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QUOTIENTS OF THE SPACE OF IRRATIONALS

E. MICHAEL AND A. H. STONE

It is proved that every metric space which is a continuous
image of the irrationals is also a quotient of the irrationals.

In this paper we are concerned with the class j ^ of all those
metric spaces which are continuous images of complete separable metric
spaces. The members of Szf are generally called "(absolutely) analytic
sets" or "A-sets" [9] or "Souslin spaces" [5], and are known to be precisely
those metric spaces which are either empty or are continuous images
of the space P of irrational numbers1. Suppose, then, that Y e Jzf
and Y is nonempty. There exists a continuous surjection f:P—>Y;
how "nice" can / be taken to be? In general, / cannot be one-to-
one (or Y would have to be absolutely Borel; see [9 p. 487]); nor can
/ be open or closed (as Y would then be an absolute Gδ; see 3.4 and
3.5 below). However, we shall see that / can always be chosen to
be a quotient map. More precisely, we prove the following theorem.

THEOREM 1.1. Every metrίzable space Y which is a continuous
image of P is also a quotient of P (under a different map, in general).

Since the space Q of rational numbers is in sf, Theorem 1.1
has the following rather striking consequence:

COROLLARY 1.2. The space of rationals is a quotient of the space
of irrationals.

The proof of Theorem 1.1 is given in the next section, after which
we mention some generalizations, related results and open questions.

2* Proof of Theorem l l* The proof depends on the following
characterization of P, due to Hausdorff [7].

LEMMA 2.1. A space X is homeomorphic to P if and only if X
is a separable metrizable ^-dimensional absolute Gδ such that no non-
empty open subset of X is compact.

Now let Y be a metrizable space which is a continuous image of
P, and let us show that 7 is a quotient of P. Since P is separable,

1 While the reals are usually denoted by R, and the rationals by Q (for quotient),
there seems to be no standard symbol for the irrationals. The natural choice would
be /, but that has been pre-emptied by the unit interval. We therefore propose P,
which permits the equation P U Q = R, and which may be thought of as standing
for psychotic (=irrational).

629



630 E. MICHAEL AND A. H. STONE

Y has a countable base {Vn: n e N}. We can choose this base, and the
metric d on Y, so t h a t diam Vn —• 0, no Vn is empty, and each yeY
is in Vn for infinitely many n (the Vn need not all be distinct): For if
Y is compact we merely choose a sequence of finite open covers whose
meshes decrease to 0; if Y is not compact, we imbed it in a compact
metric space Ϋ and give Y the metric and base it inherits from Ϋ.

We construct a subspace X of the plane, and a map /: X—• Y,
as follows. By assumption, there is a continuous surjection g:P —>Y.
Let Xo = P x {0}. For each w e N and each integer j , let

n

and let

WJ — Λnj x <j f .
I n )

For all neN, let JΛ = {j:Anj Φ 0}. Finally, let

X - Xo U U {-*•/: neNJe Jn] .

Note that the sets Xo, Xn i are all pairwise disjoint, and that each
Xnj is open-closed in X.

Let us now define /: X-+ Y. First define f0: Xo-+ Y by /0(s, 0) =
^(5). Next, if n e N and j e Jn, then JfΛi is homeomorphic to the non-
empty open subset Anj of P, and hence (from Lemma 2.1) to P. But
g^iVn) is also homeomorphic to P, for the same reason. Thus, by
composing g with a homeomorphism, we obtain a continuous surjection
fnj: Xnj ~+ Vn. We now define /: X — Y by taking

f\Xo = fo and f\Xnί=fni

for all ^ 6 iV and i e /„.
To complete the proof, we shall show that X is homeomorphic to

P, and that / is a quotient map. Again we use Lemma 2.1. Clearly
X is separable metric. It is 0-dimensional by the sum theorem; and
each nonempty open subset of X has a closed subset homeomorphic
to P, and so cannot be compact. We have only to show that X is
Gδ in a complete metric space. Now P has a complete metric; hence
so has P x {0, 1,1/2,1/3, •}, and X is obtained from the latter space
by removing a closed set from each P x {1/n}. Thus X is homeomor-
phic to P.

To show that / is continuous, it suffices to check continuity at
each (s0, 0) e Xo, since continuity at points of Xnj is obvious. Suppose
that V is the ε-neighborhood of /(s0, 0) = g(s0) in Y. Let W be the
ε/2-neighborhood of g(s0) in Y, and pick n0 e N so that diam F» < e/2
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whenever n ^ nQ. Let

If (s, 0) e U, then

f(s,0) = g(s)eWczV.

If (s, 1/n) e Z7, then g(s) e W, g(s) e Vn and n Ξ> n0, so that

, - ^ - ) , 9(8o)) £ d(f(s, - i - ) f </(*)) + rf(flf(β), flr(80))

and again f(s, 1/ri) e V. Thus f(U) c F, and / is continuous.
To show that / is a quotient map, we prove the following slightly

stronger result (which actually implies that / is " bi-quotient" in the
sense of [13]): If ye Y, then there is an element xef^iy) such that
f{U) is a neighborhood of y in Y whenever U is a neighborhood of
x in X.

In fact, we have only to choose x = (s, 0) in f~\y) Π Xo (that is,
seg~~ι(y)). There are arbitrarily large values of n for which ye Vn,
and for each such n there is a unique j n e Jn such that s e Anjn; more-
over, if n is large enough then Xnjn a U so that

yeVn=f(XnjJc:f(U).

That completes the proof.

3* Some related results and problems*

3.1. By a similar, though more elaborate, argument one can prove
Theorem 1.1 if the hypothesis that Y is (necessarily separable) metric
is replaced by the slightly weaker hypothesis that Y has a countable
base. (In effect, Y need not be assumed regular.)

3.2. It would not suffice, in Theorem 1.1, to assume that Y is first
countable (instead of metrizable). There exists a continuous image of P
which is first countable, regular T1 and Lindelδf (hence paracompact),
but which is not a quotient of any separable metric space; see [12,
Example 12.1 and Corollary 11.5]. However, we don't know whether
a regular T1 space which is a continuous image of P and which is
also a quotient of some separable metric space (such quotients are
characterized in [12, Cor. 11.5]) is always a quotient of P.
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3.3. Theorem 1.1 and its proof can be generalized to nonseparable
metric spaces. If B(m) denotes the "Baire space" of order m (i.e.,
the product of ^ 0 discrete spaces each of cardinality m), then every
metrizable space which is a continuous image of B(m) is also a quo-
tient of B(m). When m = ^ 0 , this is precisely Theorem 1.1. The
generalization uses a characterization of B(m) similar to Lemma 2.1
(see [15, p. 6]).

3.4. A nonempty separable metric space Y is the image of P
under an open continuous map if and only if Y has a complete metric
(or equivalently is an absolute Gδ). "Only if" follows from a theorem
of Hausdorff [6] asserting that every metrizable image of a complete
metric space under a continuous open map has a complete metric.
"If" was proved by ArhangeΓskiϊ [2, Corollary 4.7].

3.5. The assertion in 3.4 also holds if "open" is replaced by
"closed". "Only if" now follows from a theorem of Vaΐnsteΐn [16]
asserting that every metrizable image of a complete metric space under
a closed continuous map has a complete metric. "If" is a recent
result of R. Engelking [4]; he shows, more generally, that every non-
empty complete metric space of weight m is the image of B(m) under
closed a continuous map.

3.6. It can be shown, by methods similar to those in § 2, that a
space Y will be the image of P under a continuous map which is
both open and closed, if and only if Y has a complete metric, is sepa-
rable and zero-dimensional, and has the further property that each non-
empty open compact subset has an isolated point (or, equivalently, no
open subset of Y is homeomorphic to the Cantor set).

3.7. A continuous map f:X-+Y is called compact-covering if
each compact subset of Y is the image of some compact subset of
X. For a continuous surjection / of a complete metric space X onto
a metric space Y, it is known that if / is open or closed it is compact-
covering, and if / is compact-covering it is a quotient map (see [12,
Lemma 11.2], [3, § 2 Proposition 18], and [1, Theorem 15] or [11, Corollary
1.2]). We have seen that in Theorem 1.1 the quotient map cannot in
general be chosen open or closed; can it always be chosen so that it
is compact-covering? As we shall see, the answer is " n o " . In fact,
we conjecture that Y (assumed nonempty separable metric) is a com-
pact-covering image of P if and only if Y has a complete metric.
"If" of course follows from 3.4 or 3.5 and can also be proved directly.
In the other direction, it is not hard to show that Y (assumed non-
empty separable metric) is the image of P under a compact-covering
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map if and only if the space SΓ(Y) of nonempty compact subsets of
Y, equipped with the Hausdorff metric, is analytic. Now Hurewicz
has shown that J%Γ(Q) is not analytic (in [8]; a simpler proof is in
[10]). Thus, if 7 is a compact-covering image of P, it always has
the following properties: It is analytic, and contains no closed (or Gδ)
subset homeomorphic to the space Q of rational numbers. These pro-
perties suggest that Y ought to be an absolute Gδ, but unfortuna-
tely they do not suffice to prove it; Godel and Novikov [14] have
shown that it is (relatively) consistent with the usual axioms of set
theory to suppose the contrary2. Thus our conjecture remains open.
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