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A UNIFYING CONDITION FOR IMPLICATIONS AMONG
THE AXIOMS OF CHOICE FOR FINITE SETS

MARTIN M. ZUCKERMAN

For n > 1, let C(n) be the axiom of choice restricted to
sets of w-element sets. We define a condition, (Z), which is
sufficient to assure the provability of an implication

(C(m,) & C(w2) & & C(ms)) > C(n)

in set theory. We compare condition (Z) with various other
conditions related to the above implication.

1* Notation and preliminaries. Let σ be the set theory of [3];
this is a set theory of the Godel-Bernays type which permits the ex-
istence of urelemente (objects, other than the null set, which are in
the domain, but not the range, of the e -relation) and which does in-
clude the axiom of choice among its axioms. Our independence state-
ments will assume that σ is consistent; this is equivalent to the as-
sumption that GodeFs system A, B, C, of [2], is consistent. Our
logical framework is the first-order predicate calculus with identity.

By the nonnegative integers we mean the Von-Neumann integers,
i.e., 0 is the empty set, 1 = {0}, 2 = 1 U {1}, 3 = 2 U {2}, etc. For each
such n, we let In be the set of all integers Ξ> n and we let Jn be the
relative complement of In+1 in Iu I\In+1. We let Π represent the set
of prime numbers, and we let IIn = Π f] In.

If there is a function (which is itself a set) which maps the set
x one-one onto the positive integer n, then x is called an n-element
set; in this case we let n(x) denote the unique integer n for which
such a mapping exists.

DEFINITION 1. For nel, let C(n) denote the following statement
of set theory: "For every set x of ^-element sets there is a function
/ defined on x such that for each yex, f(y) e y. The statements C(n)
are called the axioms of choice for n-element sets or simply the axioms
of choice for finite sets.

For any set x let ^(x) denote the power set of x and let
designate the set consisting of 0 together with the set of all ^-element
subsets of x for nel,. For Z G ^ / J , let C(Z) be the conjunction of
the statements C(z), zeZ. Since a positive integer is not a subset of
Ilf no confusion will result from our usage of C(n) instead of C({n}).

We shall be concerned with implications of the form

(1) C(Z) > C(n)
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which are provable in the set theory σ; when this is the case we shall
let (1) abbreviate the statement "The implication (1) is provable in σ."
(In general, we shall omit the phrase, "is provable in σ.")

In [4], Mostowski introduces the following condition which he
shows to be necessary for (1):

DEFINITION 2. Z( e ^\I^j) together with n{ e I,) satisfy condition
(M) if for any decomposition of n into a sum of (not necessarily
distinct) primes,

n = p, + p2 + + p.,

t h e r e a r e r19r2, •••,?% in IQ s u c h t h a t

+ rsps e Z .

In § 23 of [4] Mostowski states four lemmas with the aid of which,
in Theorem IX, he proves the sufficiency of condition (M) for the im-
plication (1) in certain special cases. The first three of these lemmas
(13,14, and 15) are sufficiently powerful to yield all but one of the
numerical implications given in [5], [6], pp. 97-103, and in [7],1 as
well as several of the cases of Theorem IX of [4]. Moreover, various
implicational results which were proved by other methods in [4] and
[5] could have been proved by means of Lemmas 13,14, and 15. We
define condition (Z) inductively in terms of these three lemmas; this
condition will have all of the above properties and will be intermediate
in strength between conditions (M) and (S) (see Definition 5, below).

.2 Condition (Z). We first state the three lemmas in question,
modifying the notation and wording.

( 2 ) ([4], Lemma 13) (Vn, k e Id(C(nk) > C(k)) .2

( 3 ) ([4], Lemma 14) // n(A) = m( e I,) ,

n(B) = n ( e / 1 ) , 4 f l δ = 0, and if we know how to realize the proposi-
tion C{km + In), where k,lelo and k + I e Iί9 then we can choose an
element from A[J B.

1 Except for some minor revisions, the section in [6] is a translation of [5], The
exception noted is C({3, 7}) -> C(9); this is proved by different methods in [4] and [5].
A third proof is given by J. H. Conway (unpublished). Each of these proofs utilizes
something in addition to Lemmas 13, 14, and 15 and apparently cannot be proved
on the basis of our condition (Z). However, we remark that condition (Z) is suffi-
cient in the case of the implication C({3,13}) -»C(9).

We note that the implication C({2, 3,13}) -> C(14) ([5], p. 98) is false. (Undoubtedly,
this is a misprint; in [6], p. 102, this is replaced by the (valid) implication C({2, 3, 7})
-> C(14).) Further, the implication C({2, 3, 5,17,13}) -> C(32) ([6], p. 103, Example 3),
is false as is stated and, most likely, was intended as C({2, 3, 5, 7,13}) -> C(32).

2 The proof of this lemma, which is attributed to A. Tarski, is given in [6, p. 99].
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(4) ([4], Lemma 15)3 If peΠ, n(A) = mp

for mel2, and if we know how to realize the proposition C{p), then
we can define effectively a decomposition of A into a union of two
disjoint, nonempty sets.

DEFINITION 3. For Z e ^ / J and n e Iu n is a Z-number provided
either (i)a & (i)b or else (ii) holds:

( i )a There is a z e Z such that (n, z) > 1.
( i )b Whenever n = nt + n2, nt, n2 e I2, then there are ru r2 in Io

such that rxnγ + r2n2 e Z.
(ii) n = l.

DEFINITION 4. Z( e &**(Id) and n{ e IJ satisfy condition (Z) if
either (i) or else (ii)a & (ii)b holds:

( i ) n is a Z-number.
(ii)a There is a z e Z such that (n, z) > 1.
(ii )b Whenever n = nL + n2, nl9 n2 e I2, either Z and nt satisfy (Z)

or else Z and n2 satisfy (Z).
If Z(e&**(IJ) and nielj satisfy (ii)a and (ii)b, but not (i), of

Definition 4, we shall say that Z and n properly satisfy condition (Z).
We note that if n is a Z-number and n = nt + n2i nu n2 e /2, it

does not follow that either Z and nλ or Z and n2 satisfy (Z); for in-
stance, let Z = {25} and n = 5.

LEMMA 1. If ne Π{J {1, 4, 6} αraZ Ze^^Ij), then Z and n satisfy
condition (Z) if and only if n is a Z-number.

LEMMA 2. If n is an even integer and if Z( e ^\Id) contains
only odd integers, then Z and n fail to satisfy condition (Z).

Proof. Let Z be a nonempty, finite set of odd integers, n = 2
fails to meet condition (i)a of Definition 3 and, thus, by Lemma 1, Z
and 2 cannot satisfy (Z). For w(even) e I4, 2sx + (w — 2)s2 is even for
all 819 s2 e Io; hence condition (i)b of Definition 3 fails. The proof that
Z and n = 2k, k e Iu cannot satisfy (Z) follows by a routine induction
on k.

THEOREM 1. Condition (Z) is sufficient for the implication
C(Z) — C(n).

3 The proof of Lemma 15 in [4] erroneously refers to divisibility by p, instead of
by np, in each of the first two lines on p. 165. The proof is correctly carried out in
[5, pp. 99-100].
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Proof, (by induction on n).

The result is immediate for n = 1 since, in fact, C(l) is a (trivial)
theorem of set theory. Suppose for all k < n and for all Zf e ^(Iλ)
that whenever Z' and k satisfy (Z), then C(Z') -> C(k).

Case 1. % is a ^-number:

By (i)a of Definition 3 and (2), C(p) is true if p is the smallest
prime divisor of (n, z) as z ranges over all elements of Z for which
(n, z) > 1. If n is prime, we are finished.

Otherwise, let X be a nonempty set of pairwise disjoint ^-element
sets, let X{p) be the set of p-element subsets of elements of X, and
let / by any choice function on X(p). Then, by (4), in terms of / we
can define a function F on X such that for each x e X, F(x) — {xu x2},
where xλ and x2 are nonempty, disjoint sets whose union is x. Define
the following equivalence relation on X: x & xr if an element of F(x)
is equipotent with an element of F(xf). Let Y be the corresponding
partition on X. For each y e Y define a choice function gy on y as
follows: if for each xey, f(x) contains a unit set {a} (it can contain
only one such), let gy(x) — a; otherwise, y is such that for each xey
and each x{ e F(x), n(Xi) e I2.

Using (i)b of Definition 3, let Sj. and s2 be any nonnegative integers
such t h a t for all xey and xlf x2eF(x),sl'n(x1) + s2-n(x2) e Z. By (3),

there is a function gy defined on y such that gy(x) e x for each xey.
Then G — \Jgy{ye Y) is a choice function on X; hence C(n) is true.

Case 2. Z and n properly satisfy condition (Z):

The first two paragraphs of Case 1 apply here with the exception
that n cannot be prime (by Lemma 1). In the present case, if y is
such that for each xey and each xieF{x)1n(xi) el2i then either Z
and nixj) satisfy (Z) or else Z and n(x2) satisfy (Z).

If n(x^} and n(x2) are distinct and if {ί,j} — {1, 2}, let x3 = x{ if
Z and n(Xi) satisfy (Z) but Z and n(xd) do not, or if Z and n(xj) (as
well as Z and n{xι)) satisfy (Z) but n(x^ < n(x5). In this case let
Ay — {.τ3: x3a x ey}. By the inductive hypothesis, there is a function
Gy defined on Ay such that Gy(xB) e x3, xz e Ay; hence there is a function
gy defined on y such that gy(x) ex, xey.

Now if n(xt) — n(x2), then n — n(^) + n(x2) is even; by Lemma 2,
Z must contain an even integer, zQ. Thus C(2) is true; we can select
one of the sets x1 or x2, and proceed as in the preceding paragraph.

Finally, we again have G = \Jgy(y e Y) as a choice function on X.
Theorem 1 provides a convenient alternative proof of various

theorems, as well as a unified method of obtaining certain results
which depend on Lemmas 13,14 and 15 of [4]. We give some examples:
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( i ) C(2) — C(4). (4 is a {2}-number.)4

(ii) C(Jm) —• C(Jn) if there is no prime p such that m < p ^ n.δ

(Using Bertrand's postulate, [8, pp. 51-64], we see that each keJn

is a Jm-number.)
(iii) For any ne Iu let Tn be the set of composites of Jn. Then

C(Π n Jp) —* C(T2n+1) if there is no prime q satisfying p < q <Ξ n.6

(Π Π Jp together with each k e T2n+1 satisfy (Z).)
(iv)a C({3,13}) — C(9). (9 is a {3,13}-number.)
(iv)b C({2, 3, 7}) — C(14).7 ({2, 3, 7} and 14 (properly) satisfy (Z).)
(v) For any Z e ^ ' f ί J j condition (Λf) is sufficient for an impli-

cation of the form C(Z) -* C(w), whenever %e/Zu{4,6,8,10,12,18,30}.8

(Whenever Z and n satisfy (M), they also satisfy (Z).)
In connection with example (v), we see that although (Z) is neces-

sary for an implication C(Z)->C(n) whenever neΠ[j{4,6,8,10,12,18,30},
(Z) is not necessary for such an implication in the general case. In
fact, {2, 5,11, 13,17} and 20 satisfy (M), and, hence, by Rubin's ex-
tension of Theorem IX of [4],9 C({2, 5,11, 13,17})-> C(20), but they
fail to satisfy (Z). (The successive decompositions—20 = 6 + 14; 6 =
3 + 3,14 = 7 + 7—indicate the failure of (Z).) Similarly, counter-
examples exist for n = 9,14,16, 24, and 42.10

The preceding example further illustrates that condition (Z) is
also weaker than the combined strength of the sufficiency conditions
implicit in the lemmas (13,14, and 15 of [4]) upon which (Z) is based.11

Using C(2), we could choose a 3-element set (in the second decomposi-
tion) and using C(17) we could pick an element from among the remain-
ing elements. Our condition makes no provision for either of these
devices. Another example will be afforded by Theorem 5 of [10].

3* (Z) in relation to other conditions* We consider two other
conditions, each of which is sufficient for the implication (1).

DEFINITION 5. Z( e &\I$) together with n( e ii) satisfy condition
(S) if for any decomposition of n into a sum of (not necessarily distinct)
primes,

4 Compare with Tarski's proof in [4, p. 138].
5 This is half of [4, Theorem VIII].
6 This is [6, p. 101, Theorem 3]; it will be extended in [11].
7 (iv)α and (iv)& follow by the sufficiency of condition (M) (Theorem IX of [4]).
8 This includes most of the cases of Theorem IX of [4], augmented by one of H.

Rubin's cases (see [9, §4]).
9 See [9, §4].
10 C({3, 7}) -> C(9); C({2, 7,11}) -• C(14); C({2,11,13}) -> C(16); C({11,12,17,19}) ->

C(24); C({2, 3, 7, 13,17, 19, 31, 37}) -> C(42).
11 Lemmas 13, 14, and 15 also yield the last implication of footnote 10.
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n = p1 + p2 + + P, ,

there is some re^ and some pifieJs, such t h a t

DEFINITION 6. Z( e &\I$) together with n( e Ix) satisfy condition
(SS) if for any decomposition of n into a sum of (not necessarily dis-
tinct) primes,

n = Pi + p2 + + Vs ,

there is some pif ie Js, which is in Z.13

Each of the conditions (M), (Z), (S), and (SS) induces a relation
in ^ f (/ i) x &%IX defined by ZJRXZ2 if and only if for each w e i?2, J?x

and n satisfy condition (X) (X being M, Z, S, or SS). (Again, we
omit the classifier in case Zx or Z2 is a unit set.)

THEOREM 2. RssaRsc:RzciRM.

Proof. We first note that any Ze (^*(/i)) together with 1 satisfy
all four conditions (SS), (S), (Z), and (M).

It follows from example (v), above, that in order to show that
(M) is a stronger condition than (Z), we need only show that (M) is
a consequence of (Z). Suppose Z( e &**(!$) and n(el2) satisfy (Z).
Let

( 5 ) n = ^ + p2 + + pm

be any decomposition of n into primes; we must find ru r2, , rm e Io

such that rιp1 + r2p2 + + rwpm 6 Z.
If neΠ, then w is a Z-number (Lemma 1) and consequently Z

contains kn for some kelo. Let rx = r2 — = rm — k in (5); it
follows that Z and n satisfy (M).

For composite n assume that for all j <n and all Z e ^ / J ,
whenever Z and j satisfy (Z), they also satisfy (M). If % is a Z-
number, then since n is composite, m must be ^ 2 in (5), and by (i)b

of Definition 3, there exists sί and s2 in Jo such that

sj>i + ^ t e + + pm)eZ .

Let n = sί and r2 = = rm = s2. Finally, if Z and ^ properly satisfy
(Z), then either Z and pL or else Z and nf = p2 + + pm must satisfy
(Z). In the former case k'p^Z for some λ/e Jx, and we let rx = k',

12 This is [4, Definition 4]; it is the same as condition (SO of [6], and it is equiva-
lent to condition (Σ) of [1]. Different proofs of the sufficiency of (S) for (1) are
given in (1), Theorem 8, in (4), Theorem II, and (7), Theorem 2.

« cf. [7, Theorem 1].
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r2 = = rm — 0. In the latter case by the inductive hypothesis, Z
and n' satisfy (M). Now p2 + + pm is already a prime decompo-
sition of n'. Thus there are t2, , tm e Io such that t2p2 + + tmpm e Z;
let n = 0, r2 = ί2, , rw = ίm.

If Z and w satisfy (S), then whenever (5) holds, there is a k" elo

such that fc"^ e Z for some i e Jm. In particular, if n = lp,le Iu

there is a prime decomposition of n consisting solely of p'&. Thus
for some ft'" e /0, ft'"p e ^ and (k'"p, n) > 1. If n is prime, as above,
n must be a Z-number. Otherwise, n ;> 4; we assume that for all
i ' < n, whenever Z( e ^(1$) and j ' satisfy (S), they also satisfy (Z).
Assume Z and n satisfy (S), and let n — nλ + w2, wn ^2 e I2. Let ^ =
Pi + P2 + + Pu and ^2 = gx + q2 + + qv be any prime decompo-
sitions of n^ and n2; then ^ = pt + p2 + • + pu + qx + g2 + + qv

is a prime decomposition of n. By (S), there is a &* e Ix such that either
k*pi9ieJt, or k*qj,jeJm, is in Z; hence either Z and ^ or else Z
and n2 satisfy (S), and consequently (Z), by the inductive hypothesis.
This proves that Z and n satisfy (Z).

[12], (1.15) and the examples following it guarantee the inclusion
Rss aRs; the second example also serves to assure the proper inclusion
Rs c Rz

We note the following additional properties of the relations Rx:
( i ) If ZλRxZ2 and if Yλ( e &>*&)) is any superset of Z, and Y2

is any subset of Z2, then YXRXY2, X = M, Z, S, or SS.
(ii) RM and Rz are reflexive; i?s and Rss are not (by [9], (30)).
(iii) None of the Rx are symmetric; for X — M, Z, or S, Rx is

also not anti-symmetric (222̂ 4 and 4RX2).
(iv) For ft, n e Λ and Z e ^ f (/ i ) , ZB f̂tw -* Zi2z^. For X = M, S

or SS, this is immediate. For X = Z, this will be shown in Lemma 4.
(v) Each of the Rx is transitive. For X = S or SS this is im-

mediate; for X — M this is seen as follows: Suppose ZJRMZ2 and Z2RMY.
Then for any ne Y and any prime decomposition, n = p1 + p2+ + ps,
there are ftlf ft2, , ft, e 70 such that ft^ + ft2p2 + + ksps = zQe Z2.
Since Z1 and z0 satisfy (M) and since

Pί+ + Pi + 2>2 + + P2 + + P. + + Ps

i s a p r i m e d e c o m p o s i t i o n o f z0, t h e r e a r e lu l2, •••, ίfel+A;2+...+λ;s € Io s u c h
t h a t

= (?! + Z, + + ί Λ > i + (Z*1+1 + ϊ*1+, + + i*1+*a)p2 +
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Thus Zγ and n satisfy (M), and, consequently, ZJRMY. The transi-
tivity of Rz will follow from Theorem 3.

LEMMA 3. If Z and n satisfy (Z) and if p is a prime factor
of n, then Z contains a multiple of p.

Proof. Assume that the hypothesis of the lemma holds.
First, suppose that n is a Z-number. If Z contains a multiple of

n, it contains a multiple of p. Otherwise, n is composite, by (i)a of
Definition 3, and by (i)b, there are su s2 e /0, at least one of which is
in Ilf such that sxp + s2(lp) e Z for some I e It. Thus kpe Z for k =
Si + S2l.

Suppose that for all m<n and for all Z e ^ f f l , whenever Z
and m satisfy (Z) and q is a prime factor of m, then Z contains a
multiple of q.

Let Z and n properly satisfy (Z); by Lemma 1, n is composite.
Again, n = p + Ip for some lelu and by (ii)b of Definition 4, Z to-
gether with either p or Ip satisfy (Z). The result follows from the
inductive hypothesis.

COROLLARY. // YRZZ and ZRzn, then Y contains a multiple of
each prime factor of n.

Proof. Under this hypothesis, if p is a prime factor of n, then,
by Lemma 3, kpeZ for some k e Jlβ Since p is a prime factor of an
element of Z, again k'p e Y for some k' ellt

LEMMA 4. (v&, n e Λ)(VZ e ̂ *(It))(ZRzkn — ZRzn). Moreover, if
kn is a Z-number, so is n.

Proof. This is trivial for n = 1 and k, Z arbitrary, and, also,
for k = 1 and w, Z arbitrary. Let % > 1 and k > 1 and assume that
for all k' <k and all Ze^ilJ that ZRzk'n-» ZRzn. Now, if λw is
a Z-number, then for lίf l2 e Jo, l,n + I2(k — l)w 6 ϋΓ. Hence

(w, ϊxn + I2(k — V)ri) = w > 1 ,

and if ^ = ̂  + n2y nly n2 e /2> then

(Zx + Z2(A: - 1 ) ) ^ + (I, + I2(k - l))n2 = ^ + I2(k -l)neZ.

It follows that n is a Z-number. If Z and Aw properly satisfy (Z),
then either ZBZ^ or ZRz(k — l)n; by the inductive hypothesis, we
are finished.

THEOREM 3. (VΛ G /^(VΓ, Ze &>*(Iύ)((YRzZ& ZRzn) -
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Proof. For nelι and Y, Ze έ?\Id assume that

(6) YRzZ&ZRzn.

For n — 1, by (ii) of Definition 3, we have YRZ1. For n e Π, by the
corollary to Lemma 3, Y contains a multiple of n; hence n is a Y-
number.

For composite n, assume that for all k<n and all Ze^*^),
(YRzZ&ZRzk) —> YRzk. (6) together with the corollary to Lemma 3,
yield the existence of a y e Y such that (n, y) > 1. Suppose that

( 7 ) w = n, + π2, wlf n2el2 .

Case 1. % is a ^-number.
There are su s2e Io for which s^ + s2π2 e Z. If either sx or s2 = 0,

then s^i G Z for ί = 1 or 2; hence n{ is a Z-number and, by the in-
ductive hypothesis, YRzni% It follows that YRzn. If neither sx nor
s2 = 0, then either

( 8 ) ίjS^j + 2̂s2w2 e F for tl9 t2eIQ ,

or else

( 9 ) either Y and s,^ or Γ and s2w2 satisfy (Z) .

In case (9) holds, Lemma 4 assures that Y and %t or Y and ̂ 2 satisfy
(Z); in either instance, (8) or (9), YRzn.

Case 2. Z and 7t properly satisfy (Z)\
Then, by (7) and (ii)b of Definition 4, ZRznγ or ZRzn2; by the in-

ductive hypothesis, YRznλ or YR2n2. Therefore YRzn.
We remark that if w is a Z-number and if each z e Z is a F-

number, it does not follow that n is a Γ-number. A counter-example
is afforded by the case in which n = 8, Z = {3, 4}, and Y = {2, 3}.
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