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QUASI-ISOMORPHISM AND TFM RINGS

WILLIAM J. WICKLESS

Two rings A and B are quasi-isomorphic if and only if
there exist ideals A’ and B’ contained in A and B respectively
such that A’ = B’ as rings and A/A’ and B/B’ are of bounded
order as abelian groups, A ring is TFM if and only if it only
admits torsion free abelian groups as irreducible modules, It
is shown that quasi-isomorphic TFM rings have exactly the
same abelian groups as irreducible modules, Several examples
of T'FM rings are given,

A classification of TFM rings is given, The following
results are obtained:

(1) A is TFM if and only if A/pA is radical for all
primes p,

(2) Ais TFM if and only if A/N is torsion free and no
maximal modular right ideal is dense in the subgroup lattice
of A/N, where N is the Jacobson Radical of A.

(8) If A/N divisible then A is TFM. The converse holds
under the assumption of minimum condition.

(4) A/D radical= A TFM = A/D has no nonzero idempo-
tents, where D is the maximal divisible subgroup of A. These
conditions are equivalent under the assumption of minimum
condition,

Finally, the questions of the existance of a TFM radical
and the determination of the unique maximal TFM ideal of
a ring are discussed.

In matters of abelian group theory our definitions and notations are
consistent with [4]; in matters of ring theory our definitions and no-
tations are consistent with [3].

2. Quasi-isomorphism and TFM rings. In [1] Beaumont and
Pierce introduced the notion of quasi-isomorphism for abelian groups
and rings. Our definition is a slight modification of their original
definition.

DEFINITION 2.1. Two rings A and B are quasi-isomorphic if and
only if there exist ideals A’ and B’, contained in A and B respectively,
such that A’ and B’ are ring isomorphic and the quotient rings A/A’
and B/B’ are of bounded order as abelian groups.

In this paper we study quasi-isomorphic rings of the following
type.

DEFINITION 2.2. A ring A is a TFM ring if and only if every
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irreducible right A module is torsion free as an abelian group.

The fields @, R and C, the rational, real and complex numbers, are
immediate examples of TFM rings. Any radical ring is TFM, as it
satisfies the above definition vacuously. Z, the ring of integers, and
P, the ring of p-adic integers, are simple examples of non-TFM rings.

The following are less trivial examples of TFM rings.

ExaMPLE 2.1, Let A=>72 P A;, where A, =Z,A,=Q,1=2.
(The isomorphisms here are abelian group isomorphisms only.) Give A
the ordinary direct sum abelian group structure. Thinking of A as
a set of sequences <{z,>7, where only finitely many of the =z, s are
nonzero, define, for any positive integer 7,

e; =<xy, 2, =0 for i=j,2;,=1.

Define e;-¢; = e;.;, where 7 and j are arbitrary positive integers. This
definition clearly can be extended to arbitrary elements of A, thereby
determining a product for A, making A a commutative ring.

ExAMPLE 2.2. Let {p, p,, -+ p;---} be an arbitrary ordering of
the set 7 of all primes. For any positive integer <, let 7, = {p, - - - p;},
and let A, ={r/se@Q]|(r,s) =1, perm,p|s=pem}. Each A, is an
abelian group under ordinary rational addition. Let A = >\2, P A4;
with the ordinary direct sum addition. Define a ring multiplication
on A exactly as in Example 2.1,

ExaMPLE 2.3. Let p be a fixed prime. For any positive integer
k, let C(p*) be the cyclic group of order p*. Let B = [, C(p");
give B the ordinary direct product abelian group structure. Define a
ring multiplication on B by specifying the i-th co-ordinate of the
product <z >-<{y;> to be pxy;, where {x;> and <{y;> are arbitrary
elements of B. This makes B a commutative radical ring. (Every
element of B is quasi-regular, see [3], p. 9.) Let A = B[\], the ring
of all polynomials in a commuting indeterminate )\ over B.

These examples will be discussed in greater detail in § 3.
The following theorem is immediate.

THEOREM 2.1. The class of TFM rings is closed under the taking
of direct sums, homomorphisms, and extensions.

The motivation for considering quasi-isomorphic TFM rings is
given by Theorem 2.2, First we prove a lemma.
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LEMMA 2.1. Let A be any ring and M be any irreducible A
module. Then either M 1is torsion free and divisible as an abelian
group, or pM = 0 for some prime p.

Proof. Since M is an irreducible A module, M may be regarded
as a vector space over a division ring D. ([3], p. 26.) If character-
istic D = 0, M is torsion free divisible. If characteristic D = p, p a
prime, then pM = 0.

THEOREM 2.2. Let A and B be quasi-isomorphic TFM rings.
Let ¢ be the ring isomorphism mapping A’ onto B', A’ and B’ ideals
m A and B with A/A’ and B/B’ of bounded order. Let M be any
i1rreducible right A module. Then M can be asstgned a unique right
B module structure via ¢. Under this assignment M becomes an
wrreducible B module. Ewvery irreducible B module is obtained in
this manmner.

Proof. Let M be as above, Let xeM,beB. Let k be any
positive integer such that k(B/B’) = 0. Define xb = yp~'(kb), where
y is the unique solution in M to the equation ky = x. It is easy to
check that M becomes an irreducible B module under this definition.
We have given M the unique B module structure such that if xe M,

o’ € A’, then xa’ = xp(a’). It is clear that every irreducible B module
can be obtained in this way.

3. Classfication of TFM rings.

THEOREM 3.1. Let A be any ring. Then A is TFM if and only
iof A/pA is a radical ring for all primes p.

Proof. If A is not TFM, then A has an irreducible module M
with pM = 0 for some prime p. M can be regarded as an A/pAd
module in the obvious fashion; as such M is still irreducible. Hence,
A/pA is not a radical ring.

Conversely, if A/pA is not radical for some prime p, then A/pA
has an irreducible M. M can be regarded as an irreducible A module
is the obvious way. M is p-bounded, being a group homomorphic
image of A/pA. Hence, A is not TFM.

REMARK. Using the above theorem it is easy to see that the ring
A of Example 2.2 is TFFM. We note that A/pA is nilpotent for any

prime p.

COROLLARY. Let A be a ring with identity. Then A is TFM
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if and only if A is divisible as an abelian group.

Proof. If 1e A, then A/pA is radical if and only if A = pA.
(2], p. 58.) Hence, by 3.1, if 1 A, then A is TFM if and only if

A = pA for all primes p. But A = pA for all primes p if and only
if A is divisible.

THEOREM 3.2. Let A be any ring. Then A is TFM if and only
iof the following conditions hold:

(1) A/N 1is torsion free

(2) If I is any maximal modular right ideal of A, them I/N
1s not dense in the subgroup lattice of A/N.

Proof. Let A be TFM. Assume (x + N) is a nonzero element
of A/N of finite order. Then x¢ N, but kx e N for some positive in-
teger k. Since x¢ N, 2 ¢ P for some primitive ideal P. Since kx e N,
kxe P. Hence, A/P is not torsion free. But A/P must be torsion
free, being a subring of the complete endomorphism ring of some
torsion free irreducible module M. Contradiction. Thus, A/N is
torsion free.

Now let I be any maximal modular right ideal of A. Since A is
TFM, A — I is torsion free. Let xe€ A, x¢I. Let G be the subgroup
of A/N generated by the nonzero element (x + N). Clearly, GN I/N =
{0}—otherwise we have kx el for some positive integer k. Hence,
I/N is not dense in the subgroup lattice of A/N.

Conversely, assume A is a ring which satisfies conditions (1) and
(2) above. To show A is TFM, we show A — I is torsion free for
any maximal modular right ideal I. Let I be such an ideal. I/N is
not dense in the subgroup lattice of A/N. Thus, we can find a nonzero
subgroup S/N< A/N such that S/N N I/N = {0}. The mapping

x4+ N—>(x+ Lo+ S)

is an abelian group injection of A/N into (A— 1)@ (A — S). Let
yeS,y¢l. As (y + N) has infinite order, so does its image (y + I,
0 + S). Hence, y + I is a nonzero element of infinite order in 4 — I.
But A — I is torsion free or p-bounded. Therefore, we must have
A — I torsion free. This finishes the proof of the theorem.

THEOREM 3.3. Let A be any ring. If A/N is divisible, then A
is TFM. The converse holds if A has minimum condition.

Proof. If A/N is divisible, then A — I is divisible for any maxi-
mal modular right ideal I. Hence, by Lemma 2.1, A is TFM.
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Now assume A has minimum condition and A is TFM. By 3.2,
A/N is torsion free. It is a simple consequence of Wedderburn’s
Theorem that if A has minimum condition then A/N is torsion free
if and only if A/N is divisible. This completes the proof.

REMARKS. The converse to Theorem 3.3 is false in general. The
ring constructed in Example 2.2 is TFM, semisimple, and reduced as
an abelian group.

Using Theorem 3.3 we see that the ring A of Example 2.3 is
TFM. The radical of A is T[\], where T is the maximal nil ideal in
B. ([3], p. 13.) Here A/N = B[\])/T[M] = B/T[7]. B/T is divisible,
since T 237, P C(p*). Thus A/N is divisible, and A is TFM.

THEOREM 3.4. Let A be any ring. Let D be the maximal divisi-
ble subgroup of A. (Note that D is actually an ideal.) Then:

(1) If A/D is radical, then A is TFM.

(2) If A4s TFM, then A/D has no nonzero idempotents. These
three conditions are equivalent if A has minimum condition.

Proof. (1) If A is not TFM, then there exists an irreducible
A module M with pM = 0. Clearly, MD = 0. Hence, M can be
regarded as an irreducible A/D module, and A/D is not radical.

(2) Let A be TFM. Since every irreducible A/D module may
be regarded as an irreducible A module, A/D is also TFM. If A/D
is radical, clearly A/D can have no nonzero idempotents. Hence, for
the remainder of the proof, we may assume A/D is not radical.

Let N[A/D] be the radical of A/D. Now assume (¢ + D) is a
nonzero idempotent in A/D. Then (e + D) + N[A/D] is a nonzero
element of A/D/N[A/D]. Since A/D is TFM, A/D/N|A/D] is torsion
free. Hence, (¢ + D) + N[A/D] has infinite order. Hence, e must be
an element of infinite order in A.

By assumption, (¢ + D)’ = (¢ + D). We may write e+ d =e
where d € D. Now let p be any prime. Let &,(¢) denote the p-height
of ¢ in A. (See [4].) We must have h,(e) =0 or h,(e) = «, for if
hye) =k,0< k< =, then k = h,(e) = h,(&* + d) = 2k.

We finally claim %,(¢) = 0 for some p. Otherwise, we have h,(e) =
o for all p. But then, since e has infinite order, it is easy to see
that ee D. Contradiction. So h,(¢) = 0 for at least one prime p.

But now we have (¢ + pA) is a nonzero idempotent in A/pA.
Hence, A/pA is not radical. Since A was assumed to be TFM, this
yields a contradiction.

If A has minimum condition, then A/D has minimum condition.
Let N[A/D] be the radical of A/D. If A/D is not radical, then there
exists €€ A/D/N[A/D] with € + 0, ¢* = €. (This is simple consequence
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of Wedderburn’s Theorem.) But then & can be “lifted” to an idem-
potent ec A/D. (|3], p. 54.) Hence, the three conditions of the theorem
coincide if A has minimum condition.

REMARKS. The ring A in Example 2.1 is such that A/D is radical.
Hence, by Theorem 3.4, A is TFM.

The converse to each implication in Theorem 3.4 is false in general.
The ring of even integers in an easy counterexample to the converse
of 2; the ring in Example 2.2 is a counterexample to the converse of 1.

4., TFM Radical and Maximal TFM Ideal. Given an arbitrary
ring A, we first wish to determine the unique maximal ideal I of A4
such that I is a TFM ring. This is accomplished in the following
simple theorem.

THEOREM 4.1. Let A be any ring. Let Py = NeezP., where
{P,| o€ B} is the set of all primitive ideals associated with the p-
bounded irreducible modules of A. (P = A tf B= @.) Then P, is
the unique maximal TFM ideal of A.

Proof. Let M be an irreducible P, module. As P, is an ideal
in A, M can be regarded as an irreducible A module. (See [2], p. 51-53.)
M must be torsion free, otherwise we have MP, = 0. Hence, P, is
TFM.

Now if I is any ideal in A such that [ is a TFM ring, we must
have I< Py—otherwise I<Z P, for some ae B, and M,, a bounded ir-
reducible module associated with P,, would be an irreducible I module.
This proves the theorem.

Finally, we consider the question of the existance of a radical for
the class of TFM rings. It is clear that a ring A is TFM if and
only if A/N is TFM. We pose the the problem as follows: Given an
arbitrary non-TFM ring A, find an ideal I of A containing the radical
N such that:

(1) A/lis TFM.

(2) If Jis an ideal of A with N&J 1, A/J is not TFM.

The following theorem shows that, under the assumption of mini-
mum condition, such a TFM radical exists.

THEOREM 4.2. Let A be a non-TFM ring with minimum con-
dition. Let P, = NaenP., where {P,|ac D} is the set of all primi-
tive ideals of A associated with the torsion free irreducible A modules.
Then P, is a TFM radical for A.

Proof. By examining the Wedderburn decomposition for A/N, it
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is clear that P,/N is the unique minimal ideal I in A/N such that
A/N/I is TFM. The theorem follows.

REMARK. It is easy to give an example to show that no reason-
ably defined TF'M radical exists in the general case. For instance, let
A=37.PZ, with the ordinary addition and the shift multipli-
cation used in Examples 2.1 and 2.2,
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