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HARMONIC ANALYSIS ON GROUPOIDS

JOEL J. WESTMAN

This paper generalizes harmonic analysis on groups to
obtain a theory of harmonic analysis on groupoids. A system
of measures is obtained for a locally compact locally trivial
groupoid, Z, analogous to left Haar measure for a locally
compact group. Then a convolution and involution are defined
on CC(Z) — the continuous complex valued functions on Z with
compact support. Strongly continuous unitary representations
of Z on certain fiber bundles, called representation bundles,
are lifted to CC(Z\ yielding * representations of CC(Z). A
norm, || ||i2, is defined on CC(Z), and the convolution, involu-
tion, and representations all extend to J5fίZ(Z) = ihe \\ \\ί2

completion of CC{Z). The main example given is that of the
groupoid Z = Z(G, H) that arises naturally from a Lie group
G and a closed subgroup H. In this example, the representa-
tions of Z are related to induced representations of G. Final-
ly, if Zee (=the group of elements in Z with left unit=right
unit = e) is compact then we canonically represent J£l(Z) as a
direct sum of certain simple H *-algebras.

We use extensively the notation and results of [8], except that
[8] assumes a Cr manifold structure on the groupoid Z, and we want
to consider groupoids with just topological structure. There is no es-
sential difficulty in developing the main results of [8] for locally
trivial topological groupoids. In particular, a Cr coordinate (resp. Cr

fiber) bundle in [8] becomes a coordinate (resp. fiber) bundle as defin-
ed in [7].

Reviewing [8,§1], the algebraic structure of a (transitive) grou-
poid, Z(over M), consists of a subset M of Z (called the units of Z),
a projection I x r of Z onto M x M sending Φqp e Z into (left unit
Φqp, right unit of Φqp) = (q, p), and a law of composition defined for
pairs Φqp, Ψrs such that p = r. For B^M x M, ZB is defined as
(I x r)~l(B), and Zqp = ( i x r)-ι{q,p). The composition Φqp ΨP8eZqs,

and (Φqp-¥PS)-Γst = Φqp'{Ψps-Γst). The unit qeM may be wri t ten 1 M ,

and Iqq-Φqp = Φqp-lpp = Φqp. Also, Φqp has an inverse, ΦqP~\ such t h a t

Φ^ ΦiP = Ipp and Φqp'Φqp-1 = lqq.

A coordinate groupoid (Z, Σe) over M consists of the following:
(1.1) An (algebraic, transitive) groupoid Z over M and a Haus-

dorff topological structure for M.
(1.2) A distinguished point e G M and a Hausdorff topological

group structure for the group Zee.
(1.3) A set of functions Σβ = {a: Ua—> ZU(χXβ} such that Ua is
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open in M and I*a = identity map, satisfying
(1.3.1) U Ua = M .

(1.3.2) For a and βeΣβ, the map gaβ: Uaf] Uβ-+Zee; gaβ(q) =

oc{q)~ι° β(q), is continuous.
Then the constructions of [8] lead to a topological structure for

Z, making Z a locally trivial topological groupoid as defined by
Ehresmann in [3]. Conversely, any such groupoid arises from a coor-
dinate groupoid.

Finally, we stipulate that the letter "Z" will always represent a
locally compact locally trivial groupoid. Note Z is locally compact if
and only if both Zee and M are locally compact.

2 We first consider systems of measures on a groupoid, Z over

M.

DEFINTION 2.1. A (continuous) system of measures on Z is an

indexed set X = {Xqp: (q,p)eM x M}9 where Xqp is a regular Borel

measure on Zqp. We will write Xqp(f) = \ f(Φqp)dXΦqp, where / is

an integrable function on Zqp, and will require that the function X(h):

M x Jlf— C; Hh)(q, p) = Xqp(h \ ZJ be in Cc (M x M) whenever h e CC(Z).

The concepts of "left and right invariance" are easily applied to
systems of measures.

DEFINITION 2.2. A system of measures, λ, is said to be left in-
variant if and only if

f(Ψqr.Φrp)d\Φrp

(2.2.1) JZ

= [ f(Γqp)dXΓqp,

for all Ψqr G Z and p e M and fe Cc(Zqp). Similarly, for right invariance
the condition is (with feCc(Zpr)):

\ f{Φpq-Ψqr)dXΦpq

(2.2.2) izpq

= 1 f(Γpr)dXΓpr.
)zpr

If Zee is unimodular, it is easy to obtain a left and right invariant
system of measures for Z from a Haar measure on Zee (use (2.6.1)
with Δ == 1). In the general case, we extend the modular function
for Zee to Zy and then obtain a left invariant system of measures for
Z (depending on the extension).
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DEFINITION 2.3. A function A:Z—>R+ is called a modular func-
tion for Z if and only if:

(2.3.1) A is a continuous homomorphism (multiplicative structure
for R+ = real numbers > 0.)

(2.3.2) A I Zee is the modular function for Zee.

THEOERM 2.4. If M is paracompact, then there exists a modular
function for Z. Given two modular functions, A and A', on Z, we
have A'(Φqp) = h(q, p)A(Φqp), h: M x M—*R+ is a continuous homomor-
phism (with the trivial groupoid structure on M x M, see (3.5b)).

Proof. Let Σe be a set of local sections in ZMxβ such that {Ua =
dom a: a e Σe} is a locally finite cover of M (using the paracompactness
of M) and let {/«} be a partition of 1 such that support (fa)S Ua-Aee

is the modular function for Zee. We define A = eδ, where

δ(Φ<p) = Σ Λ(ϊ)Λ(ί>) log (Δ.Aa(q)-i-Φqp.β{V))) .
fa,fβ

Then A is a modular function for Z. Given a continuous homomor-
phism h:M x M-*R+, then zf' defined by zf(ΦffP) = h(q,p)A(Φqp) is a
modular function for Z. Conversely, given two modular functions A
and Δf on Z, we find that h(q, p) = A'(Φqp)/A(Φqp) is independent of
Φqp for the given units, and that h:Mx M—+R+ is a continuous
homomorphism.

THEOREM 2.5. If X is a left (resp. right) invariant system of
measures on Z, then Xqq is a left (resp. right) Haar measure on Zqq

for each qe M.

From here on we assume λee is a fixed left Haar measure on Zee,

and will write Xee(f) - ( f(Φee)dΦee .

THEOREM 2.6. There is a natural one-to-one correspondence be-
tween the left invariant systems of measures on Z and the modular
functions on Z.

Proof. Given a modular function, Δ, on Z, we define the system
of measures, λ, by

\P(f) = ( f(ΦQP)dΦqp

(2.6.1) Uqp

= \ A(ΓeP)f(ΨqeΛeeΓeP)dΛee.
Uee
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\ p is independent of the choice of Ψqe and Γep with the indicated
units, and λ is left invariant. Conversely if λ is a left invariant
system of measures the above equation defines A on ZeXM. Then A
may be extended to a continuous homomorphism of Z into R+, and
A I Zee is the modular function of Zee.

THEOREM 2.7. // Zee is unimodular, then there is a unique left
and right system of measures on Z (recall Xee is a fixed left Haar
measure).

Proof. Just choose A = 1.
From here on we will assume that a fixed modular function A

has been given for Z, and the corresponding left invariant system of
measures is λ as defined in (2.6.1). A fixed regular Borel measure,

μ, is specified for M, and μ(f) will be written I f(q)dq, for any in-
JM

tegrable function / on M. We require support of μ — M.

3* DEFINITION 3.1. Given / and g e CC(Z) we define the convolu-

tion of / and g, f*g, by f*g(ΦqP) = \ \ f(Ψqr)g(Ψqr-^Φqp)dΨqrdr.

THEOREM 3.2. CC(Z) forms an algebra over C with convolution
as the law of multiplication, and the usual addition and scalar mul-
tiplication.

Proof. The main points to verify are:
(a) f*geCc(Z) and
(b) (f*g)*h = f*(g*h).
In regard to (a), if support (/)£ΞA and support (g)^B then it

is easy to show that support (f*g)^A-B. A-B is the image of
(AxB)nDQZxZ under composition, where D is the (closed) sub-
set of Z x Z where composition is defined. Hence A B is compact if
A and B are compact.

In regard to (b), we compute (f*g)*h(Φ(jP)

= \\ (\\ f{Ψqr)g(Ψqr~
ι Γqs)dΨqAr)h{Γqs-

ι-Φqv)dΓqsds.
jMjZqs\jMJZqr J

Substitute Λrs = Ψqr~
ι-Γqs, and interchange the order of integration

to obtain

= ( t f(Vqr)([ ί g(ΛMΛr.-1-VQr-1 ΦJdΛr.d8)dgrqrdr
jMjZqr \jMjZrs J

= f*(9*h)(Φgp) .

Next, we define an involution for CC(Z).
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DEFINITION 3.3. Given feCe(Z), we define / * by

(where / is the complex conjugate of / ) .

THEOREM 3.4. The map f->f*:Cc{Z)-+Cc{Z) is an involution
(see [6]).

Proof. The only difficult part is to show (f*g)* = g**f*. We
compute

(f*9)*(ΦqP) = (
JMjZp

\ \
Uί)zqr

= (substituting Γgr = Φqv-Ψpr)

-1 Γqr)Δ(ΦqΊr')dΓqrdr = ( ( / * * / *){ΦqP) .

EXAMPLES 3.5. (a) Suppose M= {e} and μ(l) = 1. Then Z = Zee

is a locally compact group, f*g is the ordinary convolution, and
/-—•/* is the usual involution.

(b) Suppose Z = Mr x M' and M = diagonal of M' x M'. We
define the trivial groupoid structure for Z over M as follows:

Z(<7, P) = {q, Q) and r(q, p) = (p, p) ,

composition is given by (g, p) (p, r) = (g, r), and (g, g) —> (g, β) gives
a global section of I: ZMXe—+ M.

If M' is discrete, then / and g e CC(Z) are matrices indexed by
M1', with a finite number of nonzero entries. If μ({g}) = 1 for all
g 6 M, and λee (1) = 1, then f*g is the matrix composition of / and g.

(c) Suppose G is a Lie group and H is a closed subgroup of G.
We define the homogeneous space groupoid for G and iί, Z(G, i ϊ ) =
Z = {(q,Φ,p):ΦeG,p and g e G/iϊ, and Φp = q}. The groupoid struc-
ture for Z is given as follows: M = {(q,l, q):q eG/H} is the set of
units, and q —• (g, 1, g) identifies ikf with G/iϊ to give M" the required
topology; l(q, Φ, p) = (g, 1, g) and r(g, Φ, p) = (p, 1, p). Composition
is defined by (q,Φ, p)-(p, Ψ, r) = (q,Φ-Ψ,r); the local sections of
ί: ZMxe~+M come from local sections of G—>G/H (identifying G/H
with I f as above, and taking e = l i ϊ . ) : (eyΦ,e)—>Φ is a group isomor-
phism sending Zee onto H, giving Zee the required topology.

We note that ZMXe is essentially the usual principal bundle obtain-
ed from G and H.

For simplicity we only consider in this paper the case where ΔH

(the modular function for H) = ΔG (the modular function for G), re-
stricted to H. Then, by a theorem in [5, Chapter 10], there is a G
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invariant measure on M, which we take for μ. There is a canonical
(continuous) homomorphism ζ: Z —>(?, defined by ζ(g, Φ, p) = Φ. Note
that ζ maps Z onto G, and that ζ | Zee is an isomorphism mapping Zee

onto iJ. The above consideration leads to the following:

THEOREM 3.5.1. AG ζ is a modular function for Z. Unless other-
wise mentioned we will always use A = AG ζ for Z(G, H).

If M is compact and μ(l) = 1, then ζ*(/) = / ζ e CC(Z) for
feCc(Z), and we obtain the

THEOREM 3.5.2. ζ*: CC(G) —> CC(Z) is a one-to-one* homomorphism
(with the usual convolution and involution on CC(G), using a suitable
left Haar measure on G).

Proof. The first point is that /-> ί ί ζ*(f)(ΦQP)dΦgpdp (writing
}M)ZQP

(Q,Φ, V) — Φgp) defines a left invariant measure on G which we take as
the desired left Haar measure on G. Note, this measure on G is in-
dependent of the choice of qe M. Next, we compute

*(f)<*(9)(ΦqP) = \
JZqXM

= \ f(Ψ)g{Ψ-ι-Φ)dΨ

= (f*9)(Φ) = C(f*9)(ΦgP), as required.

Finally, for feCc(G) ,

(ζ*(f))*(Φqp) = (ζ*(/))(Φ,2,-
1)^(^Γ1) - f(Φ-ι)AG{Φ~ι) = ζ*(f*)(Φqp) ,

as required.

4* DEFINITION 4.1. A (unitary) representation bundle, E, is a
fiber bundle with a Hubert space structure for the fiber F, and group
U(Y) = the unitary operators on F with the strong operator topology.

We note that there is a natural inner product field, ζ , )>, on
E. For q e M, <( , X is an inner product on Eq defined via any admis-
sable map from the fiber F. Then <( , yq makes Eq a Hubert space
and the unitary maps from F to Eq are the admissable maps from
F to Eq.

Using the given regular Borel measure, μ, on M, we obtain an
inner product on ΓC(E), the continuous sections in E with compact
support. For γ and δeΓc(E),

<7, δ> = I <7g, δq\ dq .
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The completion of ΓC{E) with respect to this inner product is then a
Hubert space, to be called Γ2(E).

DEFINITION 4.2. A (strongly continuous) unitary representation
p of Z on a representation bundle E is a continuous homomorphism
p: Z—•> A(E) = the (locally trivial) groupoid of admissable maps be-
tween the fibers of E, such that p is the identity map on the units
of Z (see [8]).

The main results listed below are obtained essentially as in [8,
§4].

THEOREMS 4.3. (a) If p is given as in (4.2) then p \ Zee ~ Pe de-
fines a unitary representation of Zee on Ee.

(b) Given a unitary representation pe of Zee on a Hilbert space
Ee, there is a representation bundle E' and representation pr of Z
on Er such that pf \ Zee = pe (a unitary equivalence).

(c) Two representations p and ρf of Z on E and Ef respective-
ly are equivalent (as in [8]) if and only if p \ Zee ~ pf \ Zee.

A groupoid representation, p, of Z on Ep defines a representa-
tion of the algebra CC(Z); p: Ce(Z)-> ^f(Γ2(Ep)) = the bounded linear
maps of Γ2(EP) into itself.

DEFINITION 4.4. Given feCc(Z) and yeΓc{Ep), we define p(f)y

by (p(f)Ύ)q = f \ f(Φqp)p(Φqp)ΎPdΦqpdp. Alternatively,

THEOREM 4.5. || ρ(f)y ||2 ^ || / | | 1 21| 71|2, where

ll/llϊ. = ( ( \f(ΦqP)\dΦgp)
2dqdp.

Proof. See (5.4). Accordingly p(f) extends to a bounded operator
on Γ2(Ep) of norm ^ || / ||12. ^f(Γ2(Ep)) has a natural Banach* algebra
structure.

THEOREM 4.6. The representation p: CC(Z) -> j^(Γ2(Ep)) is a *ho-
momorphism.

Proof. For / and g e CC(Z), we compute
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{P(f*9)7)q=\ \ (\ \ f{Ψqr)g{Ψqr-^Φq

= (substituting Γrp = Ψqr~
ι-Φqp and interchanging the

order of integration)

\ \ f{Ψqr)p{ψJ\ \ g(Γrp)p(Γr,)7,dΓrlfiίp)dΨttdr

= (P(f)(p(9)y))q as desired.

Finally, we compute

<p(f*)y, s> = ( \ f*(φ,Xp(φ9p)yp, dqyqdΦqpdpdq
JMXMJZqp

= 1
(see (5.2.1)) = ί

JJI X Jjl J Zt Q rβ

MXMJZpq

7, p(f)δ>, so p(f

r)qp~~1)ζp(ΦqjΓ
1)δq, 7

' )δ Ύ VdΨ dv
pq/ qi ' p/pU/-*r pq

lλ/r'

*) = ρ(/r.

The following example provides a representation analogous to the
left regular representation for groups.

EXAMPLE 4.7. Let ρe be the strongly continuous unitary repre-

sentation of Zee on ^f2(ZeXM) given by (ρ.(Φ..)f.W.p) ^ f.(Φ.r^Ψ.P).

The representation bundle F arising from pe and Z may be regard-

ed as = U ^fz(ZqxM). The map / — / ' ; CC(Z) -+Γβ(F), defined by

f'(q)=f\qxM is bijective, and | | / | | 2 = || f'\\2. Accordingly, we can

identify &&Z) and ΓZ(F). Given / and geCc(Z), then p(f)g'=

(f*9)'.

5. DEFINITION 5.1. For feCc(Z), we define

Il/Hi2=(( ί (( \f(Φqp)\dΦqp)
2dqdpf .

\J M J M \j Zqp / J

|| ||12 defines a norm on CC(Z); we complete CC(Z) with respect to
|| ||12 to form ^f12(Z).

To simplify matters, we recall the map: λ: CC(Z) —>CC(M x ikf),

where λ(/)(?, p) - ί f(ΦqP)dΦqP.
j Z Q,Q

THEOREM 5.2. \(f*g) = λ(/)*λ(ff) α^ώ λ(/*) = λ(/)*,
trivial groupoid structure on M x M over the diagonal of M x M.
(on (M x M)ee = {(β, e)} the Haar measure is taken as 1).
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Proof. We write /„, for λ(/)(g, p). Then

JZgpJiίJ

= \ \

= \ U9rpdr = (Mf)*\(g))(Φqf) .

Next, to show λ(/*) = λ(/)* we should show

(5.2.1) (

If p == q = e this is a standard theorem. The extension to the general
case is routine, using (2.6.1).

Accordingly, /—>λ(/) defines a *homomorphism. Also, | | / | | ί 2 =
IIMI/DII2, where || ||2 is the £f2 norm on CC(M x M). For / and
geCc(Mx M) it is easy to show that | | / * # | | 2 ^ | | / | | 2 1 | g ||2. Finally,
we obtain the

THEOREM 5.3. Given f and geCc(Z) then | | / * ^ | | 1 2 ^ | | / | | 1 2 1 | g ||12

11/11 = ||/* ||.

Proof.

f * g \ ) II, ^ II λ ( | / | * | ffl) I. = II M l / I ) * λ ( | fir | ) ||2 ̂  I I / I U II g ||12

settles the first part, and || λ(| /* |) ||2 = || λ( |/ |)* ||2 = || λ( |/ | ||2 settles
the second part.

Accordingly, the convolution and (*) involution extend to ^f12(Z),
making ^f12{Z) a Banach algebra with a natural involution. Represen-
tations also extend to JHfJίZ) as shown below.

THEOREM 5.4. ForfeCc(Z)andyeΓl!(E),\\p(f)j\\2^\\f\\12\\y\\2.

Proof. </0(/)7, |0(/)7>

yr, ρ{Ψqr)ΊrydΨqpdΨqrdrdpdq( ( (
MJMJ3fJZqrJZqrJZqp

\fw\\\7p\\\f9r\ \\7r\\ drdpdq
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^ t (t \U?dv\ \\ΊP\\2dv)dq
JM\JM JM J

Accordingly, p of Z on E lifts to a * representation of Sf^(Z) on
Γ2(E).

EXAMPLE 5.5. Suppose Z = Z(G,H) as in (3.5 c), and that G/iί
is compact and μ(ΐ) = 1. Then ζ*: CC(G) -> Cβ(Z) (see (3.5.2) is a
norm increasing *homomorphism.

Furthermore, a representation p of Z on E defines a representa-
tion p' of G on Γ2(£7), by (ρ'(Φ)y)g = ρ(ΦqP)ΎP, where p = Φ-1^) and
ΦqP = (Q,Φ, P)' P' is a unitary representation since μ is invariant
under G. Then pf is the induced representation (well known in group
theory) from the representation pe of Zee( = H) on Ee. The diagram
below, relating Z and G, commutes.

CC(Z) - £

Note that the case H = G, μ(l) — λββ(l) = 1, is the same as the
Example 3.5a, where Z = Zee.

6. Suppose Zee is compact, Δ = 1, and λββ(l) = 1 (the vertically
compact case). Then the completion of CC(Z) with respect to the
|| ||2 norm forms the Hubert space J^l(Z). We will extend the "or-
thogonality relations" for compact groups to the above case, and re-
present Sf2{Z) as a direct sum of simple i ϊ * algebras.

DEFINITION 6.1. Given 7 and deΓc(Ep), where p is a represen-
tation of Z on Ep, we define Tprδ:Z~»C, by

THEOREM 6.2. If pe and p'e are irreducible, then

V0 if p is not equivalent to p'.

Proof. Integrating both sides of (6.2.1) over M x M yields the
desired result.



HARMONIC ANALYSIS ON GROUPOIDS 631

(6.2.1) ί < 7 f , p(Φq)δ,>q<y'q, p'(ΦqP)δ'p>dΦqp

8,> i f p = p,
dim ρe

[0 if p is not equivalent to pr.

For g = p = e, (6.2.1) is just the orthogonality relations for compact
groups. The proof of (6.2.1) for general p and q is similar to the
usual derivation of the orthogonality relations, for example see [1],

Notation. The representations p and pr of Z on Ep and Ep> re-
spectively will be such that ρe and $ are irreducible. The map 8 —> <5*:
Γ2{E)->Γ2(E)* = dual of Γ2(JE7), is defined by §*(τ) - <7, δ>. Γe(E)*
is the image of Γe(E) under <5—>S*. The (algebraic) tensor product
Γc(Ep)(g) ΓC(EP)* many be regarded as a (dense) subalgebra of Cp =
the Schmidt operators on Γ2(EP). In particular (7(g)§*)(/3) = <(/3, δ>τ.
Conversely, a and βeCp can be regarded as elements of the (Hubert
space) tensor product Γ2(EP) (g) Γ2(EP)*. The inner product on CP is
defined by <α, /3>' = <α, 0} dim ̂ o, where < , > is the inner product on
Γ2{Ep)®Γ2{Ep)*, making CP a simple H* algebra.

THEOREM 6.4. The canonical map TP: Γe(Ep)<& ΓC(EP)->CC(Z)
defined by Tp(y 0 8*) = Tpγδ dim pe extends to a *homomorphism and
isometry of CP into

Proof. To show Tp defines an isometry from Cp we compute
ζTprδ dim pe, Tprβ dim ρe} = <τ 0 <5*, 7' (g) /3*> dim ^ (by the orthogona-
lity relations,) = <τ <g> «*, 7' ® /?*>' in C,. In C,, (7 <g) §*)o(y ® /S*)(α)
= <(α, /3)><7' δ>7. To show T^ is a homomorphism we need Tprδ*Tpr,β

= (<^> δyτprβ)/dim pe. We compute

pri

*Tpr.β(Φq9) = [ \ <7,, /o(y ί r)δ r><τ; f p(Ψqr-
ι Φq9)βp>dΨqrdr

JXJZqr

= Γ M ί « r , 7>/dim p.)

as desired. Finally, it is easy to show that

= \

THEOREM 6.5. Leέ g7 δe α seί 0/ irreducible representations of
Z containing exactly one member from each equivalence class. Then

Tp is a * isomorphism and isometry of Σ Cp onto
petf
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Proof. The main point is that the functions Tprδ for peg 7 , 7
and δeΓc(Ep), separate the points of Z, and Tprδ is orthogonal to
T9,Vv if p Φ ρr and p and ,o' e g*.

7. REMARKS. 7.0. The algebra CC(Z) forms a quasi-unitary al-
gebra as defined by Dixmier in [2] if we use the inner product

<f 9>=\ f \ VW^f(Wqr)9(Wqr)dWqrdqdr9 f* = f% and

f{Φqt) = VW

Then Cΰ(Z) is essentially the same as the algebra Dixmier defines on
page 310, [2] in the special case that Z is the example of (3.5c).
Also, in this special case, the representation defined in (4.4) is sub-
stantially the same as that defined by Glimm in Theorem 1.5, [4].

The author is indebted to the referee for the above references
([2] and [4]).
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