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AN INTERPOLATION PROBLEM FOR
SUBALGEBRAS OF H~

E. A. HEARD AND J. H. WELLS

Let E be a closed subset of the unit circle C = {z: \ z \ = 1}
and denote by BE the algebra of all functions which are
bounded and continuous on the set X = {z: | z | ^ 1, zg E} and
analytic in the open disc D = {z:\z\ < 1}. An interpolation
set for BE is a relatively closed subset S of X with the pro-
perty that if a is a bounded and continuous function on £ (all
functions are complex-valued), there is a function / in BE

such that f(z) = a(z) for every zeS. The main result of the
paper characterizes the interpolation sets for BE as those sets
S for which S Π D is an interpolation set for iJ°° and
S n (C — E) has Lebesgue measure 0. If, in addition, S n D = ψ
then S is a peak interpolation set for BE. Also, through a
construction process inspired by recent work of J. F. Kahane,
it is shown that the existence of peak points for a sup norm
algebra of continuous functions on a compact, connected space
implies the existence of infinite interpolation sets relative to
the algebra and certain of its weak extensions.

The solution of the interpolation problem in the space H°° = Bc

of bounded analytic functions on D is due to Lennart Carleson [5],
and due to A. Beurling and Walter Rudin in the disc algebra A — Bφ

[10]. Concerning the latter case see also the notes of Lennart Carleson
[5] and the last problem in Hoffman's book [8]. Their results are
given by the following two theorems.

THEOREM C. A sequence {zk} of distinct points in D is an in-
terpolation set for H°° if and only if it is uniformly separated1,
that is, if and only if there exists a positive number δ such that

(i) Π
1 —

Whenever this condition holds, a constant m(δ) exists with the pro-
perty that for any bounded sequence {ιvk} there is an f in H™ such
that f(zk) = wk (k = 1, 2, -•-) and \\f\\ ^ m(δ) supΛ \wk\.

THEOREM B-R. A closed subset S of D is an interpolation set
for A if and only if

( i ) S Π D is uniformly separated,

1 This terminology is due to Professor Peter Duren.
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and
(ii) S Γ\ C has Lebesgue measure 0.

In the terminology introduced above our characterization of the
interpolation sets for the algebra BE takes the following form.

THEOREM 1. The relatively closed subset S of X is an interpola-
tion set for BE if and only if

( i ) S f) D is uniformly separated,
and

(ii) S Π (C — E) has Lebesgue measure 0.

For example, suppose E = {1} and S is the union of the sequences
ak = l — 2~k (k = 1, 2, •) with any sequence {bk} of distinct points on C
converging to 1 (bk Φ 1). For a proof that {ak} is uniformly separated,
see [8, p. 204], Our result then applies and asserts that for any
pair of bounded sequences {ak} and {βk} there exists a function / in
H°°, continuous on D — {1}, such that f(ak) = ak and f(bk) = βk (k =
1,2, •••). For S = {bk} alone this is a result of E. L. Stout [11,
Lemma 4.1].

Our proof of Theorem 1, presented in § 2, depends on Theorem
C and the generalized Rudin-Carleson theorem [4]. We also show in
§ 2 that the interpolation sets for BE which are subsets of C — E
have the property that every bounded continuous function a on S
has an extension / in BE with (| / (| = 11 a \ | (all norms are supremum
norms on the relevant domains). In § 3 we present an argument
which, in particular, shows that the existence of peak sets for the
disc algebra A implies the existence of infinite interpolation sets for

2. Interpolation in BE. First we shall deal with those inter-
polation sets for BE which are contained in D. Naturally, such sets
are countable.

LEMMA 1. A sequence {zk} of distinct points in D is an inter-
polation set for BE if and only if it is uniformly separated and all
of its limit points belong to E. If this condition is satisfied then
there is a constant m(8/2) such that if {wk} is a bounded sequence
there exists an f in BE such that

( i ) f ( z k ) = w k (fc = l , 2 , . - • ) ,
(ii) 11/11 ^m(d/2)supk\wk\.

Proof. If {zk} is an interpolation set for BE it is certainly one
also for H°° and is therefore uniformly separated by Theorem C. And
if eiθ is a limit point of {zk} there is a function in BE which is dis-
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continuous there; hence E contains all the limit points of {zk}.
Now suppose that the sequence {zk} of distinct points in D is

uniformly separated with relevant constant d and has all its limit
points in E. It is no restriction to suppose in addition that no zk is
zero. (To avoid the situation covered by Theorem C we assume that
E is a proper subset of the unit circle.) The Blaschke product

(2) B(z) = Π
\zk - zkz

and each of its subproducts represent functions analytic in the com-
plement of the compact set K consisting of E together with the points
l/3fc [8]. Thus B is analytic and of unit modulus at each point which
belongs to one of the arcs βίy β2, in C complementary to E. This
means that each point of βn is the center of a small disc contained
in the complement of K and on which B is analytic and | B(z) | ^ 2.
Cover βn by a countable and locally finite (relative to βn) collection
of such discs and let β'n be that part of the boundary of the union
of these discs which lies outside D. The set β'n is a Jordan arc having
the same endpoints as βn, and, except for these endpoints it is con-
tained in the complement of D. Now let D* be the simply connected
domain containing D whose boundary is E together with the nonin-
tersecting arcs β'% (n = 1, 2, - •). Clearly | B(z) | ^ 2 for z e D*.

Let B(D*) denote the space of functions bounded and analytic on
D*. If we can show that {zk} is an interpolation set for B(D*) the
proof will be complete since B(D*) c BE. (In this connection compare
Stout's general characterization of interpolation sets [11, Th. 5.9].)
To this end choose a conformal map φ from D* onto D and set

where Bk is the Blaschke product B with the kth factor removed.
For each k,fkeH-,\\fk\\^ 2, \fk(yk) | ^ δ (see (1)) and

\fk(Vj)\ = O(j*k).

If Cks is the finite Blaschke product (see (2)) associated with the points
Vi, V2, , Vk-i, Vk+i, ' β , V, (1 ^ k ^ s, s = 2, 3, -), w e h a v e

\fM\
Ck.(yt)\ ~ \Cks(yk)

that is,

π Vi - Vk

1 -

This proves that {yk} is uniformly separated in D. Hence if {wk} is
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a bounded sequence, there exists an / in H°° such that f(yk) = wk

(k = 1, 2, •) and || / 1 | ^ m(δ/2) sup \wk\. The function /o φ is bounded
and analytic on ΰ * , f °ψ{zk) — wk and || /° 9 || ^ m(ε/2) sup | w& |. This
completes the proof.

A remark is in order concerning Lemma 1. In [1] Akutowicz and
Carleson considered the general question of analytic continuation of
interpolating functions. In the course of their work it was shown
that if {zk} is an interpolation set for H™ which clusters on the closed
set E, then there exists a solution to the interpolation problem which
has an analytic continuation to a larger domain obtained by pushing
out through proper subarcs of finitely many of the complementary
arcs βlf β2, ••• [1, Th. 4]. Note that the interpolation function foφ
of the preceding argument is analytic in a domain which contains all
the complementary arcs βn.

For a proof of the following lemma see [2, Th. 1.2].

LEMMA 2. Let T:X—+Y be a linear and continuous map from
the Banach space X into the normed linear space Y. Suppose there
exist constants 3 < 1 and M such that for each y e Y with \\y\\ ^ 1,
there exists an xe X such that

Then TX — Y. If \\y\\ <Ξ*1, there exists an x such that Tx = y and

II a? II ^ M ( l - δ ) - 1 .

LEMMA 3. The relatively closed subset K of C — E is an interpola-
tion set for BE if, and only if, K has measure 0.

Proof. Clearly every such interpolation set for BE must be of
measure 0.

For the converse we need to know that any relatively closed
subset K of C — E of measure 0 can be written as the disjoint union
of compact sets

K= \JKn
Λ = l

in such a way that there exist disjoint open sets O n C C — E which
satisfy the inclusions

KnC On(n = l, 2, . . . ) .

Because K is nowhere dense in C — E it is possible to replace any
finite disjoint collection of open arcs Jx, J2, , Js which cover E by
another collection of open arcs Ip C JP (P = 1> 2, , s) which cover
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E and have all their endpoints in C — E\J K. Hence there exists a
sequence G, D G2 D G3 D such that E = f|~=i Gn and each Gn is a
finite disjoint collection of open arcs, all of whose endpoints lie in
C-E\JK. Define

and, for n > 1,

Now let a be a bounded, complex-valued continuous function on
K with | | α | | = 1. Denote the restriction of a to Kn by an and fix
δ, 0 < <? < 1. According to the general Rudin-Carleson interpolation
theorem [4] we may choose positive continuous functions Δn (n = 1,
2, •) on C such that

(a) 4. = I αn I + δ/2 on ΛΓn,
(b) Jw = 8/2 on C - 0.,
(c) 0 < An S II a II + δ/2% everywhere;

then select functions fne A (the disc algebra) having the following
properties:

(d) fn = an on Kn,
(e) | Λ | ^ J w o n C .
For the function / defined by

(3) /W = ΣΛ(*) (^1),

we make the following claims:
( i ) feBE,

( ϋ ) I I / I I ^ i + δ,
(iii) supz6^ \f(z) - a{z) \ ̂  d.
It follows from (b), (c) and (e) that the series (3) converges for

every zeC and that its partial sums are bounded by 8 for

zeC - (jθn

and by 1 + δ if zeθn for some positive integer n. Therefore the
series converges pointwise on X to an H°° function with norm satisfy-
ing (ii). Further, (b) and (e) show that convergence in (3) is uniform
on any compact subset of C — E because such a set misses all but
a finite number of the sets On.

Thus / is continuous on C — E, hence continuous on X and (i)
holds. In order to establish (iii), suppose z e K; then ze Kp for some
positive integer p so, by (d), f(z) - a(z) = Σ»*p/»(s) ar*d, by (b) and
(e), |/(i5) - a(z) I ̂  Σ^*> $2~n < δ as required.
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Let C(K) be the Banach space of bounded continuous functions
on K, and let T be the restriction mapping from BE into C(K).
Conditions (i), (ii) and (iii) above show that Lemma 2 applies. Hence
if δ < 1 and ae C{K), there exists an / in BE such that / = α o n
the set K and | | / | | ^ (1 + δ)(l - δ)-1 \\a\\. This is the desired con-
clusion.

LEMMA 4. Let K be a relatively closed subset of C — E of me-
asure 0. Then the ideal

= {feBE:f(K) = 0}

has an approximate unit.

Proof. The implication is that there exists a net {er} in J(K)
such that \\er\\ ^ 1 and eΊ —> 1 uniformly on closed subsets of X dis-
joint from the set K.

We assume the notation and decomposition of Lemma 3 except
that each of the sets On is replaced by

Vn = {reiθ: eiθ e On, 1 - — < r ^ 1} .
n

The sets Vn are pairwise disjoint, open in X, and Kn C Vn. Choose
numbers cn, 0 < cn < 1, so that Σ«-i cn < °° &nd functions gne A such
that \\gn\\ ^ 1, gn vanishes exactly on Kn and 11 — gn \ < cn on X — Vn

(the existence of such functions follows immediately from the con-
struction given in [8, Chapter 6, p-80]). Define g by

= Π 9n(z) (zeX) .

The inequality

N+p

Πί
n=N

N+P

£ IΠ1 + 11 - ff.(«) I ) -

^ exp Σ c, - 1 ,

valid for z ί \Jn=N Vn, shows that the product defining g converges
uniformly on compact subsets of X. Thus geBE and

11 - g(z) I rg exp Σ cn - 1

for « G X — U?=i "̂ Λ This argument shows that if ε > 0 and S is a
closed subset of X disjoint from K, then proper choices for Vn and
cn yield a g in J(J5Γ) such that || g \\ ^ 1, g vanishes precisely on K in
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X and |1 - g(z)\ <e(zeS).

Proof of Theorem 1. If the relatively closed subset S of X is
an interpolation set for BE, then clearly S f\D is countable and
S Π C has measure 0. The proof that S Π D is uniformly separated
is identical with the corresponding proof for H°° [8, p. 196].

For the converse let the relatively closed subset S of X be the
union of a uniformly separated sequence {zk} in D and a subset if of
C — E of measure 0. Let α be a bounded, continuous function on S
with | | α : | | ί g l . By Lemma 3 there exists an f in BE such that
f = a on K and || /Ί || ^ 3/2; hence â  = a — f vanishes on K and
| |«! || ^5/2. Lemma 1 guarantees the existence of a constant c,
depending only on the points zk, and a function h in 2?^^ such that

h(zk) = a,(zk) (fc = 1, 2, •), II Λ II ^ c5/2 .

Since aγ is continuous on S and vanishes on K, we may choose open
sets Un in X such that X n C ^ C K (n = 1,2, •) (we assume the
decomposition and notation of Lemma 4) and | aγ \ < 1/4 on the set
Uί=i ZTn Now choose, by Lemma 4, a function β' in J(K) such that
|| g || <S 1 and 11 — g(z) \ < 1/4 for z 0 U"=i U»'> hence the product gh
belongs to BE and for all k

since \g(zk)

'>k)h(z

- 1 |

t )

<

| i

— at(zk) | =

1/4, a,,(zk)

- g(zk) 1 ̂  1

(ί7(2i) - 1)0

^ 5/2 for

2, | <*!(«*) <

Φk) \

1/4

<3/4,

J7n and

otherwise. This proves that the function / = f + gh has the follow-
ing properties:

( i ) feBE

(ii) Il/H ^ 3/2 + 5/2-c- M
(iii) s u p , e 5 | / ( s ) - α ( s ) | ^ 3 / 4 .
In view of Lemma 2 the proof is complete.

THEOREM 2. Lβί if 6β the closed subset of C — E of measure 0.
Then any bounded continuous function a on K has an extension g
in BE with precisely the same norm as a; in fact g can be chosen in
BE so that g — a on K and

\g(z)\<\\a\\,zeX-K.

Proof. We have already established the following weaker result
(see Lemma 3): if ε > 0, a has an extension gε in BE such that
II Qe II S (1 + s) II a ||. In addition, Lemma 4 asserts that K is a strong
hull in the Banach function algebra BE [7], that is, for each closed
subset S of X disjoint from K and each ε > 0 there exists a function
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/ in βE such that f(K) = 0, | | / | | ^ 1, and 11 - f(S) \ < ε. The con-
ditions guarantee the existence of the required function g [see 7;
Th. 4.6].

3* Peak points and interpolating sequences* Previous to
Carleson's paper [5], Gleason and Newman had constructed examples
(unpublished) proving the existence of infinite interpolation sets for
H°°. In this section we present a process, depending only on the
existence of peak points in the underlying algebra, which constructs
infinite interpolation sets in some rather general H°° spaces. Accord-
ing to Bishop's minimal boundary theorem [3] peak points always
exist for a sup norm algebra defined on a compact metric space.

Let A be a sup norm algebra on the compact Hausdorff space X
and suppose that the function FeA peaks at x, that is,

Fix) = 1 and I F(y) | < 1 (y e X, y Φ X) .

Let Sx be the set of all bounded and continuous functions / on
X — {x} for which there exists a constant m and a sequence {fn} in
A with 11 fn 11 ̂  m and such that /w —»/ uniformly on compact subsets
of X — {x}. Bx is the uniform closure of Sx.

THEOREM 3. Suppose P is a connected subset of Xand xe P — P.
Then there is an infinite sequence {zk} of distinct points in P which
interpolates for Bx, that is, the map Γiβ^-^ί 0 0 defined by Tf—
{f(zk)} is an onto map.

Proof. Choose <?, 0 < δ < 1/4, so that the closed set

U, = {y: I F(y) - 11 ^ 8}

intersects P. Set F1 = F and w(l) = 1. We wish to construct an
increasing sequence w(l) < n(2) < of integers which obey

( 4 ) n(k + l)> kn(k) (k = 1, 2, -.)

and for which the sets

Uk = {y:\Fk(y)-l\^o/2^},
( Vk = {y:\ Fk(y) \ < 8/2^}

associated with the functions

( 6 ) Fk = Fnik)

satisfy

(7) U^VtCzUtdVs- -
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and

( 8 ) X-{x} = \JU<.
i=l

In order to construct F2 let n(2) > 1 be an integer so large that

I Fn{2) I < δ/2

on U, and define F2 = Fn{2). Notice that Uι<zV2(Z U2.
Suppose n(ϊ), n(2), • • ,n(k) have been chosen. Choose

n(k + 1) > kn(k)

so large that | Fn{k+1) \ < §/2k on the closed set Uk and define Fk+ί =
Fn{k+1). Clearly UkczVk+ίc: Uk+ί. The existence of the required
sequence {n(k)} follows by induction. If a point y belongs to none of
the sets Vk then, by (4) and (6), | F(y) \ > δlln{k+1) 2-*'Λ(Jfc+1) — 1 as k — oo
showing that y — x. Hence (8) holds also.

For each integer k choose a point zk from the set P Π (Vk+1 — Uk),
this being possible because Uk and X — Vk+ι are disjoint closed sets
both of which intersect the connected set P. Fix a bounded sequence
{wk}, \\w\\ <£ 1, and define g by

( 9 ) g - Σ w p (F p - ^ + 1 ) .
p=l

The series converges uniformly on compact subsets of X — {x} since
any such set is eventually captured by a Vk. In order to establish
bounds on the partial sums for the series (9) notice that

X-{x}=U1\J (U2 - U,) U (Us - U2) U ,

(the sets in the union being pairwise disjoint) and for any point y,

g(y) = Σ ^ ( ι / ) - Fp+M) + wk(Fk(y) - Fk+1(y))

+ wk+1(Fk+ι(y) - Ft+i(y)) + Σ wp(Fp(y) - Fp+1(y)) .

If y e Uk+ί — Uk, we have the inequalities

(A) Fp+1(y)) ύΣ,(\F9(y)-l\ + \Fp+ι(y)-l\)
p=l

1 + 8/2')

( B ) I w,(F,(y) - F p + ι ( y ) ) 1 ^ 2 ( p = fc, fc + 1 )

(C) Σ w,(F,(y) - F,+ι(y)) δ/2") .
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Hence 4 + 2δ Σ 2"p = 4 + 45 is a bound for the partial sums. Ine-
qualities (B) and (C) give the same bounds when yeϋΊ. Therefore
geSx.

In order to estimate g(zk) — wk subtract wk from both members
of (9) and replace y by zk in (A) and (C). In place of (B) we have
the inequalities

I wk(Fk(zk) - 1 - Fk+ί(zk)) I <: δ/2^ + δ/2* ,

I wk+1(Fk+1(zk) - Fk+2(zk)) I ̂  δ/2k + δ/2*+ι

because zk e Vk+1 - Uk implies | Fk+1(zk) \ < δ/2\ \ Fk+2(zk) \ < δ/2k+i and
I Fk(zk) - 11 < δ/2*-1. Addition of (A), (B') and (C) gives

\9(zk)~wk\ <4δ (fc = l , 2, . . . ) .

In summary, we have shown t h a t for any w = {wn} e l°° wi th \\w\\ ̂  1
there exists a function g in Sx wi th 11 g 11 ̂  4 + 4δ and

sup I g(zk) — wk I ̂  Aδ .
k

Since δ < 1/4 Lemma 2 applies; hence there exists a function / in Bx

such that

/(**) = wA (ft = 1,2, . . .) .

This completes the proof.
The preceding argument shows that the series (9) converges

absolutely and has uniformly bounded partial sums for every bounded
sequence {wk} and will therefore converge uniformly on X provided
lim wk = 0. This means that we may again apply Lemma 2, this
time with T identified as the map f-^{f(zk)} from A into the space
c of convergent sequences.

COROLLARY. Let A be a sup norm function algebra on the com-
pact Hausdorff space, let P be a connected subset of X and let
xe P — P be a peak point for A. Then there exists an infinite
sequence of distinct points in P which converges to x and has the
property that for every convergent sequence {ck} there exists an f in
A such that f(zk) — ck (k = 1, 2, •).

Let m be a positive Baire measure on X which is multiplicative
on the sup norm algebra A and not equal to point evaluation at x.
Clearly, the functions in Sx are elements of H\dm), the closure of
A in L2(dm), and therefore

Sx C H~(dm) = L~(dm) f| H\dm) .
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Since the norm in H°°(dm) is the essential supremum norm relative
to m, it follows that Bx C H°°(dm). Thus, under the assumptions of
Theorem 3, we can make the following rather weak statement: there
exist infinite interpolation sets for H°°(dm) whenever point evaluations
on the set P extend to homomorphisms of H°°(dm).

Finally, we remark that in so far as we know the Carleson corona
theorem, the question of whether D is dense in the maximal ideal
space of BE, is open in case E is a proper nonempty subset of C.

We wish to express our appreciation to the referee for several
valuable comments and suggestions.
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