A NOTE ON RECURSIVELY DEFINED ORTHOGONAL POLYNOMIALS

Daniel P. Maki

Abstract

Let $\left\{a_{i}\right\}_{i=0}^{\infty}$ and $\left\{b_{i}\right\}_{i=0}^{\infty}$ be real sequences and suppose the b_{i}, \mathbf{s} are all positive. Define a sequence of polynomials $\left\{P_{i}(x)\right\}_{i=0}^{\infty}$ as follows: $P_{0}(x)=1, P_{1}(x)=\left(x-a_{0}\right) / b_{0}$, and for $n \geqq 1$ $$
\begin{equation*} b_{n} P_{n+1}(x)=\left(x-a_{n}\right) P_{n}(x)-b_{n-1} P_{n-1}(x) . \tag{*} \end{equation*}
$$

Favard showed that the polynomials $\left\{P_{\imath}(x)\right\}$ are orthonormal with respect to a bounded increasing function ψ defined on $(-\infty,+\infty)$. This note generalizes recent constructive results which deal with connections between the two sequences $\left\{a_{\imath}\right\}$ and $\left\{b_{i}\right\}$ and the spectrum of ψ. (The spectrum of ψ is the set $S(\psi)=\{\lambda: \psi(\lambda+\varepsilon)-\psi(\lambda-\varepsilon)>0$ for all $\varepsilon>0\}$.) It is shown that if $b_{i} \rightarrow 0$ then every limit point of the sequence $\left\{a_{i}\right\}$ is in $S(\psi)$.

2. Preliminaries. In order to use theorems from functional analysis, consider the space $\mathscr{L}^{2}(\psi)=\left\{f: \int_{-\infty}^{+\infty} f^{2} d \psi<\infty\right\}$. This is a Hilbert space where the inner product is gived by $(f, g)=\int f g d \psi$ and where we identify all functions which agree on $S(\psi)$. In [2], (p. 215), Carleman showed that the condition $\sum 1 / \sqrt{\overline{b_{i}}}=\infty$ implies that when ψ is normalized to be continuous from the left and to have $\psi(-\infty)=0, \psi(+)=1$, then it is unique. In [6], M. Riesz showed that if ψ is essentially unique then Parseval's relation holds for the orthonormal set $\left\{P_{i}\right\}$ in the space $\mathscr{L}^{2}(\psi)$. Hence the set $\left\{P_{i}\right\}$ is dense in this space.

We now make the assumption that $\lim b_{i}=0$. Combining the Carleman result and the Riesz result we see that ψ is essentially unique and the polynomials $\left\{P_{i}\right\}$ are a dense set in $\mathscr{L}^{2}(\psi)$. Using this information we define an operator A on a dense subset of $\mathscr{L}^{2}(\psi)$. The domain of A is the set of all functions f which are in $\mathscr{L}^{2}(\psi)$ and for which $x f$ is also in $\mathscr{L}^{2}(\psi)$. We take A to be the self-adjoint operator defined by $(A f)(x)=x f(x)$. By inspection of $(*)$ we see that for $i=1,2,3, \cdots$ we have

$$
\begin{equation*}
A\left(P_{i}\right)=b_{i-1} P_{i-1}+a_{i} P_{i}+b_{i} P_{i+1} \tag{**}
\end{equation*}
$$

We call A the operator associated with the sequences $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$.
3. Theorems. Let $\sigma(A)$ be the spectrum of the operator A, i.e., all points λ where $A-\lambda I$ does not have a bounded inverse. Then we have the following:

Lemma. $\quad \sigma(A) \subset S(\psi)$.
Proof. Let $\lambda \in \sigma(A)$. Since A is self-adjoint, λ is in the approximate point spectrum of A. Hence there exists a sequence $\left\{f_{n}\right\}$ in the domain of A satisfying $\left\|f_{n}\right\|=1, n=1,2, \cdots$, and $\left\|(A-\lambda) f_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Now by the definition of the norm in $\mathscr{L}^{2}(\psi)$ this means $\int_{-\infty}^{+\infty} f_{n}^{2} d \psi=1, n=1,2, \cdots$, and $\int_{-\infty}^{+\infty}(x-\lambda)^{2} f_{n}^{2} d \psi \rightarrow 0$ as $n \rightarrow \infty$. Now suppose $\lambda \notin S(\psi)$. Then there exists $\varepsilon>0$ such that

$$
\psi(\lambda+\varepsilon)-\psi(\lambda-\varepsilon)=0
$$

Thus ψ has no mass in the interval $[\lambda-\varepsilon, \lambda+\varepsilon]$, and we have

$$
\int_{-\infty}^{\lambda-\varepsilon} f_{n}^{2} d \psi+\int_{\lambda+\varepsilon}^{+\infty} f_{n}^{2} d \psi=1, \quad n=1,2, \cdots,
$$

and

$$
\int_{+\infty}^{2-\varepsilon}(x-\lambda)^{2} f_{n}^{2} d \psi+\int_{\lambda+\varepsilon}^{+\infty}(x-\lambda)^{2} f_{n}^{2} \psi \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

But these are contradictory since

$$
\begin{aligned}
& \int_{-\infty}^{\lambda-\varepsilon}(x-\lambda)^{2} f_{n}^{2} d \psi+\int_{\lambda+\varepsilon}^{+\infty}(x-\lambda)^{2} f_{n}^{2} d \psi \\
& \quad \geqq \varepsilon^{2}\left[\int_{-\infty}^{2-\varepsilon} f_{n}^{2} d \psi+\int_{\lambda+\varepsilon}^{+\infty} f_{n}^{2} d \psi\right]=\varepsilon^{2} .
\end{aligned}
$$

This completes the proof.
We are now ready for our result about $S(\psi)$. It is motivated by the results in [5] where we constructed ψ in the case where $b_{i} \rightarrow 0$ and $\left\{a_{i}\right\}$ has only a finite number of limit points.

Theorem. Let the sequence of polynomials $\left\{P_{i}\right\}_{0}^{\infty}$ be recursively defined by (*) and assume $b_{i}>0$ for each i and $b_{i} \rightarrow 0$. Then each limit point of the sequence $\left\{a_{i}\right\}$ is a point of the spectrum of the associated distribution function ψ.

Proof. From the above lemma it suffices to show that each limit point of the sequence $\left\{a_{i}\right\}$ is in $\sigma(A)$. Thus let λ be a limit point of $\left\{a_{i}\right\}$ and suppose $\left\{a_{i(n)}\right\}$ is a subsequence converging to λ. Next let $f_{n}(x)=P_{i(n)}(x), n=1,2,3, \cdots$. By the defining relation ($*$) and by the definition of A, we have

$$
\begin{aligned}
\|(A & -\lambda) f_{n}\left\|^{2}=\right\|(x-\lambda) P_{i(n)} \|^{2} \\
& =\int_{-\infty}^{+\infty}\left(b_{i(n)-1} P_{i(n)-1}+\left(a_{i(n)}-\lambda\right) P_{i(n)}+b_{i(n)} P_{i(n)+1}\right)^{2} d \psi \\
& =b_{i(n)-1}^{2}+\left(a_{i(n)}-\lambda\right)^{2}+b_{i(n)}^{2} .
\end{aligned}
$$

Now $b_{i} \rightarrow 0$ and $a_{i(n)} \rightarrow \lambda$, so we see $\left\|(A-\lambda) f_{n}\right\|^{2} \rightarrow 0$ as $n \rightarrow \infty$. Moreover $\left\|f_{n}\right\|=\left\|P_{i(n)}\right\|=1$, so $\lambda \in \sigma(A)$ and the proof is complete.

Remark. If we choose the a_{i} 's to be dense in the real line, for example any enumeration of the rationals, then for every set of b_{i} 's satisfying $b_{i} \rightarrow 0$ we have $S(\psi)=(-\infty,+\infty)$.

Conjecture. The converse of the above theorem does not hold since in [5] our construction exhibited points of $S(\psi)$ which were not limit points of $\left\{a_{i}\right\}$. However each limit point of $S(\psi)$ was a limit point of $\left\{a_{i}\right\}$. So it seems reasonable to conjecture that when $b_{i} \rightarrow 0, \lambda$ is a limit point of $S(\psi)$ if and only if λ is a limit point of $\left\{a_{i}\right\}$.

References

1. N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space, Vol. I, Ungar, New York, 1961.
2. T. Carleman, Sur Les Equations Integrales Singular A Noyau Reel et Symetreque, Uppsala, 1928.
3. J. Favard, Sur les polynomes de Tchebichiff, C. R. Acand. Sci. Paris 200 (1935), 2052-2053.
4. J. L. Goldberg, Some polynomials orthogonal over a denumerable set, Pacific J. Math. 15 (1965), 1171-1186.
5. D. P. Maki, On constructing distribution functions: A bounded denumerable spectrum with n limit points, Pacific J. Math. 22 (1967), 431-452.
6. M. Riesz, Sur les probleme des moments et le theoreme de Parseval correspondant, Acta Litterarum ac Scientearum (Szeged) (1922-1923), 209-225.

Received January 12, 1968.
Indiana University
Bloomington, Indiana

