί)tt'(ί) - u(t)v\t) > 0 on [α, 6] .

The integral of a functional F(x) on C[α, 6] with respect to the

measure μR will be denoted by I F(x)dRx and as before, \ F(x)dx
JC[a,b] JC7[α,6]

represents the Wiener integral.
Then by [7, p. 272] we know that μR is absolutely continuous

with respect to Wiener measure on C[a, b] if and only if

(4.6) v(t)u'(t) - u(t)v'(t) = 1 on [α, b] .

Furthermore, the results of [7] assure us that if (4.6) holds and if
F(x) is a measurable functional on C[a, b] such that F(T(x)) is Wiener
integrable where

(4.7) T(x)( ) = &(•)+ \b[κ(s, t) dsdx(t)

and

(4.8) K(s, t) =

then

v'(8)/2v(s) s = t ,

0 s <t

F(x)dRx = ί F(T(x))dx

(4.9) Γ t f ί α m " fTf" 1
= i!W 2 F(a ) exp \ — \ v'(t)d[x2(t)lv(t)] \dx .

Li;(6) J Jc[α,6] 12 Jα J

An immediate consequence of (4.9) is that μR is induced by the linear
transformation (4.7). That is, for all measurable subsets E of C[a, b]

(4.10) μR{E) - μw(T(E))

where μw is, of course, Wiener measure.
The following definition parallels Definition 2.1 and is as given in

DEFINITION 4.1. Let μR be a Gaussian measure on C[α, b] with
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mean function identically zero and covariance function as in (4.1) where
u(t) and v(t) satisfy (4.2), (4.3), (4.4) and (4.5). Let the complex number
λ0 satisfy ReXQ ;> 0 and λ0 Φ 0 so that λ0 = | λ01 exp (iθ) for some θ
on the interval [ — π/2, ττ/2]. Let F(x) be a functional defined on C[a, b]
such that the Gaussian integral

J(x) = ί F(\rix)dxx
jC[a,b]

exists for all real λ in the interval | λ01 < | λ | < | λ01 + <5, for some
δ > 0. Then if J(X) can be extended so that it is defined and continu-
ous on the closed region S (as defined in (2.1)) and analytic in its in-
terior, we define

(4.11) [9λ°F(x)dRx = J(X0)

and we call the left member of (4.11) the analytic Gaussian integral
of F(x) with parameter λ0. If θ = 0 we interpret S to be the real
interval [λ0, λ0 + 8], omit the analyticity requirement, since the interior
of S is empty, and define the analytic Gaussian integral to be J(X£).
It XQ = —i the integral in (4.11) will be called the generalized analy-
tic Feynman integral and we write

anf F(x)dRx = J(-i).
<7[α,δ]

The next theorem relates the analytic Feynman integral as given
in Definition 2.1 and its generalization as defined above.

THEOREM 4. Let μR be a Gaussian measure on C\a, b] with mean
function zero and covariance function as in (4.1) where u(t) and v(t)
satisfy (4.2) — (4.4) and (4.6). Let F(x) satisfy conditions 1 - 3 o/
Theorem 1. Then

(4.12) P F(x)dRx = \^~ΐ\anf F(x)exp\-Mbv'(t)d[x\t)lv(t)]\dx.
JC[o,6] Lv(b) J JCίa,b] I 2 J α J

Proof. Let A be defined as in Theorem 1. Then by (4.9) and
condition one of Theorem 1 we have for all real XeΛ that

F(\iχ)dBx = [ F(T(X~
] JC[o,6]

(4.13) Γ 4 f T (

( ) B [ F(T(X~h))dx
C[α,6] JC[o,6]

Γ4τfT (
\-V(θ) J JC[α,5]

= J(λ, λ)
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where J(λ, μ) is as defined in (3.6), D(K) = [v{b)lv(a)f, and β(x) =

— \ v'(t)d[x2(t)/v(t)]. Now in the proof of Theorem 1 under conditions

1-3 it is shown that J(λ, λ) is an analytic function of λ € A which is

continuous on a set S of the form (2.1) with λ0 = — i and SS=A.

S anf
F(x)dRx existing and

Cίatb}

(4.14) \ f F(x)dRx = \ f F(T{x))dx .
JC[α,6] JC[α,δ]

Applying Theorem 1 we have (4.12) holding.
From (4.9) we see that if μR is the Gaussian measure on C[a, b]

as defined in Theorem 4 then the Radon-Nikodym derivative of μR

with respect to Wiener measure, μwy is

(4.15) ψs. = Γ^Mf exp \Mbv'(t)d[x>(t)/v(t)}\ .
dμw lv(b)J l 2 J α J

Thus Theorem 4 confirms what heuristic considerations indicate. That
is, we can interpret

(4.16) Γ^ίg-f expj- ±[v'
L^(6)J I 2Jα

as the derivative of the generalized analytic Feynman integral with
respect to the analytic Feynman integral.

Now consider the generalized Schroedinger equation

(4.17) LZL + SBisy&L + -ψ- + ψ(ξ, s)G = 0

2 dξ2 dζ ds

for (£, s)e(— oo, oo) x (α, b) with boundary condition

(4.18) lim G(ί, 8) = σ(ξ)
s-*b

for — oo < ξ < oo, We will show that given certain rather strong
conditions on ψ, B, and σ the analytic Feynman integral of a certain
functional will yield a solution of (4.17). This result differs from
those in [3] or [4] in that (4.17) is a generalized Schroedinger equa-
tion and from those in [1] in that the solution is expressed in terms
of an analytic Feynman integral involving the "derivative" given in
(4.16) rather than a generalized analytic Feynman integral.

THEOREM 5. Let B(s) be real-valued and have continuous deriva-
tive on [α, b] such that for some d, 0 < d < 1/2, the functional

(4.19)
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is Wiener integrable on C[s, b] for a ^ s fj 6. Let

(4.20) F(ξ, s, x) = exp

(A) v(t) = e x p { Γ B(s)ds\, a ^ t ^ b .

(B) σ(z) is an entire function whose first and second derivatives
are integrable on (-oo, oo) and such that σ"(z) is of exponential type
for real z.

(C) ψ(z, t) is an entire function of z for all t, a <̂  t <; b, such
that Re(ψ(z, t)) is bounded above uniformly in t e (a, t) for z in the
infinite wedges

(4.21)
π — d <; arg (z — ξ) ^ 37Γ/4

for all real ζ. Further, we assume ψt, ψz, ψzz are defined on
(—ooy CXD) x [a,b] with ψz and ψzz continuous there and such that
Ψ, Ψzf Ψzz are integrable on (— c^, co) with the integrals of their
absolute values being bounded uniformly in t, a ^ t ^ b. We also as-
sume ψzz is of exponential type in z e (— oo, oo) uniformly in te[a,b].
Then, if A is defined as in Theorem 1, Dγ — A U { — i}, and

(4.22) sup
λeD-, v(a)Λ

is Wiener integrable on C[s, b], we have

(4.23) G(ξ, s) = \^Sf[nf F(ξ, s, x) exV\-Mbv'(t)d[xχt)lv(t)]\dx

existing for (ξ, s) e (— ̂ , c>o) x (a, b). Furthermore, G(ξ, s) satisfies
the generalized Schroedinger equation (4.17) with boundary condition
as given in (4.18).

Proof. Since

v(t) = exp l\*B(x)dx\

we define

u(t) = v(t)[[v(r)]-2dr

for a ^ t ^ 6. Then w(ί) and v(ί) satisfy (4.2), (4.3), (4.4) and (4.6).

Further, if
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(4.24) U(p) = u(p) - u(s)v(p)/v(s) , a ^ s ^ p ^ b ,

and

x ί)(4.25) i?(p, fir) =
( U(g)v(p) g ^p ,

then Ϊ7(s) = 0, #(£) > 0 on [s, 6], Z7" and v" exist and are continuous
on [s, δ], and

(4.26) v(t)U'(t) - tf(ί)v'(ί) = 1 on [s, b] .

By μΛ we mean the Gaussian measure on C[s, b] with mean function
zero and covariance function as given in (4.25). Due to hypothesis
(B) on σ(z) and (C) on φ(z, t) Theorems 4.1 and 6 of [1] imply that

(4.27) J(ξ, s) = \ f F(ξ, s, x)dRx
JC[α,δ]

exists and satisfies (4.17) with the boundary condition as in (4.18).
However, by (4.12) we have

(4.28) J(ξ, s) = \^f\anf F(ξ,8,x) exp j-i-ίV(ί)d[αj (ί)Mί)]W

provided F(ξ, s, x) satisfies condition 1-3 of Theorem 1. We use
Theorem 3 for these purposes. First of all, since σ(z) and ψ(z, t)
satisfy (B) and (C) it follows that conditions (i) and (ii) of Theorem 3
hold for F(ξ, s, x). Now, in this case, for all xe C[s, b]

β(x)= -\bv'(t)d[x\t)/v(t)]
(4.29) J s

= -B(b)x\b) + I [B\t) + B'(t)]x2(t)dt.

Thus if D2 = Ω U { — i}, where Ω is defined as in Theorem 1, we have

sup I F(ξ, s, λ"*a?) exp {- μ/2\ β(x)} \
(4 OH) U,μ)eD1xD2

^ sup I F(ξ, s, X~~^x) I sup I exp { — μ/2X β(x)} \ .
λ {λ,μ)

However, by (4.22) and the hypothesis on ψ and σ we have

sup I F(ξ, s, λΛτ) |2
x

Wiener integrable. By (4.19) and (4.29) we also have

Wiener integrable and hence by (4.30) we have
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sup \F(ξ,8, X~hx) exp {- μ/2X β(x)} \
U,μ)eD1XD2

Wiener integrable on C[s, b] so (iii) of Theorem 3 holds and the proof
is complete.
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