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COMPARISON OF HAAR SERIES WITH GAPS WITH
TRIGONOMETRIC SERIES

J. R. MCLAUGHLIN AND J. J. PRICE

We study Haar series with gaps and show striking differ-
ences between these series and lacunary trigonometric series.
For example, we prove that under certain gap conditions Haar
series are finite series almost everywhere.

Haar's orthonormal system {χw(<)} is defined as follows on
[0, 1]: χo(t) = 1 and for m = 2n + k with 0 ^ k < 2n, n = 0, 1,

= -2n'\ te((k + l/2)/2 , (k

= 0, ί e \k\2\ (k + l)/2 ] ,

and at the three remaining points we let χm(t) be equal to the average
of the right and left hand limits. Thus, in contrast to the trigono-
metric system, if 2n <̂  m < 2n+\ the Haar function χm(t) is supported
on an interval of Length 2~n and

For feL(0, 1) we call

am(f) = [f(t)χm(t)dt, m = 0, 1,
Jo

the Haar-Fourier coefficients of / and Σm=o α»(/)Z«(0 the Haar-Fourier
series of /.

P. L. UΓjanov has noted [8, p. 42] that if {mk} is an increasing
sequence of positive integers for which Σ {mk)~ι converges, and if the
gap series X am]cxm]c(t) is the Haar-Fourier series of a bounded function,
then the series converges absolutely almost everywhere (cf. [9, p. 247]).
The following theorem strengthens this result.

THEOREM 1. ( i ) // {ak} is any sequence of real numbers and {mk}
is an increasing sequence of positive integers such that X (m&)~1

converges, then ΣΓ=i UkXmk(t) is a finite series for almost every t e [0, 1],
(ϋ) If Σ (^fe)"1 diverges, then there exists a sequence of real

numbers {ak} and an increasing sequence of positive integers {nk}
satisfying

( a ) Σ — ^ Σ — for J N Γ = 1 , 2 , . . . ,
*=i nk k=i mk
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( b ) Σα*%nfc(O is the Haar-Fourier series of feLp

y for all
pe[l, oo),

( c ) Σ I akXnk(t) I diverges for almost every t e [0, 1],

Proof. Part ( i ). Let i7m denote the support of χw(ί) on [0, 1]
for m = 2n + k with 0 ^ & < 2% w = 0, 1, . Then

- < ~h = M^) < -
m = 2n m

where μ{Em) denotes the measure of Em. Thus, Σ~=i μ(Em/c) converges
and consequently μ(lim sup^ Emj) = 0 [5, p. 40, Exercise 6].

Part ( i i ) . Choose a sequence of real numbers {bk} satisfying

( 1 ) Σ δ* < °° and Σ I δ* I = °° •

Set

2 ^ + 1 - l γ / * \

(2) /(ί) = Σ ^ ( ί ) = Σ W " 1 / 2 Σ Xm[)

where rm(ί) denotes the mth Rademacher function [1, p. 51] and {pk}
is an increasing sequence of positive integers. Now let {ak} and {nk}
be defined by the right side of (2). Then if {pk} increases fast enough
(a) holds. Also, since Σ al converges, the right hand side of (2) is
the Haar-Pourier series of its sum f(t) [1, p. 47]. The remaining
properties follow from (1) by well-known properties of Rademacher
series [9, p. 213],

REMARK 1. It would be interesting to know if in condition (b)
in Theorem 1 one might replace fe Lp, for all p e [1, oo), by /continuous
or even / bounded.

REMARK 2. A. M. Olevskiί has proved [6, p. 1382] that for every
complete orthonormal system (and hence the Haar system) there exists
a continuous functions whose Fourier series is absolutely divergent
almost everywhere.

It is known [3, p. 243] that if a lacunary trigonometric series is
the Fourier series of a function /, then feLq for every # e [ l , oo).

This result is not valid for Haar series as we now prove.

THEOREM 2. For every p ^ 1, there exists a function f e Lv with
Haar-Fourier series Σ &mkΊLmk{i) where mk+1/mk = 2, k = 1, 2, , and
such that for every q > p, f£Lq.

Proof. Define
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f(t) = (2n-n-ψp if t e (2—, 2~n+1), n = 1, 2, . .

Then

(
JO

but if g > p,

\f(t)\qdt = Σ (2%

n = l

Also, the Haar-Fourier series of / is

Σ
A 0

If a lacunary trigonometric series is a Fourier series with Fourier
coefficients {ck}, then Σ cl converges [9, p. 203]. As Theorem 2 shows,
for Haar-Fourier series, this need not be. We can even obtain a
stronger result.

THEOREM 3. Let {ak} be any sequence of real numbers. Then
there is a function in L(0, 1) with a gap Haar-Fourier series

( 3 ) W
k — L

Proof. If m = 2n + k with 0 ^ A: < 2n, n = 0, 1, -, then

and so there is a sequence of positive integers {mk} increasing so fast
that

" 1

Σ
k

a k I I χmk{t) I

Hence, series (3) is the Haar-Fourier series of its sum by Lebesgue's
dominated convergence theorem.

If a lacunary trigonometric series converges to zero in a set of
positive measure, then all the coefficients of the series equal zero [3,
p. 265], For Haar series this result is not valid. In fact, we have
the following.

THEOREM 4. For every t0 e [0,1], there exists a gap Haar-Fourier
series Σ amkXmk{t), where mk+1/mk ^ 2, which converges to zero for
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t Φ t0 and diverges for t — tQ.

Proof. If ί0 = 1, we set α0 = - 1 , a2n+ι^ = 2n'2 for n = 0,1, . . . ,
and αm = 0 otherwise.

If toe[O, 1), then for the sequence of integers {kn} satisfying

(fcΛ)2- ^ t0 < (K + 1)2- , ra = 0,1, . . .

we set

am = 1 , m = 0

- (-l)fcn+i2-/2 , m = 2" + &w , n = 0, 1,

— 0 otherwise .

Then, using the fact (which is easily proved inductively) that

Σ 1 α»χ.(«) = 2% t e ((Λn)2-, (&• + 1)2^)

- 0 , ίe[(fen)2-,(fe1i + l ) 2 - ]

for n = 0,1, , we obtain our desired result.

COROLLARY. A nonempty set is a set of multiplicity for Haar
series.

REMARK 3. G. Faber had previously shown [4, p. I l l ] that the
point t0 = 1/2 was a set of multiplicity for Haar series. Also F. G.
Arutjunjan and A. A. Talaljan noted Theorem 4 for t0 = 0 [2, p. 1405].
On the other hand, M. B. Petrovskaja proved that the empty set is
a set of uniqueness for Haar series [7, p. 797],
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