GAMES WITH UNIQUE SOLUTIONS THAT ARE NONCONVEX

W. F. Lucas

Abstract

In 1944 von Neumann and Morgenstern introduced a theory of solutions (stable sets) for n-person games in characteristic function form. This paper describes an eight-person game in their model which has a unique solution that is nonconvex. Former results in solution theory had not indicated that the set of all solutions for a game should be of this nature.

First, the essential definitions for an n-person game will be stated. Then, a particular eight-person game is described. Finally, there is a brief discussion on how to construct additional games with unique and nonconvex solutions.

The author [2] has subsequently used some variations of the techniques described in this paper to find a ten-person game which has no solution; thus providing a counterexample to the conjecture that every n-person game has a solution in the sense of von Neumann and Morgenstern.
2. Definitions. An n-person game is a pair (N, v) where $N=$ $\{1,2, \cdots, n\}$ and v is a real valued characteristic function on 2^{N}, that is, v assigns the real number $v(S)$ to each subset S of N and $v(\phi)=0$. The set of all imputations is

$$
A=\left\{x: \sum_{i \in N} x_{i}=v(N) \text { and } x_{i} \geqq v(\{i\}) \text { for all } i \in N\right\}
$$

where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a vector with real components. If x and y are in A and S is a nonempty subset of N, then $x \operatorname{dom}_{S} y$ means $\sum_{i \in S} x_{i} \leqq v(S)$ and $x_{i}>y_{i}$ for all $i \in S$. For $B \subset A$ let $\operatorname{Dom}_{S} B=$ $\left\{y \in A\right.$: there exists $x \in B$ such that $\left.x \operatorname{dom}_{S} y\right\}$ and let Dom $B=$ $\cup_{S \in N} \operatorname{Dom}_{S} B$. A subset K of A is a solution if $K \cap \operatorname{Dom} K=\rho$ and $K \cup \operatorname{Dom} K=A$. The core of a game is

$$
C=\left\{x \in A: \sum_{i \in S} x_{i} \geqq v(S) \text { for all } S \subset N\right\}
$$

The core consists of those imputations which are maximal with respect to all of the relations dom_{S}, and hence it is contained in every solution.
3. Example. Consider the game (N, v) where $N=\{1,2,3,4,5$, $6,7,8\}$ and where v is given by: $v(N)=4, v(\{1,4,6,7\})=2, v(\{1,2\})=$
$v(\{3,4\})=v(\{5,6\})=v(\{7,8\})=1$, and $v(S)=0$ for all other $S \subset N$. For this game

$$
A=\left\{x: \sum_{i \in N} x_{i}=4 \text { and } x_{i} \geqq 0 \text { for all } i \in N\right\}
$$

and

$$
\begin{gathered}
C=\left\{x \in A: x_{1}+x_{2}=x_{3}+x_{4}=x_{5}+x_{6}=x_{7}+x_{8}=1\right. \\
\text { and } \left.x_{1}+x_{4}+x_{6}+x_{7} \geqq 2\right\} .
\end{gathered}
$$

$(0,1,1,0,0,1,1,0)$
($0,1,1,0,1,0,1,0$)
$x_{7}=1, x_{8}=0$
($1,0,1,0,0,1,1,0$)
($1,0,1,0,1,0,1,0$)

$(0,1,0,1,0,1,1,0)$ ($0,1,0,1,1,0,1,0$)
($1,0,0,1,0,1,1,0$) $(1,0,0,1,1,0,1,0)$

$x_{7}=1 / 2, x_{8}=1 / 2$
 $K-C$
($0,1,1,0,0,1,0,1$)
$(0,1,1,0,1,0,0,1)$
$x_{7}=0, x_{8}=1$
($1,0,1,0,0,1,0,1$)
$(1,0,1,0,1,0,0,1)$

$(0,1,0,1,0,1,0,1)$ $(0,1,0,1,1,0,0,1)$
($1,0,0,1,0,1,0,1$)
$(1,0,0,1,1,0,0,1)$

Fig. 1. Traces in H of L, C and $K-C$

Also define the four-dimensional hypercube

$$
H=\left\{x \in A: x_{1}+x_{2}=x_{3}+x_{4}=x_{5}+x_{6}=x_{7}+x_{8}=1\right\} .
$$

Three traces of H as well as its 16 vertices are pictured in Fig. 1. The unique solution for this game is

$$
K=C \cup F_{1} \cup F_{4} \cup F_{6} \cup F_{7}
$$

where the cube F_{i} is the face of H given by

$$
F_{i}=H \cap\left\{x: x_{i}=1\right\} \quad i=1,4,6,7
$$

Each $F_{i}-C$ is a tetrahedron with one face meeting C. In the three traces of H illustrated in Fig. 1, the traces of C are shown in heavy solid lines and the traces of the $F_{i}-C$ are shown in heavy broken lines.

The proof that K is the unique solution follows readily from two observations. First, K is just those imputations in H which are maximal in H with respect to the relation $\operatorname{dom}_{\{1,4,6,7]}$. Second, the closed line segment L joining the imputations ($0,1,0,1,0,1,0,1$) and $(1,0,1,0,1,0,1,0)$ has the properties $L \subset C$ and $U_{S} \operatorname{Dom}_{s} L=A-H$ when $S=\{1,2\},\{3,4\},\{5,6\}$, and $\{7,8\}$.

To see that K is nonconvex, note the lower trace

$$
F_{8}=H \cap\left\{x: x_{8}=1\right\}
$$

in Fig. 1. The heavy lines (solid and broken) in this trace show $K \cap F_{8}$, which is clearly not convex. For example, the imputation

$$
\begin{aligned}
\frac{1}{3}(1,2,2,1,2,1,0,3)= & \frac{1}{3}(0,1,1,0,0,1,0,1) \\
& +\frac{1}{3}(0,1,0,1,1,0,0,1)+\frac{1}{3}(1,0,1,0,1,0,0,1)
\end{aligned}
$$

is a linear combination of points in K, but it is not itself in K.
4. Remarks. The original von Neumann-Morgenstern theory [3] assumed that the characteristic function of a game is superadditive, that is, $\quad v\left(S_{1} \cup S_{2}\right) \geqq v\left(S_{1}\right)+v\left(S_{2}\right) \quad$ whenever S_{1} and $S_{2} \subset N$ and $S_{1} \cap S_{2}=\varphi$. Using the method of Gillies [1, p. 68] this example can be made into a game with a superadditive characteristic function without changing A, C, or the unique solution K.

The essential idea in the example above is that $\bigcup_{s} \operatorname{Dom}_{s} L=A-H$ where $S=\{1,2\},\{3,4\},\{5,6\}$, and $\{7,8\}$. One can generalize this relation in various ways to obtain many games in other dimensions which have a similar property. He can then introduce into these games additional $S \subset N$ with $v(S)>0$, but in such a way as to maintain the corresponding L as a subset of the core. As a result he will
obtain large classes of interesting solutions, many of which are unique and nonconvex.

References

1. D. B. Gillies, Solutions to general non-zero-sum games, Annals of Mathematics Studies, No. 40, A. W. Tucker and R. D. Luce (editors), Princeton University Press, Princeton, 1959.
2. W. F. Lucas, A Game with no solution, RAND Memorandum RM-5518-PR, The RAND Corporation, Santa Monica, November 1967.
3. J. von Neumann and O. Morgenstern, Theory of games and economic behavior, Princeton University Press, Princeton, (1944).

Received June 26, 1967.
The Rand Corporation
Santa Monica, California

