DISJOINT INVARIANT SUBSPACES

MALCOLM J. SHERMAN

Let $H^2_{\mathscr{H}}$ denote the (separable) Hilbert space of all functions $F(e^{i\theta})$ defined on the unit circle with values in the separable (usually infinite dimensional) Hilbert space \mathscr{H} , and which are weakly in the Hardy class H^2 . For a closed subspace of $H^2_{\mathscr{H}}$ "invariant" means invariant under the right shift operator. Such an invariant subspace is said to be of full range if it is of the form $\mathscr{U}H^2_{\mathscr{H}}$, where $\mathscr{U}(e^{i\theta})$ is a.e. a unitary operator on \mathscr{H} ; i.e., an inner function. We show that if \mathscr{H} is infinite dimensional there exists an uncountable family $\{\mathscr{M}_{\alpha}\}$ of invariant subspaces of $H^2_{\mathscr{H}}$ of full range such that $\mathscr{M}_{\alpha} \cap \mathscr{M}_{\beta} = (0)$ if $\alpha \neq \beta$.

This extends a theorem in the author's paper [2, p. 169] asserting the existence of *two* invariant subspaces \mathcal{M}, \mathcal{N} of full range such that $\mathcal{M} \cap \mathcal{N} = (0)$. For basic definitions and notations consult [1], particularly Chapter VI.

For a bounded operator T on \mathscr{H} , ||T|| < 1, define the Rota subspace \mathscr{M}_T of T to be all $F \in H^2_{\mathscr{X}}$ with Fourier series $F = \sum_{k=0}^{\infty} \varphi_k e^{kix}$ such that $\sum_{k=0}^{\infty} T^k \varphi_k = 0$. It is known [2, p. 161] that \mathcal{M}_T is of full range. It was shown in [2, p. 169] that if T, U are-one-to one operators on \mathcal{H} with disjoint ranges, then $\mathcal{M}_T \cap \mathcal{M}_U = (0)$. It suffices then to prove the existence in a separable infinite dimensional Hilbert space of an uncountable family of bounded one-to-one operators with disjoint ranges. To do this it suffices to exhibit an uncountable family of disjoint *closed* infinite dimensional subspaces of a separable Hilbert space, since the subspaces are then unitarily equivalent to the original space and the operators can be taken to be of the form U/2, where U is unitary as a mapping onto its range. It is convenient to describe such an example in \mathscr{H} realized as $L^2_{\mathscr{X}}$, where \mathscr{K} is some other Hilbert space. Let $\{e_{\alpha}\}$ be an uncountable family of pairwise linearly independent vectors in \mathcal{K} (which exists if \mathcal{K} is at least two-dimensional) and for the subspaces let

$${\mathscr N}_{lpha}=\{F\in L^{\scriptscriptstyle 2}_{\mathscr K}\colon\, F(e^{ix})=f(e^{ix})e_{lpha},\ \ {
m for \ some}\ \ f\in L^2\}$$
 .

The situation when \mathcal{H} is infinite dimensional thus contrasts strongly with the finite dimensional situation [1, p. 70] where the intersection of two invariant subspaces of full range also has full range, and the implication is that only when \mathcal{H} is infinite dimensional can invariant subspaces of full range be pretty small. On the

MALCOLM J. SHERMAN

other hand, if nontrivial maximal invariant subspaces of $H^2_{\mathscr{H}}$ exist (or, equivalently, if there exist bounded operators on \mathscr{H} without nontriviant subspaces [1, p. 103]), the existence of an uncountable family of disjoint maximal invariant subspaces is conceivable. For if there exists an operator T on \mathscr{H} without an invariant subspace, it may also happen that T is not invertible and the codimension of the range of T is uncountably infinite in the linear space sense. It is then almost certain that one can find an uncountable family of such operators whose ranges are disjoint.

References

- 1. H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.
- 2. M. J. Sherman, Operators and inner functions, Pacific J. Math. 22 (1967), 159-170.

Received November 15, 1967. The preparation of this paper was supported in part by NSF Grant GP-5497.

UNIVERSITY OF CALIFORNIA, LOS ANGELES

620