TORSION IN BBSO

James D. Stasheff

Abstract

The cohomology of BBSO, the classifying space for the stable Grassmanian BSO, is shown to have torsion of order precisely 2^{r} for each natural number r. Moreover, the elements of order 2^{r} appear in a pattern of striking simplicity.

Many of the stable Lie groups and homogeneous spaces have torsion at most of order $2[1,3,5]$. There is one such space, however, with interesting torsion of higher order. This is $B B S O=S U /$ Spin which is of interest in connection with Bott periodicity and in connection with the J-homomorphism [4, 7]. By the notation $S U /$ Spin we mean that $B B S O$ can be regarded as the fibre of $B \operatorname{Spin} \rightarrow B S U$ or that, up to homotopy, there is a fibration

$$
S U \rightarrow B B S O \rightarrow B \text { Spin }
$$

induced from the universal $S U$ bundle by $B \operatorname{Spin} \rightarrow B S U$. The mod 2 cohomology $H^{*}\left(B B S O ; Z_{2}\right)$ has been computed by Clough [4]. The purpose of this paper is to compute enough of $H^{*}(B B S O ; Z)$ to obtain the mod 2 Bockstein spectral sequence [2] of $B B S O$.

Given a ring R, we shall denote by $R\left[x_{i} \mid i \in I\right]$ the polynomial ring on generators x_{i} indexed by elements of a set I. The set I will often be described by an equation or inequality in which case i is to be understood to be a natural number. Similarly $E\left(x_{i} \mid i \in I\right)$ will denote the exterior algebra on generators x_{i}. In this case, we will need only $R=Z_{2}$.

Let us recall the results on B Spin as given by Thomas [6] and on $B B S O$ as given by Clough [4].

$$
H^{*}\left(B \operatorname{Spin} ; Z_{2}\right) \approx Z_{2}\left[w_{i} \mid i \neq 2^{j}+1\right]
$$

where w_{i} is (the image of) the Stiefel-Whitney class w_{i}.

$$
H^{*}(B \operatorname{Spin} ; Z) \approx Z\left[Q_{i} \mid i>0\right] \oplus \hat{T}
$$

where $2 \hat{T}=0$ and $Q_{i} \in H^{4 i}$.

$$
H^{*}\left(B B S O ; Z_{2}\right) \approx E\left(e_{i} \mid i \geqq 3\right)
$$

where $e_{i} \in H^{i}$ and is the image of w_{i} if $i \neq 2^{j}+1$ while $e_{2 j_{+1}}$ maps to an indecomposable element in $H^{*}\left(S U ; Z_{2}\right)$.

Now let ${ }_{\beta} E_{r}$ denote the mod 2 Bockstein spectral sequence of $B B S O$ [2]. In particular, ${ }_{\beta} E_{2}=\operatorname{Ker} S q^{1} / \operatorname{Im} S q^{1}$. Now $S q^{1} w_{2 i}=w_{2 i+1}$ in $B S O$ and $S q^{1} w_{2 i+1}=0$ while $S q^{1} e_{2} j=0$ in B Spin. We will see that
$e_{2^{j}+1}$ can be chosen to have $S q^{1} e_{2{ }^{j}+1}=0$ except for $S q^{1} e_{3}=e_{4}$. Thus

$$
{ }_{\beta} E_{2}=E\left(e_{3} e_{4}, e_{2^{2}+i}, v_{4 i+1} \mid i>0\right)
$$

where $v_{4 i+1}=e_{2 i} e_{2 i+1}$ except $v_{2^{j+1}}=e_{2^{j+1}} ; j>1$.

Theorem 1.

$$
{ }_{\beta} E_{r} \approx E\left(e_{3} e_{4} \cdots e_{2^{r}}, e_{2^{r+i}}, v_{4 i+1} \mid i>0\right)
$$

and $d_{r}\left(e_{3} \cdots e_{2^{r}}\right)=e_{2^{r+1}}$ modulo decomposable elements.
To prove Theorem 1, we will exhibit torsion of order 2^{r} for all r.
Theorem 2. In $H^{*}(B B S O ; Z)$, we have

$$
2^{r} Q_{2^{r}} \neq 0 \quad \text { and } \quad 2^{r+1} Q_{2^{r}}=0
$$

$H^{*}\left(B B S O ; Z_{2}\right)$. We recall some of Clough's observations on $H^{*}\left(B B S O ; Z_{2}\right)$. We know $H^{*}\left(S U ; Z_{2}\right)=E\left(y_{i} \mid i>1\right)$ where $y_{i} \in H^{2 i+1}$ transgresses universally to the mod 2 reduction of the Chern class c_{i} and hence to the image of w_{i}^{2} in B Spin. Thus $w_{i}^{2}=0$ in $B B S O$ for $i \neq 2^{j}+1$ and $y_{2} j$ is the restriction of a class $e_{2^{j+1+1}}$. In particular since $S q^{2 j}\left(w_{2^{j-1+1}}\right)^{2}=\left(w_{2^{j}+1}\right)^{2}$ we can take $e_{2^{j+1}}$ to be $S q^{2^{j-1}} S q^{2 j-2} \cdots$ $S q^{4} S q^{2} e_{3}$. The class e_{3} is uniquely determined $\left(H^{3}\left(B B S O ; Z_{2}\right) \approx Z_{2}\right)$ and this definition of $e_{2^{j+1}}$ implies $S q^{1} e_{2 j+1+1}=\left(e_{2^{i}+1}\right)^{2}=0$ if $e_{3}^{2}=0$. The only alternative to $e_{3}^{2}=0$ is $e_{3}^{2}=e_{6}$; there is no other class in this dimension. Since $S q^{1} w_{6}=w_{7}$ in B Spin and w_{6}, w_{7} map to e_{6}, e_{7}, we have $S q^{1} e_{6}=e_{7}$ but $S q^{1}\left(e_{3}\right)^{2}=0$; therefore e_{3}^{2} must be zero.
$H^{*}(B B S O, Z)$. Consider $B B S O$ as the fibre of B Spin $\rightarrow B S U$. The latter map factors: B Spin $\xrightarrow{\pi} B S O \rightarrow B S U$. Recall that

$$
H^{*}(B S U ; Z)=Z\left[c_{i} \mid i>1\right] \quad \text { and } \quad H^{*}(B S O ; Z)=Z\left[P_{i}\right] \oplus T
$$

where T is the torsion ideal, $2 T=0, c_{2 i+1}$ maps into T and $c_{2 i}$ maps to P_{i}. To determine $\operatorname{Im}\left(H^{*}(B \operatorname{Spin})\right)$ in $H^{*}(B B S O)$, we need to know $\pi^{*}\left[P_{i}\right]$ in $H^{*}(B$ Spin $)$.

Theorem 3 (Thomas [6]). If i is not a power of $2, \pi^{*} P_{i}=Q_{i}$. If $j=2^{r}, r>0, \pi^{*} P_{2 j}=2 Q_{2 j}+Q_{j}^{2}-\pi^{*} \Phi_{2 j} . \quad \pi^{*} P_{1}=2 Q_{1}$.

Lemma. $\pi^{*} \Phi_{2 j}$ maps into $\operatorname{Im} T \subset H^{*}(B B S O)$.
Proof. $H^{*}(B S O ; Z)$ maps onto $\operatorname{Im} T$ in $H^{*}(B B S O)$ since $H^{*}(B S U)$ maps onto the $Z\left[P_{i}\right]$ part.

Since $\pi^{*} P_{j}$ goes to zero in $B B S O$, we have in $H^{*}(B B S O ; Z)$

$$
\begin{aligned}
& 2 Q_{2 j}=-Q_{j}^{2}+t \quad \text { where } 2 t=0 \text { and } j=2^{r} . \\
& 2 Q_{1}=0 .
\end{aligned}
$$

By iteration we find

$$
2^{r+1} Q_{2 r}= \pm 2 Q_{2^{r}} Q_{2^{r-1}} \cdots Q_{2}\left(Q_{1}\right)^{2}=0
$$

To determine the order of $Q_{2^{i}}$ in $B B S O$, consider $\Gamma(u \mid 2 u=0)$, a divided polynomial algebra on a single generator u of dimension 4 and order 2; i.e., additively Γ has generators $\gamma_{i}(u)$ in dimension $4 i$ and the multiplication table is $\gamma_{i}(u) \gamma_{j}(u)=(i, j) \gamma_{i+j}(u)$ where (i, j) is the binomial coefficient $\{(i+j)!/ i!j!\}$.

In particular $i!\gamma_{i}(u)=u^{i}$.
We construct a map f from $\operatorname{Im}\left(H^{*}(B \operatorname{Spin} ; Z) \rightarrow H^{*}(B B S O ; Z)\right)$ to Γ by mapping \hat{T} to zero, Q_{i} to zero for $i \neq 2^{j}$ and $Q_{2 j}$ to $-\gamma_{2}\left(f\left(Q_{2^{j-1}}\right)\right)$ with $f\left(Q_{1}\right)=u$. Since $2 Q_{2^{j}}=-Q_{2^{j}-1}^{2}+\pi^{*} \Phi_{2 j}$, and $\Phi_{2 j}$ goes into $\operatorname{Im} \hat{T}$ in $B B S O$, the map f is well defined. Since for any x, the order of $\gamma_{2}(x)$ is twice the order of x, we have

$$
\operatorname{ord} f\left(Q_{2^{3}}\right)=2 \operatorname{ord} f\left(Q_{2^{j-1}}\right)=2^{j} \operatorname{ord} f\left(Q_{1}\right)=2^{j+1}
$$

Thus the order of $Q_{2^{j}}$ is at least 2^{j+1} and that $2^{j+1} Q_{2^{i}}$ is in fact zero we have already seen.

Thus we have 2^{r} torsion for each r. From the exact cohomology sequence derived from $0 \rightarrow Z \xrightarrow{2^{r}} Z \rightarrow Z_{2^{r}} \rightarrow 0$, we see that $Q_{2^{r-1}}=$ $\beta_{2^{r} r}^{\infty} x_{r}$ for some class $x_{r} \in H^{*}\left(B B S O ; Z_{2^{r}}\right)$, where $\beta_{2^{r}}^{\infty}$ is the connecting homomorphism $H^{*}\left(; Z_{2 r}\right) \rightarrow H^{*+1}(; Z)$.

Lemma. $\left(\beta_{2^{\infty}}^{\infty} x_{r}\right)_{2}=d_{r}\left(x_{r}\right)_{2}$ where ()$_{2}$ means reduction $\bmod 2$.
Proof. Recall how d_{r} is defined: $d_{r}(x)=\left(\beta_{2}^{\infty}(x) / 2^{r-1}\right)_{2}$. From the commutativity of the diagram

it follows that $\beta_{2}^{\infty}=2^{r-1} \beta_{2^{r}}^{\infty}$. In particular, $d_{r}\left(x_{r}\right)_{2}=\left(Q_{2^{r-1}}\right)_{2}$. According to Thomas, $\left(Q_{2^{r-1}}\right)_{2}=\pi^{*}\left(w_{2^{r+1}}+\psi_{2^{r+1}}\right)$ where $\psi_{2^{r+1}}$ is decomposable. In particular, $\left(Q_{1}\right)_{2}=W_{4}$.

We prove Theorem 2 by induction. Since

$$
S q^{1} w_{2 i}=w_{2 i+1} \quad \text { and } \quad S q^{1} w_{2 i+1}=0
$$

we know $S q^{1} e_{2 i}=e_{2 i+1}$ and $S q^{1} e_{2 i+1}=0$ unless $i=2^{j}$. Since we have chosen $e_{2^{j_{+1}}}=S q^{2 j-1} \cdots S q^{2} e_{3}$, we have $S q^{1} e_{2} j_{+1}=\left(e_{2}{ }^{j-1+1}\right)^{2}=0$ for
$j \geqq 2$. For $j=1$, we have $S q^{1} e_{3}=e_{4}$ because $e_{4}=\left(Q_{1}\right)_{2}$ which is in the image of $S q^{1}$ since $2 Q_{1}=0$.

Thus

$$
\begin{aligned}
{ }_{\beta} E_{2} & =\operatorname{Ker} S q^{1} / \operatorname{Im} S q^{1} \\
& =E\left(e_{3} e_{4}\right) \otimes E\left(e_{2 i} e_{2 i+1} \mid 2<i \neq 2^{j}\right) \otimes E\left(e_{2 j+1}, e_{2^{j}+1} \mid j \geqq 2\right) .
\end{aligned}
$$

Since $d_{2}\left(x_{2}\right)_{2}=\left(Q_{2}\right)_{2}=e_{8}$, we must have $x_{2}=e_{3} e_{4}$.
In general $d_{r}\left(x_{r}\right)_{2}=\left(Q_{2 r-1}\right)_{2}=e_{2^{r+1}}$ modulo decomposables. Now consider $H^{*}(B B S O ; Q)$. Since $H^{*}(B S O ; Q)=Q\left[P_{i}\right]$ with the usual diagonal $m^{*}\left(P_{i}\right)=\sum_{j+h=i} P_{j} \otimes P_{k}$, we have $H^{*}(B B S O ; Q)=E\left(R_{i}\right)$ where $\operatorname{dim} R_{i} \in H^{4 j+1}$. Thus ${ }_{\beta} E_{\infty}=E\left(S_{4 i+1}\right)$ and the only possibility is

$$
\begin{aligned}
& S_{4 i+1}=e_{2 i} e_{2 i+1} i \neq 2^{j} \\
& S_{2^{i+1}}=e_{2^{i+1}}
\end{aligned}
$$

modulo terms decomposable in terms of the $S_{4 i+1}$. This leaves $e_{3} e_{4} \ldots$ $e_{2^{r}}$ as the only possibility for x_{r}, i.e., $d_{r}\left(e_{3} e_{4} \cdots e_{2} r\right)=e_{2 r+1} \bmod$ decomposables as claimed.

Bibliography

1. A. Borel, La cohomologie mod 2 des certains espaces homogènes, Comm. Math. Helv. 27 (1953), 165-197.
2. W. Browder, Torsion in H-spaces, Ann. of Math. 74 (1961), 24-51.
3. H. Cartan, Séminaire-1959/60, Exposés 3, 17, Paris, 1961.
4. R. R. Clough, Calculation of $H^{*}\left(B_{\operatorname{Im}(J)} ; Z_{2}\right)$ (to appear).
5. E. Dyer and R. K. Lashof, A topological proof of the Bott periodicity theorem, Ann. Mat. Pura Appl. (4) 54 (1961), 231-254.
6. E. Thomas, On the cohomology groups of the classifying space for the stable spinor group, Bol. Soc. Mat. Mex. (1962), 57-69.
7. G. W. Whitehead, On the homotopy groups of spheres and rotation groups, Ann. of Math. 43 (1942), 634-640.

Received May 3, 1968. Research supported in part by NSF Grant GP-6101. The author is an Alfred P. Sloan Fellow.

