TORSION IN BBSO

JAMES D. STASHEFF

The cohomology of BBSO, the classifying space for the stable Grassmanian BSO, is shown to have torsion of order precisely 2^r for each natural number r. Moreover, the elements of order 2^r appear in a pattern of striking simplicity.

Many of the stable Lie groups and homogeneous spaces have torsion at most of order 2 [1, 3, 5]. There is one such space, however, with interesting torsion of higher order. This is BBSO = SU/Spinwhich is of interest in connection with Bott periodicity and in connection with the J-homomorphism [4, 7]. By the notation SU/Spin we mean that BBSO can be regarded as the fibre of B Spin $\rightarrow BSU$ or that, up to homotopy, there is a fibration

 $SU \rightarrow BBSO \rightarrow B$ Spin

induced from the universal SU bundle by B Spin $\rightarrow BSU$. The mod 2 cohomology $H^*(BBSO; Z_2)$ has been computed by Clough [4]. The purpose of this paper is to compute enough of $H^*(BBSO; Z)$ to obtain the mod 2 Bockstein spectral sequence [2] of BBSO.

Given a ring R, we shall denote by $R[x_i | i \in I]$ the polynomial ring on generators x_i indexed by elements of a set I. The set I will often be described by an equation or inequality in which case i is to be understood to be a natural number. Similarly $E(x_i | i \in I)$ will denote the exterior algebra on generators x_i . In this case, we will need only $R = Z_2$.

Let us recall the results on B Spin as given by Thomas [6] and on BBSO as given by Clough [4].

$$H^*(B\operatorname{Spin}; Z_2) pprox Z_2[w_i \,|\, i
eq 2^j+1]$$

where w_i is (the image of) the Stiefel-Whitney class w_i .

$$H^*(B\operatorname{Spin}; Z) \approx Z[Q_i \mid i > 0] \oplus \widehat{T}$$

where $2\hat{T}=0$ and $Q_i \in H^{_{4i}}$.

$$H^*(BBSO; Z_2) \approx E(e_i \mid i \geq 3)$$

where $e_i \in H^i$ and is the image of w_i if $i \neq 2^j + 1$ while $e_{2^{j+1}}$ maps to an indecomposable element in $H^*(SU; Z_2)$.

Now let $_{\beta}E_r$ denote the mod 2 Bockstein spectral sequence of BBSO [2]. In particular, $_{\beta}E_2 = \text{Ker } Sq^1/\text{Im } Sq^1$. Now $Sq^1w_{2i} = w_{2i+1}$ in BSO and $Sq^1w_{2i+1} = 0$ while $Sq^1e_{2i} = 0$ in B Spin. We will see that

 $e_{2^{j+1}}$ can be chosen to have $Sq^1e_{2^{j+1}}=0$ except for $Sq^1e_3=e_4$. Thus

 $_{\scriptscriptstyle \beta}E_{\scriptscriptstyle 2} = E(e_{\scriptscriptstyle 3}e_{\scriptscriptstyle 4},\,e_{\scriptscriptstyle 2^{2+i}},\,v_{\scriptscriptstyle 4i+1}\,|\,i>0)$

where $v_{4i+1} = e_{2i}e_{2i+1}$ except $v_{2^{j}+1} = e_{2^{j}+1}; j > 1$.

THEOREM 1.

$$_{\beta}E_{r} \approx E(e_{3}e_{4}\cdots e_{n}, e_{n+i}, v_{4i+1} \mid i > 0)$$

and $d_r(e_3 \cdots e_{s^r}) = e_{s^{r+1}}$ modulo decomposable elements.

To prove Theorem 1, we will exhibit torsion of order 2^r for all r.

THEOREM 2. In $H^*(BBSO; Z)$, we have

 $2^r Q_{,r}
eq 0$ and $2^{r+1} Q_{,r} = 0$.

 $H^*(BBSO; Z_2)$. We recall some of Clough's observations on $H^*(BBSO; Z_2)$. We know $H^*(SU; Z_2) = E(y_i | i > 1)$ where $y_i \in H^{2i+1}$ transgresses universally to the mod 2 reduction of the Chern class c_i and hence to the image of w_i^2 in B Spin. Thus $w_i^2 = 0$ in BBSO for $i \neq 2^j + 1$ and y_{2j} is the restriction of a class $e_{2^{j+1}+1}$. In particular since $Sq^{2j}(w_{2^{j-1}+1})^2 = (w_{2^{j}+1})^2$ we can take $e_{2^{j}+1}$ to be $Sq^{2^{j-1}}Sq^{2^{j-2}}\cdots Sq^4Sq^2e_3$. The class e_3 is uniquely determined $(H^3(BBSO; Z_2) \approx Z_2)$ and this definition of $e_{2^{j+1}}$ implies $Sq^1e_{2^{j+1+1}} = (e_{2^{i}+1})^2 = 0$ if $e_3^2 = 0$. The only alternative to $e_3^2 = 0$ is $e_3^2 = e_6$; there is no other class in this dimension. Since $Sq^1w_6 = w_7$ in B Spin and w_6, w_7 map to e_6, e_7 , we have $Sq^1e_6 = e_7$ but $Sq^1(e_3)^2 = 0$; therefore e_3^2 must be zero.

 $H^*(BBSO, Z)$. Consider BBSO as the fibre of $B \operatorname{Spin} \to BSU$. The latter map factors: $B \operatorname{Spin} \xrightarrow{\pi} BSO \to BSU$. Recall that

 $H^*(BSU; Z) = Z[c_i \mid i > 1]$ and $H^*(BSO; Z) = Z[P_i] \bigoplus T$

where T is the torsion ideal, 2T = 0, c_{2i+1} maps into T and c_{2i} maps to P_i . To determine Im $(H^*(B \text{ Spin}))$ in $H^*(BBSO)$, we need to know $\pi^*[P_i]$ in $H^*(B \text{ Spin})$.

THEOREM 3 (Thomas [6]). If *i* is not a power of 2, $\pi^*P_i = Q_i$. If $j = 2^r$, r > 0, $\pi^*P_{2j} = 2Q_{2j} + Q_j^2 - \pi^*\Phi_{2j}$. $\pi^*P_1 = 2Q_1$.

LEMMA. $\pi^* \Phi_{2i}$ maps into Im $T \subset H^*(BBSO)$.

Proof. $H^*(BSO; Z)$ maps onto Im T in $H^*(BBSO)$ since $H^*(BSU)$ maps onto the $Z[P_i]$ part.

Since $\pi^* P_i$ goes to zero in BBSO, we have in $H^*(BBSO; Z)$

$$2Q_{2j} = - Q_j^2 + t \quad ext{ where } 2t = 0 \; ext{ and } \; j = 2^r \; .$$

 $2Q_1 = 0 \; .$

By iteration we find

$$2^{r+1}Q_{2^r}=\pm 2Q_{2^r}Q_{2^{r-1}}\cdots Q_2(Q_1)^2=0$$
 .

To determine the order of Q_{2^i} in *BBSO*, consider $\Gamma(u \mid 2u = 0)$, a divided polynomial algebra on a single generator u of dimension 4 and order 2; i.e., additively Γ has generators $\gamma_i(u)$ in dimension 4i and the multiplication table is $\gamma_i(u)\gamma_j(u) = (i, j)\gamma_{i+j}(u)$ where (i, j) is the binomial coefficient $\{(i + j)!/i!j!\}$.

In particular $i!\gamma_i(u) = u^i$.

We construct a map f from Im $(H^*(B \operatorname{Spin}; Z) \to H^*(BBSO; Z))$ to Γ by mapping \hat{T} to zero, Q_i to zero for $i \neq 2^j$ and Q_{2^j} to $-\gamma_2(f(Q_{2^{j-1}}))$ with $f(Q_1) = u$. Since $2Q_{2^j} = -Q_{2^{j-1}} + \pi^* \mathcal{Q}_{2^j}$, and \mathcal{Q}_{2^j} goes into Im \hat{T} in *BBSO*, the map f is well defined. Since for any x, the order of $\gamma_2(x)$ is twice the order of x, we have

$${
m ord}\, f(Q_{2^j})=2\,{
m ord}\, f(Q_{2^{j-1}})=2^j\,{
m ord}\, f(Q_1)=2^{j+1}$$
 .

Thus the order of $Q_{2^{j}}$ is at least 2^{j+1} and that $2^{j+1}Q_{2^{j}}$ is in fact zero we have already seen.

Thus we have 2^r torsion for each r. From the exact cohomology sequence derived from $0 \to Z \xrightarrow{2^r} Z \to Z_{2^r} \to 0$, we see that $Q_{2^{r-1}} = \beta_{2^r}^{\infty} x_r$ for some class $x_r \in H^*(BBSO; Z_{2^r})$, where $\beta_{2^r}^{\infty}$ is the connecting homomorphism $H^*(; Z_{2^r}) \to H^{*+1}(; Z)$.

LEMMA. $(\beta_{r}^{\infty}x_{r})_{2} = d_{r}(x_{r})_{2}$ where ()₂ means reduction mod 2.

Proof. Recall how d_r is defined: $d_r(x) = (\beta_2^{\infty}(x)/2^{r-1})_2$. From the commutativity of the diagram

it follows that $\beta_2^{\infty} = 2^{r-1}\beta_{2^r}^{\infty}$. In particular, $d_r(x_r)_2 = (Q_{2^{r-1}})_2$. According to Thomas, $(Q_{2^{r-1}})_2 = \pi^*(w_{2^{r+1}} + \psi_{2^{r+1}})$ where $\psi_{2^{r+1}}$ is decomposable. In particular, $(Q_1)_2 = W_4$.

We prove Theorem 2 by induction. Since

$$Sq^{_1}w_{_{2i}}=w_{_{2i+1}} \ \ ext{and} \ \ \ Sq^{_1}w_{_{2i+1}}=0$$
 ,

we know $Sq^{i}e_{2i} = e_{2i+1}$ and $Sq^{i}e_{2i+1} = 0$ unless $i = 2^{j}$. Since we have chosen $e_{2^{j+1}} = Sq^{2^{j-1}} \cdots Sq^{2}e_{3}$, we have $Sq^{i}e_{2^{j+1}} = (e_{2^{j-1}+1})^{2} = 0$ for

 $j \ge 2$. For j = 1, we have $Sq^1e_3 = e_4$ because $e_4 = (Q_1)_2$ which is in the image of Sq^1 since $2Q_1 = 0$.

Thus

$$egin{aligned} & {}_{ extsf{e}}E_2 = \operatorname{Ker} Sq^1/\operatorname{Im} Sq^1 \ & = E(e_3e_4) \bigotimes E(e_{2i}e_{2i+1} \,|\, 2 < i
eq 2^j) \bigotimes E(e_{2j+1}, e_{2j+1} \,|\, j \geqq 2) \;. \end{aligned}$$

Since $d_2(x_2)_2 = (Q_2)_2 = e_8$, we must have $x_2 = e_3e_4$.

In general $d_r(x_r)_2 = (Q_{2^{r-1}})_2 = e_{2^{r+1}}$ modulo decomposables. Now consider $H^*(BBSO; Q)$. Since $H^*(BSO; Q) = Q[P_i]$ with the usual diagonal $m^*(P_i) = \sum_{j+h=i} P_j \otimes P_k$, we have $H^*(BBSO; Q) = E(R_i)$ where dim $R_i \in H^{4j+1}$. Thus $_{\beta}E_{\infty} = E(S_{4i+1})$ and the only possibility is

$$egin{array}{lll} S_{_{4i+1}}=e_{_{2i}e_{2i+1}}\,\,\,i
eq 2^{j}\ ,\ S_{_{2^{i+1}}}=e_{_{2^{i+1}}} \end{array}$$

modulo terms decomposable in terms of the S_{4i+1} . This leaves $e_3e_4 \cdots e_{2^r}$ as the only possibility for x_r , i.e., $d_r(e_3e_4 \cdots e_{2^r}) = e_{2^{r+1}} \mod de-$ composables as claimed.

BIBLIOGRAPHY

- 1. A. Borel, La cohomologie mod 2 des certains espaces homogènes, Comm. Math. Helv. 27 (1953), 165-197.
- 2. W. Browder, Torsion in H-spaces, Ann. of Math. 74 (1961), 24-51.
- 3. H. Cartan, Séminaire-1959/60, Exposés 3, 17, Paris, 1961.

4. R. R. Clough, Calculation of $H^*(B_{Im(J)}; \mathbb{Z}_2)$ (to appear).

5. E. Dyer and R. K. Lashof, A topological proof of the Bott periodicity theorem, Ann. Mat. Pura Appl. (4) 54 (1961), 231-254.

6. E. Thomas, On the cohomology groups of the classifying space for the stable spinor group, Bol. Soc. Mat. Mex. (1962), 57-69.

7. G. W. Whitehead, On the homotopy groups of spheres and rotation groups, Ann. of Math. **43** (1942), 634-640.

Received May 3, 1968. Research supported in part by NSF Grant GP-6101. The author is an Alfred P. Sloan Fellow.

680