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LOCAL ANALYTIC EXTENSIONS OF THE RESOLVENT

JACK D. GRAY

Consider an endomorphism Tf (that is, a bounded, linear
transformation) on a (complex) Banach space X to itself. As
usual, let R(λ, T) = (λl - T ) 1 be the resolvent of T at λ e p(T).
Then it is known that the maximal set of holomorphism of
the function λ -> R(λ, T) is the resolvent set p(T). However,
it can happen that for some x e X, the X-valued function
λ~> R(λ, T)x has analytic extensions into the spectrum σ{T) of
T. Using this fact we shall, in § 1, localize the concept of
the spectrum of an operator. In sections 2, 3 and 4 we in-
vestigate, quite thoroughly, the structural properties of this
concept. Finally, in § 5, the results of the previous sections
will be utilized to construct a local operational calculus which
will then be applied to the study of abstract functional equ-
ations.

!• The localization of the spectrum* We begin by making the

following remarks. For an X-valued function u to be analytic on
some open subset if of a Riemann surface, it is necessary and suf-
ficient that for each continuous linear functional x* in some determi-
ning manifold for X, ([5], 34), the complex-valued function x*u be
analytic in K. K will be called the maximal set of analyticity of u,
if each accessible point of the boundary of K is a singular point of u.

Now let T: D Γ g I ^ I b e an arbitrary linear transformation on
its domain Dτ, and suppose that xeX.

DEFINITION 1.1. The local resolvent set of T at x, ρ(x, T), is
that set of points ζ e C—the complex plane— for which there is a
neighbourhood N of ζ, and an analytic function u: N—+X which
satisfies

(1.1) λ^(λ) - Tu(X) = x

for all λ e N.

DEFINITION 1.2. The local spectrum σ(x, T) of T at x is the
complement in C of p(x, T).

DEFINITION 1.3. The local spectral radius of T at x is given

r(x, T) = suipλeσ{x,τ) I λ I .

DEFINITION 1.4. Any function u as given in Definition 1.1 will
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be called an (analytically) extended resolvent of T at x, on N.

In a slightly different form these concepts have been introduced
by Dunford [1], and have been used by him in his characterization of
spectral operators. However, in the following theorem we shall show
that the two concepts are equivalent, whenever both are defined.

THEOREM 1.2. Suppose N is an open set with N Π p(T) Φ 0.
Then u is an extended resolvent of T at x on N, if and only if u
is an analytic continuation of R( , T)x into N.

Proof. Suppose first that u is an analytic continuation of
R(>, T)x to N, so that u is analytic on Nnp(T), and u(X) = R(X, T)x
if λ G p(T). Because of the low of permanance of functional equations,
the first resolvent equation shows us that u must satisfy

[1 _ {μ _ λ ) R { μ i T)]u(K) = R { μ i T)x f

at least for μep(T) and XeN f] p(T). Thus, operating on this
equation by μl — T, we arrive at (λl — T) u(X) = x, and so, by
Definition 1.1, u is an extended resolvent of T at x. Conversely, if
u is an extended resolvent of T at x, analytic on Nf)p(T), then,
with Tx = λl - T, we have Tλu(X) = x and TλR(X, T)x = x, at least
for Xep(T). So, Tλ(u(X) — R(X, T)x) = 0, and this obviously implies
that u(X) = R(X, T)x if Xe ρ(T). Therefore, u is an analytic continu-
ation of the resolvent of T into N.

Now, the resolvent R(-, T) has as domain, the (not necessarily
connected) open set p(T), and so R(-, T) is only locally holomorphic
on p(T). That is JS( , T) is holomorphic on each component of p(T).
Furthermore, it is known that p(T) is the maximal set of (local)
holomorphism of R( , T). With this notation we now observe the
following deduction from Theorem 1.2.

COROLLARY 1.3. The union of those components of p(x, T) which
contain points of ρ(T), is the maximal set of local holomorphism of
R{-,T)x.

In general, an extended resolvent of Γ at x on an open set N
will not be an analytic continuation of R(-, T)x, as AT may be entirely
contained in σ(T), so that i?( , T) will not be defined on N.

REMARKS. ( i ) Suppose that B is an arbitrary (complex) Banach
algebra with identity. Then, by considering the regular representations
of B as the algebra B(X) of endomorphisms on some Banach space
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X, the above definitions remain intact, and so they provide a generali-
zation of the concept of the spectrum for these algebras.

(ii) In [4], we have considered not only analytic extensions of
the resolvent, but also continuous and weakly continuous solutions
of equation (1.1). In particular, it was found when these three ex-
tensions coincide.

2* Topological properties of the local spectrum* We shall
now see that the (topological) properties of the local spectrum of T
at x closely resemble those of σ(T). We first of all prove a result
which will be useful in a later section.

LEMMA 2.1. Suppose that AeB(X) commutes with T. Then
for all x e X, σ(Ax, T) g φ , T). If further, A is a regular element
B(X), then equality holds.

Proof. Suppose that X ep(x, T). Then there is a neighbourhood
JV of λ, and a function u; JV—>X, analytic on JV, such that
λ^(λ) - Tu{X) = x for all X e JV. But then

Ax = XAu(X) - ATu(X) = XAu(X) - TAu(X) ,

and therefore, as A is continuous, Au is analytic on JV, and from
the above equation, we see therefore that Au is an extended resolvent
of T at Ax, on JV. Hence σ(Ax, T)Qσ(x, T). If A~ι is also bounded,
then, as A~x also commutes with T, a similar argument yields
σ(Ax, T) 3 φ , T). The result follows from these inclusions. In
particular, for each nonzero aeC we have σ(ax, T) — σ(x, T).

LEMMA 2.2. If TeB(X), then r(x, T) = l i m s u p ^ || Tnx \\ιl%. In
general the limit does not exist.

Proof. From Theorem 1.1 and Definition 1.4, r(x, T) ̂  r(T) for
each x e X. Now, for | λ | > r(x, T) there is an analytic continuation
of the resolvent u, which is represented by an absolutely convergent
Laurent series about oo, thus u(X) = Σo°^wλ~%, with a% = an(x)eX.
But for I λ I > r(T) ̂  r(x, T), because of the Neumann expansion of
the resolvent the series

0

converges absolutely, and represents an extended resolvent for each
x. Therefore, by the uniqueness theorem for vectorvalued analytic
functions, the two series are identical. It is now easily seen that
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the radius of convergence of (2.1) is r(x, T), and the first part of
the lemma now follows from the Hadamard formula.

As for the second part, let X be the Banach space of all bounded
(complex) sequences x — (xl9 x2, •) with norm \\x\\ — s u p ^ \xn\.
For a given sequence of real numbers {αn}, with 0 < an <Ξ 1, define
the shift T on X by Tx = (0, aλxu a2x2, - •). Then \\Tx\\ =
supn 2 ϊ l | αnαft | ^ || x\\, for all xeX, so that TeB(X). With x =
( l , 0 , 0 , . . ) e I we find that Tnx = (0, 0, . -, 0, aλa2 - anj 0, 0, .)
for each integer n, and so || Tnx \\ι/n = {axa2 an)

ιjn. Now make the
following choice, an ~ 2~n ifn = 10N for some integer N > 0, and aΛ = 1
otherwise. We then find that if π —> co through powers of 10 only,
|| yna.|ji/»_2"1 0 / 9 < 1, and otherwise, || Tnx \\ιln -> 1. So the limit
infimum and the limit supremum are not equal, and this completes
the proof.

We come now to the main result of this section,

THEOREM 2.3. For each x e X, σ(x, T) is closed. If further,
TeB(X), then σ(x, T) is compact, and it is empty if and only if
x = 0.

Proof. By Definition 1.1, the set p(x, T) is open, and so σ(x, T)
is closed. We have already observed in Theorem 1.1 that σ(x, T) ϋ
σ{T) for all xeX. So if T is bounded, σ(T) is also bounded, and
therefore σ(x, T) is compact. Suppose now that the local spectrum
of TeB(X) at x is empty. Then, because of Lemma 2.2, we see
that the series (2.1) converges to an extended resolvent for all non-
zero values of λ. Thus u(\) —> 0 as | λ | —+ co. Further, in this case,
u is an entire function. Therefore, by the Liouville theorem for
vector-valued analytic functions, u is identically zero. But this would
imply that 0 = Xu — Tu = x. The converse of this proposition being
obvious, the theorem is proven.

We mention the following facts. As in classical spectral theory,
the local spectrum of an unbounded operator may be either bounded,
or unbounded. This is illustrated by the following example. Let X
be the Banach space of bounded sequences, as in Lemma 2.2. Let
Dτ = {x e X: | xn \ = 0{n~ι) as n —> ©o} be the domain of the operator
T defined by T(xu x2, •) = (x19 2x2, , nxny •). Then T is certainly
unbounded, and σ(T) is the set of positive integers. If, however, we
choose x so that for n > N, xn = 0, then σ(x, T) £Ξ {1, 2, , N}9 which
is bounded. Similarly, if we choose x e X so that for n > N, xn Φ 0,
then σ(x, T) Ξ2{JV, N + 1, •}. Along this line one can construct
operators T (unbounded of course), for which σ(x, T) — φ for all x;
and operators for which p(x, T) = φ. In the first case we choose an
unbounded operator for which σ(T) is empty, (cf: [2], 605), then, by
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Theorem 1.1, σ(x, T) = φ for each xeX. Secondly, let X be the
space C[0, oo], and let T be the operation of differentiation on the
domain {x: x' e C [0, oo] and x(0) = 0}. Choose x(t) = e~\ Then we find
that the local spectrum of T at x is the entire complex plane, so
that p(x, T) is empty.

In later sections it will become important to know something
about the connectedness of the local spectrum, but, as the following
theorem shows, we can say nothing general about this.

THEOREM 2.4. Compactness is the only topological property shared
by all local spectra.

Proof. Let X be the Banach space of all bounded, complex-valued
functions on C, with the usual pointwise algebraic operations, and
with the topology induced by the supremum norm. For a fixed α e l ,
define the mapping T:X-+X by (Tu) (z) = a(z)u(z) for ueX and
all zeC; so that TeB(X). The local spectrum of T at x is the
complement of the set of points X at which there is an analytic
function λ —> u(X) which satisfies Xu — au = x. But, as the solution
of this equation is (u(X))(z) = x(z)/(X — a(z)), this set is the closure
of the range Γ = {a(z): z e C\Z}, where Z is the set of zeroes of x.
Thus a and x may be chosen so that Cl (Γ) is any given closed,
bounded subset of C. Hence, any compact set is the local spectrum
of a suitable endomorphism T on X, at a suitable point xeX.

We now examine the relationship between σ(T) and the local
spectra of T. In particular, the next result tells us how many of
the local spectra are required to cover σ(T).

THEOREM 2.5. If T e B{X) and XQ S X is a subspace of the second
category, then \JxβZoσ(x, T) = σ(T) .

Proof. We have from Theorem 1.1 that U σ(x, T) s σ(T)> the union
being taken over all xeX0 — some subspace of the second category
in X. To prove the theorem we will show that this inclusion may
be reversed. Toward this end assume that oteΓ\xeZoρ(x, T). Then,
for all x e Xo, there is a neighbourhood of a and an analytic X-valued
function λ—>u(X, x) which satisfies λw(λ, x) — Tu(X, x) — x. Next,
define the mapping P: Xo —> X via Px = u(a, x), for x e Xo. Certainly
if x,ye Xo, then P(x + y) = P(x) + P(y) because a e ρ(x, T) n ρ(y, T).
Thus P is a linear transformation on Xo to X. Now, for each x e X(,
we have (al — T)Px = x, and so

\\x\\ = || (αl — T)Px || ^ (| a\ + || T ||) || Px \\

0
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that is, there exists a constant M > 0 for which || Px || ^ Λf || x || for
each x e XQ. Thus P has a bounded inverse P" 1 with domain Xt =
sp {̂ (α:, a?) : a? e X}—the subspace generated by u(ayx). It is plainly
seen that this inverse P" 1 is in fact the restriction of al — T to Xlwt

As P" 1 is bounded on its domain, it can be extended, by continuity,
to a bounded operator on Cl (Xι)—the closure of Xlm Therefore, this
extension P~ι is necessarily closed on its domain, so its inverse
(p-1)-1 = p : χ0 — C1(XX) is also closed. Finally, as Xo is of the second
category in X, we invoke the closed graph theorem to conclude that
the domain of P is actually all of X, and that P is bounded. Thus we
have shown that al — T has a bounded inverse with domain X, and
this condition necessarily implies that a belongs to the resolvent set
of T. From this statement the theorem follows.

COROLLARY 2.6. (Dunford [1]). If TeB(X), then \Jxex σ(x, T) =
σ(T).

This corollary is a direct consequence of Theorem 2.5 taken in
conjunction with the Baire category theorem. Even without com-
pleteness, if X is only a normed linear space, and if T is any linear
transformation, the conclusion of Corollary 2.6 is still valid, as σ(T}
is the union, over all xeX and all x* in some determining manifold
for X, of the sets of singularities of aj*(JB( , T)x); whereas σ(x, T) is
the union, over all x* in this determining manifold, of the sets of
singularities of x*(R( , T)x).

In particular cases the result of Theorem 2.5 may be improved
upon, in that it may require less of the local spectra to cover σ{T).
Suppose, for example, that T is quasi-nilpotent, (or, more generally,
that TeB(X) has only a single point in its spectrum), then, by the
third part of Theorem 2.3, σ(x, T) = σ(T) for each nonzero xeX.
In fact, we are led to make the following conjecture regarding the
existence of such extremal vectors.

CONJECTURE. If T e B(X), there is an x e Xfor which σ(x, T) = σ(T)+

To support this conjecture we state the:

THEOREM 2.7. For each point ζeBάσ(T), there is a set Xζ, of
the second category in X, for which ζ e Bd σ(x, T) for all x e Xζ.

Proof. As ζ belongs to the boundary of σ(T) there is a sequence
{ζJ in the resolvent set of Γ, such that ζn —• ζ as n —> oo. Now let
Rn = R(ζ%9 T) for n — 1, 2, . Then each jβ% is an endomorphism
on X. But, because of Theorem VII 3.3 of [2], we have that
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as n —* oo. Thus, by the principle of the condensation of singularities,
([2], 81) there is a set Xζ, of the second category in X, for which
\\Rn% II —* °° as n-+oo9 for each xeXζ. But by Definition 1.1. and
the definition of analyticity, this means that ζ is a singular point of
the function R( , T)x, and so ζeBdcr(α;, T) for each vector xeXζ.

3* The analysis of extended resolvents* Our Definition 1.4 of
an extended resolvent u of T at x, was a purely local definition, in
that these extensions were defined only on open subsets of p{x, T).
Suppose in fact, that there is a component of the local resolvent
set of T at x which is entirely contained in o(T). Let uγ and u2 be
two extended resolvents of T at x, analytic on open sets N19 N2Q/c.
Then it may happen that uι and u2 differ on the intersection Nx Π N2.
This is illustrated by an example due to Stampfli ([8], 288). If,
however, tt and p(T) are connected, then, because of Theorem 1.2,
there is a unique analytic extended resolvent defined on tc.

This statement leads us to the following.

DEFINITION 3.1. If there is only one extended resolvent of T at
x, analytic on p(x, T), we shall say, (following Dunford [1]), that T
has the single-valued extension property at x.

This property has been of fundamental importance in Dunford's
work on the characterization of spectral operators; and certain sufficient
conditions for T to have this property (for all xeX), were given by
him. (Cf: Lemma 1 on page 251, and Lemma 4 on page 254 of [1].)
These conditions will be contained in the next theorem. In this
theorem T will denote a (not necessarily bounded) linear transforma-
tion on X, and Pσ(T) will denote its point spectrum.

THEOREM 3.1. A sufficient condition for T to have the single-
valued extension property at x, is that for each component K of
p(x, T), the set tc\Pσ(T) has a limit point in tc.

Proof. We note first that as p(x, T) is open, and as C is locally
connected, each component of p(x, T) is open. Now let u and u be
any two extensions of the resolvent of T at x, analytic in p(x, T).
Let tc be an arbitray component of the local resolvent set. Then we
find that for all λ e tc, Tλύ(X) = x = Tλu(\), so Tλ{u(X) - u(X)) = 0.
From this equation we see that u(X) = u(X) if λ e /c\Pσ(T), and u(\) =
u(X) + ξ(X) if XefcπPσ(T). Here ζ(X) is an element of the null-space
of Tλi and the function λ—>ζ(X) is necessarily analytic on /r. Now,
if the above hypothesis is satisfied, κ\Pσ(T) must contain a sequence
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{ζJ with ζw —• ζ e £, and we thus see that ζ(ζn) = 0 for n — 1, 2, ,
and therefore, by the uniqueness theorem for vector-valued analytic
functions, ξ — 0 throughout K. Hence u(X) = u(X) for all λ e tt.

We observe that for T to have the single-valued extension pro-
perty at x it is not necessary for the above condition to be satisfied.
For let X be the Banach space of all bounded, complex-valued func-
tions on C, as in Theorem 2.4. Let T e B(X) be the operation of
multiplication by α e l , where

[z if

z\>l

Define a e l b y

[z if I s I = 1
X ( Z ) = I

(0 otherwise

Then, from Theorem 2.4, we find easily that σ(T) = 1(0,1)—the closed
unit disc; Pσ(T) = Δ(0,1)—the open unit disc; and the local resolvent
set of T at x consists of the two components z/(0,1), and the com-
plement of 1(0,1).

So, in the unbounded component of p(x, T), the conditions of
Theorem 3.1 are not satisfied, but still there is only one extended
resolvent of Γ at «, analytic in A(0,1). As if there were two such
extensions, their difference would be a nonzero function ξ for which
ξ(X) belongs to the null-space of Tλ for each λ e zf(0,1). However, a
simple computation shows that if | λ | < 1, the null-space of Tλ is
the one-dimensional subspace generated by the element

0 if z Φ λ

1 if z = λ

and so the function λ—>f(λ) is not an analytic X-valued function on
Δ(0,1).

COROLLARY 3.2. // no component of p(x, T) is contained in σ(T),
then T has the single-valued extension property at x.

The spectral operators in [1] satisfied the conditions of:

COROLLARY 3.3. (Dunford). If σ(T) is nowhere dense, then T
has the single-valued extension property for all xe X.

Suppose now that T does not have the single-valued extension
property at x, so that in some component tc of ρ(x, T) there are two
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distinct analytic functions uL and u2 which satisfy equation (1.1). It
may happen that the values of v,γ and u2 in K represent the different
branches of a single analytic u. In this case we may, (by suitable
cuts), define an open Riemann surface £* in ic on which u is holomorphic.
Then £* will be a maximal domain of holomorphism of the unique
analytic solution of equation (1.1), and so T will have the single-
valued extension property at x, in £*. That this type of behaviour
can occur is illustrated by Kakutani on page 185 of [5].

We conclude this section by exhibiting two examples which will
both illustrate the theory, and provide counter-examples for it.

EXAMPLE 3.1. Let J be the projection of the Hubert space X
onto the closed subspace M, so that JeB(X), J2 — J, and X = Λf0 N
is the direct sum decomposition of X. If we assume that J is neither
the identity, nor the zero projection, then σ(J) — {0,1}, and it is
readily seen that

R(X, J) = λ-11 + λ-χ(λ - I)" 1 J

for all Xep(J). From this we find that if xeM then σ(x,J) = {1};
if xeN, σ(x, J) = {0}, and if x is in neither of these two subspaces,
that is, if x = y + z with O^yeMand O^zeN, then σ(x, J) = {0,1} =
σ(J).

EXAMPLE 3.2. As our second example we consider the unilateral
shift U on the Hubert space l2 of square summable (complex) sequences,
defined by U(xl7 x2, •) = (0, xl9 x2, •) e i2. Then, as noted by Sine,
([7], 335), σ(x, U) = σ(U) = the closed unit disc 1(0,1), for each non-
zero x G l2. This is most easily seen by considering the l2 solutions
of the difference equation

Xun+1 - un = xn ,

for an arbitrary vector {xn} e l2.

4* The structure of the local spectrum (contd.). There is an
intimate relation between the spectral properties of a bounded linear
operator T:X—+X, and those of its adjoint T* : X* —>X*, namely,
σ(T) = σ(T*) and 22(λ, Γ)* - Λ(λ, T*) for all λ e p(T) = p(T*). How-
ever, because our spectral concepts are localized at a given point of X,
and as there is, in general, no canonical map from X to the dual space
X* of continuous linear f unctionals on X, we would not expect such satis-
fying relations to be true. Even when there is such a natural map, as,
for example, when X is a Hubert space, we still do not find desirable
properties, as the following example shows. Choose T = U as in
Example 3.2 of the previous section, then σ(x, U) = o(U) for all
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x Φ 0. In spite of this, the adjoint £7* is such that its resolvent
does have analytic extensions beyond p(U*). Here £/* is the left
unilateral shift on l2 defined by U*(xly x2, •) = (x2f x3, •)• Now
choose x = {xn} e l2 to have only a finite (positive) number of nonzero
components, so there is an integer N with n > N implying that
xn = 0. Then it is readily seen that 0 has index N, and so 22(λ, U*)x
is a polynomial of degree N in 1/λ. Furthermore, σ(x, Z7*) = {0} which
is properly contained in σ(U*). But to disprove the possible conjecture
that for suitable #*eX*, σ(x*, T*) ̂ σ(x, T), we merely note that
£/** - U, and so σ(x, U**)^σ{x, [7*).

For certain special operators on Hubert space, we can say some-
thing positive. However, first we need the

LEMMA 4.1. Under extensions of T, the local spectra of T suffer
contractions.

Proof. Let T" be an extension of the linear transformation T
with domain Dτ, 2 Dτ. Suppose that xeX, and let λ0 e p(x, T). Then
we have an analytic function u on a neighbourhood of λ0, such that
Xu{X) — Tu(X) = x, and so u(X) e DT1 for all λ in this neighbourhood.
Further, Xu(X) - T'u(X) = x, so that λ e ρ(x, T'), and therefore σ(x, T) =2
σ(x, Tf) for all xe X. Under restrictions of T the reverse effect is
found.

THEOREM 4.2. // T is symmetric, then σ(x, T) = σ(x, T*) for
all xeX.

Proof. By definition we know that the (Hubert space) adjoint
operator T* exists and is an extension of T. Hence, by Lemma 4.1,
σ(x, T) 3σ(x, T*) for all xeX. Thus, because of Corollary 2.6 we
see that σ(T) = \J9eτσ(x9 T)^\Jx&τσ{x, Γ*) - σ(T*) - σ(T) - where
the bar denotes complex conjugation, that is, σ(T) = {λ : λ e o(T)}.
However, this condition obviously implies that σ(T) = σ(T), which
then implies that \Jxeχ σ(x, T) = \Jxeχ &(x, T*), and so, because of
what we have proven above, σ(x, T) = σ(x, T*) for each xeX.

THEOREM 4.3. // T is unitary, then σ(x, T) — l/σ(x, T*) for all
xeX.

Proof. From the fundamental equation which defines an analytic
extended resolvent u of Γ at ^, we find that

T*x = XT*u(X) - T*Tu(X) = \T*u(X) - u ,

as T is unitary, and for all λ e ρ(x, T). So λ~^(λ) - T*u{X) - -λ-1^*^,
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which shows that X"1 e pi-X-^x, T*). But T* commutes with Γ,
and is a regular element of B(X), and therefore, by Lemma 2.1,
ai-X-^x, T*) = σ(x, T*), so that λ ^ e ^ T * ) . Now, as TeB(X),
T** = T, and hence T* is also unitary, so p(x, T*) = l//θ(a?, T**) =
l/ιθ(#, T), and from this, and the above, we find that σ(x, T) =
l/σ(x, Γ*) = {1/λ : λ e cφ, T*)}, for all xeX.

In the same vein, Stampfli, ([8], 291), has proven the

THEOREM 4.4. 7/ T is completely hyponormal, and if o(T) lies
on an arc, then σ(x, T) Ξ2 σ(x, T*) for all xe X.

The strength of the hypotheses involved in Theorem 4.4 seem
unavoidable in view of the next result. Before proving this however,
we present some notation. Suppose that T Dτξ^X--+X is a linear
operator, that X is a Hubert space, and that u is an extended resolvent
of T at x in p(x, T). We denote by M = M(x, T) the closed subspace
generated by {u(X): X e ρ(x, T)}.

THEOREM 4.5. Suppose that T is densely defined in X, and that
M(x, T) reduces T, then σ(x, T) 5 σ(x, ϊ7*). //, further, T has a closure
T, and if M(x, T*) reduces T, then equality holds.

Proof. We have the existence of a function u, analytic on p(x, T),
and satisfying x — Xu(X) — Tu(X) in p(x, T). So, for all w e X,

(x, w) — (Xu — Tu, w) = X(uf w) — (Tu, w) = X(ufw) — (u, T*w),

at least for those weDτ* — the domain of T*. Therefore, for
Xep(xy T),

(4.1) (u(X), Xw - T*w) = (x, w) .

We now wish to show that in the Hubert space X, for any
sequence {an : n = 0,1, 2, •••}£!, and for a fixed element xeX, we
can define a sequence of vector {bn : n — 0,1, 2, } £ l such that
(x9 bn) = (an, x), and \\an\\ = \\bn\\ for each integer n. To this end

we use the fact that every Hubert space X is isometrically isomorphic
to a Lebesgue space L2(S, Σ, μ), for some measure space S, a σ-ring
of subsets Σ of S, and a measure μ on Σ (cf: [2], 349). Under this
isomorphism we identify x with the square μ-integrable function α ( )
on S, and similarly with the sequence {αj, so that for each positive
integer n, we may certainly define an U function bn for which

(4.2) ( x(t)bn(t)dμ - ( an(t)x(t)dμ .
JS JS
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Because, if ΩeΣ is the subset of S on which x vanishes, we define
bn(t) = άn(t)x(t)/x(t) if t$Ω; and for teΩ, we define bn{t) = an(t).
Then certainly each bn is square μ-integrable on S, and by construction,
\an(t) I = I bn(t) I for all teS. Thus, as the above isomorphism is an
isometry, we conclude that \\an\\ = \\bn\\ for all integers n, and (4.2)
implies that (x, bn) = (αw, x).

Now, as w is analytic in p(x, T), each element of u has a Laurent
expansion of the form

(4.3) Σ «•(*-«)*,
0

for some α G C, where the series (4.3) converges absolutely for

\z - a\< 1/limsup^TO || an ||
1/n = p > 0 .

Next, choose a sequence {bn}£las above, and define the function w by

(4.4) w(z) = Σ ftn(s - δ) .
0

This series then converges absolutely for | z — a | < p, and so in this
disc it defines an analytic function. However, by the choice of the
sequence of co-efficients in (4.4), w also satisfies the equation

(x, w) = (u, x) .

Thus, from the above equations, we have constructed a function w,
analytic at a, and satisfying (4.1). Thus, there is an element ξ e M1—
the orthocomplement of M(x, Γ), for which

(4.5) x + ξ = Xw(X) - T*w(X)

for Xep(x, T). However, as M reduces T, the projection J:X—>M
commutes with Γ o n flΓ3M, and further, the subspace M1 is the
null-space of J, so that Jξ — 0. Furthermore, we know that M is
invariant under T, and from this one finds that for each Xeρ(xf T),
x = u(X) — Tu(X) e M, so that Jx = x. Now, operating on both sides
of equation (4.5) by J, using the fact that / commutes with T, and
hence that J* — J commutes with Γ*, and writing u = Jw, we find
that u satisfies the fundamental equation

x = Xu(X) - T*ύ(X) ,

for each X ep(x, T). As JeB(X)f u is analytic, and thus is an
extended resolvent of T* at x with p(x, T)Qρ(x, T*). Therefore
σ(x,T)3ίσ(xfT*).

As for the second part of the theorem, suppose that f is the
minimal closed extension of T. We show first that σ(x, f) = σ(x, T).
Suppose therefore that aep(x,T), then JS( , t)x has an analytic
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continuation to a. By the definition of analyticity, and the Riesz
representation theorem, this is equivalent the statement that
(y, i£( , t)x) has this continuation for all yeX. Now observe that
for Xep(f) the following chain of equalities hold: (y, jβ(λ, f)x) =
(12(λ, f)*y, x) = (R(λ, T*)y, x\ = (Λ(λ, Γ*)V, x) = (y, R(\, T)x), where
we have used the fact that Γ* = T*. Prom the above this therefore
shows that «€/)(a;, T), and hence that σ(x, t) = ff(α, Γ) for all α eX.
Now, in general f = T**, and as j|f(α, Γ*) reduces T**, the first
part of the theorem applies to show that σ(x, T*)^σ(x, r**). There-
fore, σ(x, T)^σ{x, Γ * ) 3 φ , T**) = σ(#, f) = σ(x, T), and the second
conclusion now follows.

COROLLARY 4.6. If Te B(X), and if {u(x): λ e |θ(^, Γ)} is funda-
mental in X, then σ(x, T) 3 J(a?, T*).

When X is only a Banach space we can prove the following
results, the proof coming directly from Theorem 2.5 and the remarks
that introduced this section.

THEOREM 4.7. Suppose that TeB(X) and that XQ^X and
QX* are subspaces of the second category, then \JxeχQσ{x, T) —

Now let re: X—>X** be the cannonical isomorphism of X into its
bi-dual space X**. Then, with this notation in mind, we present the
following slight improvement of Theorem 4.7.

THEOREM 4.8. Suppose that T is densely defined in X and that
p(T) Φ φ. Let Γ*ξΞ=π(X) be a determining manifold for X*, and
let Xo = π-^jH*). Then if Γ is a determining manifold for X,

Proof. We show first that the image π(X) does in fact contain
a determining manifold JΓ* for X*, in fact π(X) itself is such a
manifold. For, by the Hahn-Banach theorm, for all functionals x* e X*,
we have || x* || — sup {| x*x \ : || x \\ — 1, x e X}, and so, with x** =
π(x), we find that || x* \\ = sup{| x**x* \ : || x** || = 1, α;** G X * * } , as
π is an isometry. Again because π is isometric, ττ(X) is a closed
subspace of X**, and therefore is a determining manifold for X*.
Suppose now that <%eΓ[xeXop(x, T), so that for each xeX0, J?( , T)x
has an analytic continuation to a neighbourhood of a. Thus, for
each x*eΓ, the complex-valued function x*(R( ,T)x) has this con-
tinuation property. Further, for all
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Xeρ(T) = ρ(T*), x*(R(X, T)x) = (j?(λ, T)*x*)x

= (R(X, T*)x*)x = x**(R(X, T*)a;*) ,

and so a e Γ\χ*erP(%*, T*). A similar argument yields the reverse
inclusion, and from these the result follows.

As a consequence of Corollary 2.6 and Theorem 4.8, we have the

COROLLARY 4.9. // X is the dual of a Banach space Y, and if
T e B(X) is the adjoint of an element ofB(Y), then σ(T) — \Jxer 0(x, T)
for some determining manifold Γ for Y.

We shall now embark on an investigation of the variation of the
local spectra of Γ G B(X) at xe X. The set function ψ from X to
the set of subsets of C will be called upper semi-continuous at a e X
if, given any neighbourhood Ω of 0, there is an ε = ε(Ω) > 0 such
that ψ(z) ϋ ψ(a) + Ω for all z e X for which || z — a || < ε. f is lower
semi-continuous at a if instead, we have ψ(a) § ψ(z) + Ω for all
\\z ~~ a\\ < ε. ψ will be continuous at a if it is both upper and
lower semi-continuous there.

THEOREM 4.10. For each xeX, the map T—>σ(x, T) is upper
semi-continuous on B(X).

Proof. Let x e X be fixed, and suppose that A is an arbitrary
endomorphism on X. We shall show that, with the above notation,
the mapping T—+σ(x, T) is upper semi-continuous at A. Let Ω be
an open set containing the local spectrum of A at x. Then, if C is
the extended complex plane, with the usual topology, Ω = C\Ω is
compact in C. Suppose that u is an extended resolvent of A at x
in p(x, A), then, as u is analytic, it is certainly strongly continuous
in Ω, and is thus bounded in norm by some constant M > 0 in Ω.
Now, it is shown in [5], page 127, that if Xeρ(A), the series

(4.6) Σ (T - A)nR(X, A)n+1

0

converges to the resolvent of Γ at λ, provided T is sufficiently close
to A. Let un be an analytic continuation of R(-, A)n+1x into σ(A),
then, because of (4.6), if the series

(4.7) ±{T-AYun
0

converges, it will converge to an analytically extended resolvent of
T at x. Because of equation (4.7.6) of [12], we see that
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(4.8) un+i(\) = (-yu^(X)/n !

for all λ e p(x, T), and n = 0,1, 2, . . . .

We may suppose that σ(x, A) Φ σ(A), as in this case, Theorem
5.2.3 of [5] applies to show that the map T~*σ(T) is upper semi-
continuous on B{X). We thus restrict attention to the compact set
Ω\p(A). Choose a covering of Ω\p(A) by open discs {A(aκ, Rκ)} which
lie in p(x, A). Then there is a finite subcovering of Ω\ρ{A), say

{A{aκy Rκ): fc = 0 , 1 , — , JSΓ>

and in each of these discs we have the estimates || u{n)(X) || ^ MR~nn !
if X e 4(aκ, Rκ). Choose R = max (RQ, RL1 , iί^) > 0, then, because
of equation (4.8), || un+1(X)\\ ̂  MR~n for all XeΩ\ρ(A). Therefore,
the series (4.7) converges to an extended resolvent of T at x, for all
T which satisfy || Γ - A || < e = 1/R, and for these T, p(x, T)3f i .
That is, σ(x, T)^Ωf and the proof is complete.

Examples can be given which shown that the map T—+p(x, T) is
not continuous on B(X), (cf: Newburgh [6]), and so it is natural to
ask where this map is in fact continuous. To give a partial answer
to this question we let B0(X) be a closed sub-algebra of B(X), and
denote by Z0(X) the centre of the algebra BQ(X). Then

COROLLARY 4.11. For each xeX, the map T—>σ(x, T) is con-
tinuous on ZQ(X).

Proof. As B0(X) is closed in B(X) it is obvious from Theorem
4.10 that the restriction of the above mapping to B0(X) is upper semi-
continuous. We complete the proof by referring to Theorem 4 of [6].

Now let J be the projection in Example 3.1, and choose a sequence
xn = Vn + zn, with yneM, no yn zero, and yn—>y Φ 0; zneN, no z%

zero, and zn-+0 as n—>oo9 Then for each positive integer n,
tf(#», J) = {°> 1}> whilst o (^, J) = {1}. Hence lim sup%_oo σ(xn9 J) is
not contained in σ(y, J). Therefore the map x —• σ(x, T) is, in general,
not upper semi-continuous on X.

Next choose T = Ϊ7* to be the (left) unilateral shift of Example
3.2, and let

so that

^ = (l,l,l, . . . , ! , 0,0,
V 2 3 w

as
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Then, for all w = (wlf w2, •) e l2, we have, from equation (2.1), that

, U*)xn, w) = λ-1 Σ an,m X-m ,

where an>m = Σou~m wk/(m + k) if m < n; and αw?m = 0 if m ^ n.
Therefore σ(xn, U*) = {0}. But, at least initially for \eρ(U*),

(4.9)
0

where αm = ΣΓ wkj{m + A), w being an arbitrary vector in l2, we
choose w = x, and then we find that

am = (1 + — + + —) m ~ (T + log m)/m as m —> co
V 2 m//

here 7 is Euler's constant. Hence the function represented by the
series (4.9) has a singularity on the boundary of the unit disc, and
so cannot be continued analytically to every point of the complex
plane punctured at the origin. So liminf^ootf1^, J7*) does not contain
σ(x,U*), and thus the map x—*σ(x, T), is not, in general, lower
semi-continuous on X.

Now choose T — U again. Thus, for each non-zero x e l2, the
local spectrum at x is o*(C7), and therefore the mapping x—>σ(x, U)
is continuous at each nonzero point of X. Furthermore, this gives
an example of the best possible result in this direction, as, by Theorem
2.3, this map can never be continuous at 0, at least for TeB(X).

In spite of these negative results, we can establish the following

THEOREM 4.12. Let xn-~+x strongly (weakly), and let un be an
extended resolvent of the closed {densely defined) operator T at xn.
If, ( i ) the ranges of the un lie in some compact (weakly compact)
set; and (ii) un is bounded in some domain E for which C\(E) £
Γ\™p(xn,T), then there is a subsequence un. converging strongly
(weakly) to the extended resolvent of T at x, in E.

Proof. Let E be an open connected set, closure contained in the
intersection Γi™ p(xn, T). The distance from E to the local spectrum
σ(xnj T) is positive, ond so un(X) is bounded in λ, for each integer n.
Hence by (ii), the sequence of extended resolvents is uniformly bounded
in E. Because of the compactness assumption (i), the Vitali theorem
for vector-valued analytic functions asserts that there is a subsequence
un. which converges to some function u, which is also analytic in E.
Now, xn. = Tλun.(X)—+x as ΐ—* co, as {xn} converges, this being true
for all XeE. Therefore, as T is a closed operator, u belongs to the
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domain of T, and Xu(X) — Tu(X) = x for each λ e E, so that u is an
extended resolvent of T at x in E, and p(x, T) 2 £7. If we now assume
that the above statements pertaining to convergence and compactness
are replaced by the corresponding statements in the weak topology
of X, then, for all x * e l * , as the domain of T is dense in X,
x*xn. = x*(Tλun.(X)) for all λe£?. But this last expression is

(Ttx*)u%i{X)-+{T*λx*)u{X) as i — c o ,

and the same conclusion is valid again.

5* The local operational calculus* Among other things, the
operational calculus, ([2], 566), allows one to define the operator f(T),
for a given endomorphism T, for a large class of functions /. To
wit, those functions holomorphic on some neighbourhood of the spec-
trum of T. This class of functions will be denoted by F(T). In a
natural way we shall extend this calculus to the class F(x, T) of
functions holomorphic on a neighbourhood of the local spectrum of T
at xeX. However, the domain of f(T) will be the one-dimensional
subspace generated by x.

Throughout this section, we shall assume that T has the single-
valued extension property at x, so that in particular, the extensions
of the resolvent will have no branch points in p(x, T).

An open set Ux will be called T-admissible at x if (i) Ux^σ(x, T);
(ii) Ux has only a finite number of components, and (iii) the boundary
Bd Ux of Ux consists of a finite number of closed, disjoint, rectifiable
Jordan curves. Suppose that TeB(X). Then, if feF(x, T) is holo-
morphic on the open set 7 2 φ , T), there is, because of Theorem
2.3, and a lemma due to Taylor, ([9], 190), a T-admissible set UXQ V.
We now define the operator f(T) at x by the integral

(5.1) f{T)x = (2πi)A u(ζ, x, T)f(ζ)dζ ,
}BdUx

where ζ-+u(ζ,x, T) is the extended resolvent of T at x in p(x, T).
It is readily seen that (5.1) is independent of the particular Γ-admis-
sible set chosen, and thus f(T)x is a well defined element of X.

THEOREM 5.1. ( i ) Under the obvious operations, F(x, T) forms
an algebra over C;

(ii) If {fn}QF(x,T) converges uniformly on Ua to /, then
feF(x, T), and {fn(T)x} converges, in the strong topology of X, to

(iii) // / can be represented by the convergent series

f(z) = Σ α»zB in Uβ, then f(T)x = Σ anT
nx
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(iv) Suppose that f,ge F(x, T). Let h = f-g,and let y = g(T)x.
Then if feF(y, T) we have h(T)x = f(T)y.

Proof. The proofs of parts (i), (ii) and (iii) will be omitted as
they follow readily from the proofs of the corresponding statements
in [2], page 568. Part (iv) may also be adapted from Theorem VII
3.10 (b) of the above reference, by using the fact that if u(-,x) is
the extended resolvent of Γ at x, then for λ, μ e ρ{x, T) we have
u(X, x) — u(μ, x) = — (λ — μ)u(X, u(μ, x))—a result easily derived from
the first resolvent equation.

We shall now establish the following local version of the celebrated
spectral mapping theorem.

THEOREM 5.2. Suppose that TeB(X) and that feF(T). Then,
for all xeX, σ(x,f(T)) = f(σ(xf T)).

Proof. Suppose first that aeσ(x, T), then the function g defined
by g(z) = {f (a) - f(z))/(a - z) belongs to F(T)y and (αl - T)g(T) =
f(a)l - f(T). So if f(cήiσ(x,f(T)), there would exist a function u,
analytic at f(a), such that [f(a)l - f(T)]u(f(a)) = x. But this in
turn would imply that (al — T)[g(T)u(f(a))] = x. Now define the
X-valued function w by w(X) = g(T)u(f(X)). Then as g(T)eB(X),
w is analytic at a, and aw(a) — Tw(a) = x, which contradicts the
fact that aeσ(x, T). Therefore f(σ(x, T)) £ σ(x, f(T)). Now, by
Dunford's spectral mapping theorem, ([2], 569), and because of Corol-
lary 2.6, we have that

U σ(x,f(T)) = σ(f(T)) = f(σ(T)) = f(\J σ(x, T))
xeX xeX

= \Jf{o{x,T)).
xeX

But because we have already shown that f{σ{x, T))^σ(x1f(T)), this
certainly implies that σ(x,f(T)) = f(σ(x, T)) for all xeX.

Suppose now that T is a closed (unbounded) linear transformation
from its domain ΰ r g l to X, and that for a given xeX, p(x, T) is
not empty. Let F(x, T) be the algebra of complex-valued functions
holomorphic on σ(x, T), and analytic at oo. An open set Ux will be
called (locally) T-admissible in this case if it satisfies the same con-
ditions as previously, except that the bounding curves need no longer
be rectifiable. Then if feF(x, T) is holomorphic on an open set V,
we define, for any T-admissible set UxξiVy

f(T)x = δf(oo)χ + (2πί)A u(ζ, x)f(ζ)dζ ,

where δ — 0 or 1 according as whether σ(x, T) is unbounded or not.
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This local operational calculus provides a generalization of the calculus
due to Taylor [9], in that it remains valid even if the resolvent set
of T is empty.

As a final comment in this section we note that the operational
calculus, as defined by (5.1), does agree with the global operational
calculus, whenever both are defined. This is expressed in the

THEOREM 5.3. Suppose that feF(T) is holomorphίc on the open
set W^σ(T). Let V be open, and let σ(x, T)^VSW. Then f =
f\veF(x, T), and further, f(T)x = f(T)x.

The proof of this theorem, being obvious from the definitions,
will be omitted.

6* Solutions of abstract functional equations* Utilizing Theo-
rem 5.1 we shall now prove a result on the summability of formal
solutions of functional equations, thus extending Theorem 1 of [3].
Let TeB(X), then, for a given xeX we seek to sum the formal
series

(6.1) λ-^Σλ—Γ a
0

to a X-solution of the equation

(6.2) Xu - Tu = x .

Let 8 be a regular summability method which sums the geometric
series X~ zn to 1/(1 — z) in some set DQC. Let Λ(D) be the set of
points ζ e C for which there exists a compact subset VQD, and a
T-admissible set Ux such that UxQζV = {ζw \ w e V}. With this
notation we can now state the

THEOREM 6.1. Under the above conditions, the series (6.1) is
summable (@) to a solution of (6.2), for all XeΛ(D).

Because the proof of Theorem 6.1 is identical in nature to the
proof of Theorem 1 of [3], it will be omitted.
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