PACIFIC JOURNAL OF MATHEMATICS
Vol. 28, No. 1, 1969

REGULAR AND IRREGULAR MEASURES ON
GROUPS AND DYADIC SPACES

H. LERoY PETERSON

It is generally known that if X is a o-compact metric
space, then every Borel measure on X is regular. It is not
difficult to prove a slightly stronger result, namely that the
same conclusion holds if X is a Hausdorff space in which
every open subset is o-compact (1.6 below). The converse is
not generally true, even for compact Hausdorff spaces; a
counter-example appears here under IV, 1. However, it will
be shown in §II that every nondegenerate Borel measure on a
nondiscrete locally compact group is regular if and only if the
group is o-compact and metrizable, A similar theorem, proved
in §III, holds for dyadic spaces: every Borel measure on such
a space is regular if and only if the space is metric.

The result for groups depends on two structure theorems
which are proved here: every nonmetrizable compact connected
group contains a nonmetrizable connected Abelian subgroup
(I1.10), and every nonmetrizable locally compact group contains
a nonmetrizable compact totally disconnected subgroup (I1.11),

In §1III, it seems that the separable case requires special attention:
a theorem is proved which has as a corollary that every separable
dyadic space is a continuous image of {0, 1}° (III.3 and III.4), and one
lemma (II1.6) uses a weakened version of the continuum hypothesis.

I. Regular and irregular measures.

1. Let X be a topological space, M a og-algebra of subsets of X,
and ¢ a (countably additive, nonnegative) measure function whose
domain is M. The system (X, M, p) is called regular measure space
and g is called a regular measure in case

(1) pC < oo for all compact C e M;

2) pS =inf{pU: U open, Ue M, UD S} for all SeM;

(8) n¢U = sup{¢C: C compact, CeM, C < U} for all open UeM.

For lack of a better term, a measure g will be called totally
regular if it satisfies the more exclusive definition of regularity favored
by some authors (e.g., Halmos in [5]), namely:

¢S = sup {¢#C: C compact, CeM, Cc S}
= inf{¢U: U open, UeM, UD S} for all SeM.

REMARK 2. According to [7], (10.30) and (10.31), any o-finite
regular measure on a Hausdorff space is totally regular; the proof as
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given is for Radon measures but almost exactly the same argument
will work for any regular measure.

3. A measure g will be called irregular if

(1) ¢ is not regular;
(2) pC < « for all compact CeM;
(3) ¢ is nondegenerate: i.e., ¢ has values other than 0 and co.

4, Let X be a topological space. B(X) is defined to be the
smallest o-algebra containing the closed subsets of X. A Borel meas-
ure on X is a measure defined on B(X) which assigns finite measure
to each compact member of B(X).

5. Note. Research on nonregular measures has appeared in [12],
[13], and [14], and examples of irregular Borel measures are to be

found in [5] and [7]; see II.2 and IV.2 below.

It is clear that the construction of a nonregular degenerate measure
on a space which is not o-compact presents no problem: simply assign
measure 0 to sets which are contained in o-compact sets, and measure

c to other sets.

LEMMA 6. Let X be a topological space such that every open
subset of X is the union of countably many closed sets. Let i be a
o-finite Borel measure on X. Then

uB = sup {¢F": F closed, Fc B} = inf {#U: U open, U D B}

Jor all Be B(X).
(This result is due to E. Zakon [16].)

THEOREM 7. Let X be a Hausdorff space. If every open subset
of X is g-compact, then every Borel measure on X s totally regular.

Proof. This follows easily from the preceding lemma.

COROLLARY 8. FEwery Borel measure on a o-compact metric
space s regular.

II. Locally compact groups. All topological groups in this
section are assumed to be Hausdorff.

THEOREM 1. Let G be a locally compact group which is neither
a-compact nor discrete. Then G admits an itrregular Borel measure.

Proof. Let M be a left Haar measure on G. For B e B(G), define
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vB = sup {\C: C compact, C = S}. To show that v is a nondegenerate
Borel measure is a routine exercise. Now let H be an open g-compact
subgroup of G, and let A be a subset of G containing exactly one
element of each left coset of H. Clearly A is closed and, by the
argument in [6], (16.14), XA = c but A is locally A-null, i.e., v4 = 0.
Since vU = « for each neighborhood U of A, v is irregular.

[See IV.2 for an example.]

2. Let Q denote the first uncountable ordinal and I" denote an
arbitrary ordinal with no countable cofinal subsets, following the
standard convention whereby an ordinal is identified with the set of
its predecessors.

THEOREM. Let X, = I" with the order topology. For Be B(X,),
define

(1 &f B contains a closed cofinal subset of X,
|0 otherwise .

Then p is an irregular Borel measure on X,.

Proof. The argument is essentially the same as that required
for the special case I = 2, which appears as an exercise in [5] (p. 231).
Using a variation of the “interlacing lemma” as in [1], it can be shown
that the intersection of countably many closed cofinal sets is cofinal;
thus a member of B(X,) has measure 1 if and only if its complement
has measure 0 and the union of countably many sets of measure 0 has
measure 0 also, so that ¢ is indeed a Borel measure. The measure
is irregular as p#X, = 1 while #C = 0 for every compact subset C of X,.

COROLLARY 3. Let X, =T U{l'} with the order topology and
let X be a T, space. Suppose that there is a continwous function h
Srom X, into X such that h~{(hI)} is mot cofinal in X,. Then X
admits a finite irregular Borel measure.

Proof. It is easy to verify that A~(B) N X, is in B(X,) whenever
B is in B(X). Let g be the irregular measure defined in II.2 and
define v on B(X) by vB = p#(h~(B) N X,); evidently v is a Borel meas-
ure, which is irregular since v{i(I")} = 0 but yU = 1 for each neigh-
borhood U of w(I").

EMBEDDING THEOREM 4. Let X, = Q2 U {2} with the order to-
pology. X, is homeomorphic to a subspace of {0,1}? (with the product
topology).
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Proof. For ac X,, define k() in {0, 1}° by

Oifasp

[(@)]s = hs(@) = {1 fa>a.

Evidently, % is one-to-one. Each coordinate function %, is con-
tinuous from X, into {0, 1}; thus % is continuous.

COROLLARY 5. Any space which contains {0,1}° as a closed
subspace admits a finite irregular Borel measure.

REMARK 6. According to a theorem of Ivanovskii et. al. ([6],
(9.15)), every nonmetrizable compact totally disconnected group is
homeomorphic to {0, 1} for some uncountable m. By IL.5, every such
group therefore admits an irregular Borel measure; this is a special
case of corollary II.12 below. In order to prove II.12 in general, we
show that every nonmetrizable locally compact group has a non-
metrizable compact totally disconnected subgroup.

LEMMA 7. Let G be a locally compact group with identity e
and closed normal subgroup H. If H and G/H are both metrizable,
then so is G.

Proof. This follows from (8.5) of [6], together with the con-
tinuity of the natural homomorphism.

LEMMA 8. Let G be a torsion-free Abelian group of rank r.
Then there exists a subgroup K of G such that G/K is a torsion
group and card (G/K) = r + 1. If G is uncountable, then card (G/K) =
card (G).

Proof. Let L be a maximal independent subset of G, let K, be
the subgroup generated by L, and (using additive notation) let K = 2K,.
By the maximality of L, G/K, and therefore G/K are torsion. If «
and B are distinct elements of L, then a¢ K and a — 8¢ K by the
independence of L., Thus card (G/K) = card(L)+1=7+ 1. A stand-
ard argument (e.g., see [4], p. 32) shows that if G is uncountable then
card (G) = r, so that card (G/K) = card (G).

THEOREM 9. Let G be a nonmetrizable compact connected Abelian
group. Then G contains a nonmetrizable compact totally disconnected
subgroup.

Proof. Let I" be the dual group of G; I'" is an uncountable discrete
torsion-free Abelian group and thus, by the previous lemma, has a
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subgroup K such that I'/K is an uncountable torsion group. Let
H={9eG:v(g) =1 for all ye K}; H is a subgroup of G, topologically
isomorphic to the dual group of I'/K, and therefore compact, non-
metrizable, and totally disconnected. (See [6], (23.25), (24.26), and
(24.15).)

LEMMA 10. Let G be a nommetrizable compact connected group.
Then G contains a nowmetrizable compact connected Abelian group.

Proof. Let H be any maximal Abelian subgroup of G; according
to [9], H is connected and every maximal Abelian subgroup of G is
a conjugate of H. Let V be any intersection of countably many
neighborhoods of e. By [6], (8.7), V contains a compact normal sub-
group N of G such that G/N is metrizable. Suppose N N H = {e};
then NN H' = {¢}, where H’ is any other maximal Abelian subgroup
of G. Consequently N = {e¢}, which is impossible since G is not metri-
zable. Thus VN HOD NN H + {e¢}, and thus H is not metrizable.

THEOREM 11. Let G be a nonmetrizable locally compact group.
Then G contains a monmetrizable compact totally disconmected sub-
group.

Proof. (1) Assume G is compact. Let C be the component of e
in G. If C is metrizable, then there exists a compact normal sub-
group H of G such that HN C = {¢} and G/H is metrizable; by IL.7,
H is not metrizable. The natural homomorphism g — ¢° is a topological
isomorphism of H onto CH/C, a subgroup of the totally disconnected
group G/C ([6], (7.3)); H is therefore totally disconnected. If C is
not metrizable, then C contains a nonmetrizable compact totally dis-
connected subgroup, by II.9 and II.10.

(2) Now suppose G is not compact. By part (1), we have only
to show that G has a nonmetrizable compact subgroup. Let H be an
open compactly generated subgroup; by [6], (8.5) and (8.7), H is not
metrizable and has a compact normal subgroup N such that H/N is
metrizable, and thus N is not metrizable.

COROLLARY 12. Ewery nonmetrizable locally compact group ad-
mits a finite irregular Borel measure, concentrated on a compact
totally disconnected subgroup.

This follows from the remark in II.6. Combining I1.12 with II.1
1.8, we have:

THEOREM 13. Let G be a mondiscrete locally compact group.
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Then every nondegenerate Borel measure on G is regular if and only
of G is o-compact and metrizable.

III. Dyadic spaces.

1. A dyadic space is a Hausdorff space which is the image, under
a continuous mapping, of {0, 1}4 for some set A, where {0, 1} is discrete
and the product has the product topology. According to a standard
theorem, every compact metric space is a dyadic space; thus a dyadic
space is any Hausdorff space which is a continuous image of a product
of compact metric spaces. Recent interesting papers on dyadic spaces
include [2] and [3], which contain references to earlier writings.

THEOREM 2. Let X be a dyadic space. Then every Borel meas-
ure on X s regular if and only if X is metric.

Proof. If X is metrie, then every Borel measure on X is regular,
by 1.8; to prove the converse statement, some preliminary results have
to be established, as follows:

THEOREM 3. Let X be a dyadic space and D a dense subset of
X. Then there is a continuous function from {0, 1}*" onto X.
[See [3], Theorem 1, for related result.]

Proof. Let f be a continuous function from {0,1}* onto X.
Choose E {0, 1}* such that f|E is one-to-one and f(E) = D. Define
an equivalence relation ~ on A as follows: @ ~ 8 in case z, = x, for
all xe E. Define u(a) = {xe E:x, = 1} and U = {u(a): a ¢ A}; clearly
w(a) = u(B) if and only if @ ~ 8. Define a mapping g from {0, 1}V
into {0, 1}* by [g())]. = 9u(t) = tuw for each ¢ = (t,.) in {0,1}" and
each a in A. Each g, is continuous from {0, 1}V into {0, 1), thus g is
continuous, and fog is a continuous mapping from {0, 1} into X.
The image of g in {0, 1} is the set {x:x, = #; whenever a ~ g}, which
contains E. Thus fog is a continuous function from {0, 1}’ onto a
dense compact subset of X, which must be X itself. Now card U
< 2dF — 214D thys there is a continuous function from {0, 1}*”
onto X.

COROLLARY 4. A dyadic space is separable if and only 1f it
1s a continuous image of {0, 1}°.

Proof. By [11], Theorem 1, {0, 1}° (and every continuous image
thereof) is separable. The converse follows from III.3.



REGULAR AND IRREGULAR MEASURES ON GROUPS AND DYADIC SPACES 179

THEOREM 5. Let X be a topological space and let {X,:a < I'}
be a mondecreasing transfinite sequence of proper closed subsets of
X with UX, dense in X. Let A be a subset of I'. Then the follow-
ing statements are equivalent:

(1) A s cofinal in I.

2) U{Xiaced}l =U{Xaa< T}

3) U{X..ae Al is dense tn X.

Proof. It is clear that each of (1) and (2) implies the statement
following it. To show that (3) implies (1), suppose A has an upper
bound « < I'. Then U{X,:aecA}c X,, which is a proper closed
subset of X, and so |J{X,: @< 4} is not dense in X, contradicting (3).

[Note: To prove the next lemma, we assume a weakened version of
the continuum hypothesis, namely that ¢ = Y, for some j=1,2, -.-].

LEMMA 6. Let X be a monmetric dyadic space. Let I' be the
smallest ordinal such that X contains a nonmetric subspace which
1s a continuous image of {0, 1}. Then I' does not have a countable

cofinal subset.

Proof. Let X, be the continuous image of {0, 1} referred to in
the hypothesis; I" is uncountable since X, is not metric. If X, is
separable, then card (I") < ¢, so by the note above, I does not have
:a countable cofinal subset. On the other hand, if X, is not separable,
let f be a continuous function from {0, 1}, onto X, and for &« < I" let

F,={y:ye{0,1}), ys=0foralla =B <TI}.

Let X, = f(F,). UPF, is dense in {0, 1} and thus U X, is dense in
Xr. Now, for each a < I", F, is homeomorphic to {0, 1}*, thus X, is
:a compact metric (hence closed and separable) subspace of X,. Since
X, is not separable, it is impossible for the union of countably many
X, to be dense in X,, and therefore by III.5, I" does not have a

.countable cofinal subset.

Proof of III.2 (Conclusion). Suppose X is a nonmetric dyadic
space. Let I" and X, be as in IIL.6; let f, F,, and X, (@ < I") be as
defined above. Since I" has no countable cofinal subset, U X, = X,
(by [2], Corollary 1.). Choose i(I) in {0, 1}* such that f(h())e¢ U X..
Let A ={a < TI':h(),=1)}; then we have

h(r)e{oy 1}1‘__ UFaz na({O’ 1}F—F¢r)
=MN.{y: 9y, =1 for some a < B < I'},
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thus A is cofinal in I" and so has no countable cofinal subset. Let
X, = AU {I'} with the well-ordering inherited from I" U {"} and with

the order topology. Define a function %z from X, into {0, 1}* coordi-
natewise by

1if BeAdand < a

[h(@)]s = ko) = 0 otherwise

for «¢c A and B < I'; h(I") has already been defined. By the definition
of the topologies of X, and {0, 1}, each coordinate function %, is con-
tinuous, thus, » is continuous. It is obvious that % is one-to-one.
Now foh is a continuous function from X, into X, and (fok)™(") =
{I'}, for if ac A then foh(a)e X,, but foh(I") = f(MI)) ¢ X,. Since
A has no countable cofinal subset, II.3 applies and X admits an ir-
regular Borel measure.

COROLLARY 7. Ewery mnonmetrizable locally compact group ad-

mits a finite irregular Borel measure, concentrated on a compact
subgroup.

Proof. I1.11(2) of this paper shows that a nonmetrizable locally
compact group has a nonmetrizable compact subgroup. According to
a theorem of Kuzminov, [6] p. 106, every compact group is a dyadic
space.

The reader will note that this corollary is a less precise version
of II.12.

8. (A concluding remark on finite irregular measures.) A meas-
ure y is continuous if each point xe X is an element of a set of
measure; 0; v is atomic if it has an atom, i.e., a measurable set A,
such that vA > 0 and such that, when S is a measurable subset of
A, either vS = 0 or vS = vA.

THEOREM. Let X be a Hausdorff space and let (X, M, v) be a
measure space with v = y, + v,, where v, is a finite continuous atomic
measure. Then v is irregular.

Proof. We assume without loss of generality that y, =0 and
{x}eM for all xe X. Let A be an atom and let C = {C: Ce M, C com-
pact, CC A,vC =vA}. If C= @, v is irregular, according to I.2.
If C=+# @, then MNC = @ as C is a collection of closed compact sets
with the finite intersection property. Let xe€C. If C is a compact.
measurable subset of A — {x}, then yC =0 as Cc A and 2¢C. But
v(4 — {x}) =vA > 0, thus v is irregular.

It will be noted that the finite irregular Borel measures described
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in §II and §III are atomic. The author is not aware of any finite
irregular measures that do not have the properties described in the
theorem above.

IV. Examples.

1. Let X be the one-point compactification of a discrete space
of cardinality ¥,. Evidently, every subset of X is either open or
closed (or both), and thus a member of B(X). Every Borel measure ¢
on X is therefore a finite measure defined on all subsets of X, and so,
by a theorem of Ulam [15],

pB =3 ()} (zeB)

= sup {¢A4: A is finite and A < B}
= inf {#S: X — S is finite and BcC S}.

Thus p is totally regular. However, any uncountable subset of X —{}
is an open set which is not g-compact.

This example provides a comment on II.3; we cannot weaken the
hypothesis by eliminating the condition that A~{(hI")} not be cofinal,
even if we substitute the condition that X have non-o-compact open
subsets. Let I' = 2 and take X to be the one-point compactification
of the isolated ordinals in Q2. Define h: X, — X by

co if & is a limit ordinal
« otherwise .

h(a) = {

Then % is continuous but X, as just noted, admits no irregular Borel
measure.

2. Let R denote the reals with the usual topology and R, the
reals with the discrete topology; let G = R, x R with the product
topology. For re R, and S G, set S(r) = {x:(r,x) € S}. Note that
if Be B(G), then B(r) € B(R) for all »re R,. Define

vB =3 MB(r))  (reRy)

where A denotes Lebesgue measure on B, Clearly v is a nondegenerate
Borel measure, which is irregular since there is a set A = R; x {0} such
that vA = 0 but vU = « for any neighborhood U of A.

This example, which has appeared in [7] (Exercise 12.58), provides
a specific illustration for Theorem II.1. For let

1S = inf {pU: U open, UD S} ;
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it can be shown (see [10], 2.22) that p is a Haar measure for G,
and that

vB = sup {#C: C compact, CC B} .
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