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ON A RADON-NIKODYM THEOREM FOR FINITELY
ADDITIVE SET FUNCTIONS

R. B. DARST and EULINE GREEN

The purpose of this note is to comment on and extend
recent results of C. Fefferman. A proof of his Radon-Nikodym
theorem that is, perhaps, more amenable to generalization is
given. A Lebesgue decomposition is also obtained.

Since the notations in [3] and [7] conflict, we shall make the
following compromises in notation and terminology, and beg the read-
er's indulgence.

Let S be a set, Σ be an algebra of subsets of S, C be the com-
plex numbers, and R be the real numbers. Let H(C) = H(S, Σ: C)
denote the set of all bounded, complex valued, finitely additive set
functions on Σ. Then H(R) will denote the real valued elements of
H(C). If aeH(C) and EeΣ, we denote the total variation of a over
Έ by v(a, E). If α, β € H(C) then

( i ) a is absolutely continuous with respect to β(a < β) means:
given ε > 0, there exists δ > 0 such that v(β, E) < δ (EeΣ) implies
v(a, E) < ε.

(ii) a is singular with respect to β(a JL β) means: given ε > 0,
there exists EsΣ such that v{a, E) < ε and v{β, S-E) < ε.

The classical Radon-Nikodym theorem (eg., [6, Th. III. 10.2]) as-
serts that if Σ is a sigma algebra and λ is a countably additive ele-
ment of H(C), then λ can be given an integral representation with
respect to a nonnegative, countably additive element μ of H(R) if,
and only if, λ is absolutely continuous with respect to μ.

In 1939, S. Bochner published a generalization ([1]) which remov-
ed the restrictions that Σ be a sigma algebra and that the set func-
tions be countably additive. Then S. Bochner and R. S. Phillips [2]
used a vector lattice approach to give a new proof of Bochner's
Theorem and, also, to obtain a Lebesgue decomposition. S. Leader
[8] studied the ZAspaces associated with finitely additive measures.
A representation for the case where μ e H(R) appeared ([3]) in 1962.
Theorem III. 10.7 of [6] supplements the classical theorem by allow-
ing μ to be complex valued, and recently C. Fefferman ([7]) extended
the latter result to the case of a general algebra of subsets of a set.

Let us turn to some comments on the paper of Fefferman.
( i ) The definition of absolute continuity given in [7] seems to

contain a misprint: Suppose that S = [ —1,1], Σ is the sigma algebra
of Lebesgue measurable subsets of S, a is Lebesgue measure m res-
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tricted to [ — 1,0] (i.e., a(E) = m(E Π [ — 1,0])), β is Lebesgue measure
restricted to [0, 1], μ = a-β, Ύ = a + β and E=S. Then μ(E) = 0 while
Ί{E) — 2 and, hence, j is not absolutely continuous with respect to μ1

according to [7]. Replacing \μ(E)\ by v(μ,E) or by sup {\μ(F)\;
FeΣ, FczE} in the definition of absolute continuity given in [7]
prevents the pathology illustrated by the preceding example.

(ii) After correcting the misprint, one should replace the last
statement in [7, p. 35, paragraph 1] by "Unless 7 is bounded and
countably additive the last two definitions need not be equivalent."
(See [4, Th. 3.4|. For a counterexample to the original statement,
let S be the positive integers, let Σ be the σ-algebra of all subsets
of S, let μ(E) = ΣneE2~n, and let y be a Banach measure).

(iii) Existence of a Lebesgue decomposition in the setting of [7]
follows immediately from [5] upon letting Tε = {EeΣ; v(μ, E) < ε}.

(iv) The first four lemmas in [7] are obtained in [3] by a tech-
nical modification of a standard proof of the classical Radon-Nikodym
theorem.

(v) While the last two lemmas in [7] are neat, our argument
seems to make certain generalizations more transparent. Consider,
for example, finitely additive set functions on ί to a Banach space
over R with basis. The coordinate functionals are finitely additive,
and if enough conditions are imposed, then our procedure can be ap-
plied.

For the sake of completeness and clarity, we state Theorem 2.2
of [3].

If/, geH(R), then there exist uniquely functions h and s in
H(R) such that

( i ) h<g,
( i i ) s ± g,

( i i i) f=h + s

(iv) EG Σ implies v(f, E) = v(h, E) + v (s, E).

Moreover, there exists a sequence {yn} of (S, Σ: i?)-simple functions

which converges in g-measure and such that if hn(E) — \ yndg for

each EeΣ, then limnv(h-hn, S) — 0.
The following is the desired extension.

THEOREM 1. Suppose a, βeH(C) and a < β. Then there exists
a sequence {zn} of (SyΣ: C)-simple functions such that if an(E) =

I zndβ for each EeΣ, then limnv(a — an, S) — 0.
JE

In order to apply Theorem 2.2, we need the following
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LEMMA 1. Suppose
( i ) a, β, yeH(C),
(ii) {gn} is a sequence of (S, Σ: C)-simple functions such that,

if Ύn(E) = I gnda for each EeΣ, then limnt;(τ — 7Λ, S) = 0,

(iii) β 1 7.
Then there exists a sequence {hn} of (S, Σ: C)-simple functions such

that if Yn(E) = [ hnda and y"{E) = ί hn d{a + β) for each EeΣ, then

lim% v(y - y'n, S) = lim. v(y - Y:, S) =%.

Proof. Let M% = max{| gn(x) \ xe S}. Since y ± β, we choose a
sequence {An} of elements of Σ such that v(β, An) < an and
v(y, S — An) < an where an = min {ljnMn, 1/n}. Define {hn} by hn(x)
= gn(x) if x e An and hn(x) = 0 if a? e S — An. Let ε > 0 be given and
choose N so large that n ^ N implies both v(y — ynf S) < ε/3 and
1/n < ε/3. Then if EeΣ and

N, 17(JS7) - y'AE) I ^ | τ ( ^ ) - yn(E) \ + | τ . (^) - Yn(E)

- y(E f](S- An)) \ + \y(EΠ(S-An)\< (ε/3) + | yn(E f] (S - An))

- y(E n (S - An)) I + v(y, S - An)< (ε/3) + (ε/3) + (ε/3) - ε .

Therefore, limwt;(7 - 7'», S) = 0. Finally, for J&eϋ and

\\ hndβ \

\

< e + Mn—\— < ε + A - < 2ε .
nMn 3

Therefore lim%?;(7 — 7», S) — 0, and Lemma 1 is proved.

Proof of Theorem 1. Any aeH(C) may be separated into its
real and complex parts, so it suffices to prove the theorem when a
is real valued. According to Theorem 2.2, we can express β as fol-
lows: β = μ + ίv = (μ1 + μ2) + i(i>t + v2) where μ, v, μu μ2, vlf v2 e H(R)
and

< 1) (a) μ, ± v (b) μ2 < v

(c) vt 1 μ (d) v2 < μ .

We also write a — ax + a2 where

( 2 ) (a) ax 1 v (b) a2 < v .

Notice now that aγ < μιm The reason for this is:
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# ! < « < £ and (2) (a) imply a, < μ = μ, + μ2. But (1) (b) and

(2) (a) imply ax 1 μ2, and hence ax < μlm Therefore, again by The-

orem 2.2, there exists a sequence {fn} of (S, Σ: jR)-simple functions

such that lim% \ fndμί = ocJJE) uniformly for EeΣ. Since at j_ v and
J E

OLX _L μ2, we conclude that ^ _L μ2 + ΐv, and apply Lemma 1 to get a
sequence {f'n} of (S, Σ: C)-simple functions such that

(A) limί f'nd{μγ + (μ2 + iv)) = limί / rf/9 = ^(£7)
ft J £ % JE

uniformly for EeΣ .

Now we look at a2, and write it as a2 = a2 + ^5' where

( 3 ) (a) a[ _L jt£ (b) α£' < μ .

As before, αj < α2 < v, thus (3) (a), (1) (d) imply a'2 _L v2, and hence
αj < vx. Also α^ ± v2 and a'2 L μ imply α^ J_ v2 — ί//. Therefore by
Theorem 2.2 and Lemma 1, there exists a sequence {gr

n} of (S>, I1: C)-
simple functions such that

(B) limί
n J E

-L + (v2 - iμ)) = lim [ {-i)g[dβ = «;(£?)

uniformly for EeΣ »

n JE

We are still left with a[f. But (3) (b), < < a2, (2) (b), and (1) (a)

imply a" 1 μlt hence a" < μ2. Hence there exists a sequence {kn} of

(S, ϋΊ i2)-simple functions such that lim \ gndμ2 — a"(E) uniformly for
n JE

EeΣ. But we cannot apply Lemma 1 here since we do not have

a" _L μx + iv. However, (1) (d), v2 < v, and (1) (a) imply v2 < / 2̂.

Therefore there exists a sequence {£J of (S, 21: iZ)-simple functions

such that lim I W ^ 2 = v2(E) uniformly for EeΣ. Let Kn = max

{| fcΛ(aj) I, a? e X}, and, by taking a subsequence of {ln} if necessary, sup-

pose v(\lndμ2 — v2, Ej < l/nKn for all EeΣ. Consider the sequence
{AJ where hn = kj(l + iln). Notice that hn is a step function, is de-
fined everwhere since 1 + iln is never zero, and | hn(x) \ ̂  | kn(x) | for
each ίceS. Let ε > 0, and choose N so large that n ^ N implies
both

( i )

(ii)

If EeΣ, then

a'2'(E)-\ kndμ2
JE

< ε/2 for all J? e Σ and

ε/2 .

- \ K d(μ2 + iv2)

a'2'(E) kndμ2 + [ kndμ2 - \ kn(l + iln)dμ2
JE JE
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<

VII

Therefore

ε
~2

ε
2

~2

JE

- + K...

-il

I
<!
-ε

n)dμ2 - \ K
JE

ihHlndμt - I

if n ^ N.

d(μ2 +

ihndv2

E

ή <

iv»)

c 1

2 % nKn

lim I hnd(μ2 + iv2) = α:;'

uniformly for E e Σ.

Noting that a" J_ μ1 + iVi and applying Lemma 1 again yields
the existence of a sequence {h'n} of (S, -2: C)-simple functions such
that

(C) limί fe;d(/^2 + iv2 + (μ, + i^)) = limt h'ndβ = o£'(E)
n JE n JE

uniformly for EeΣ.

Considering (A), (B), and (C) together we have

limί (/: + (~ig'(
n JE

K)dβ - aV))(E) = a(E)

uniformly for EeΣ. Thus, let zn = (f'n + i(-g'n) + K) and the the-
orem is proved.
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