AN INTERPOLATION PROBLEM FOR SUBALGEBRAS OF H^{∞}

E. A. HEARD AND J. H. WELLS

Let E be a closed subset of the unit circle $C = \{z : |z| = 1\}$ and denote by B_E the algebra of all functions which are bounded and continuous on the set $X = \{z : |z| \leq 1, z \notin E\}$ and analytic in the open disc $D = \{z : |z| < 1\}$. An interpolation set for B_{E} is a relatively closed subset S of X with the property that if α is a bounded and continuous function on S (all functions are complex-valued), there is a function f in B_E such that $f(z) = \alpha(z)$ for every $z \in S$. The main result of the paper characterizes the interpolation sets for B_E as those sets S for which $S \cap D$ is an interpolation set for H^{∞} and $S \cap (C-E)$ has Lebesgue measure 0. If, in addition, $S \cap D = \phi$ then S is a peak interpolation set for B_E . Also, through a construction process inspired by recent work of J. P. Kahane, it is shown that the existence of peak points for a sup norm algebra of continuous functions on a compact, connected space implies the existence of infinite interpolation sets relative to the algebra and certain of its weak extensions.

The solution of the interpolation problem in the space $H^{\infty} = B_c$ of bounded analytic functions on D is due to Lennart Carleson [5], and due to A. Beurling and Walter Rudin in the disc algebra $A = B_{\phi}$ [10]. Concerning the latter case see also the notes of Lennart Carleson [5] and the last problem in Hoffman's book [8]. Their results are given by the following two theorems.

THEOREM C. A sequence $\{z_k\}$ of distinct points in D is an interpolation set for H^{∞} if and only if it is uniformly separated¹, that is, if and only if there exists a positive number δ such that

(1)
$$\prod_{j=1: j \neq k}^{\infty} \left| \frac{z_j - z_k}{1 - \overline{z}_j z_k} \right| \geq \delta \qquad (k = 1, 2, \cdots) .$$

Whenever this condition holds, a constant $m(\delta)$ exists with the property that for any bounded sequence $\{w_k\}$ there is an f in H^{∞} such that $f(z_k) = w_k$ $(k = 1, 2, \cdots)$ and $||f|| \leq m(\delta) \sup_k |w_k|$.

THEOREM B-R. A closed subset S of \overline{D} is an interpolation set for A if and only if

(i) $S \cap D$ is uniformly separated,

¹ This terminology is due to Professor Peter Duren.

and

(ii) $S \cap C$ has Lebesgue measure 0.

In the terminology introduced above our characterization of the interpolation sets for the algebra B_E takes the following form.

THEOREM 1. The relatively closed subset S of X is an interpolation set for B_E if and only if

(i) $S \cap D$ is uniformly separated, and

(ii) $S \cap (C - E)$ has Lebesgue measure 0.

For example, suppose $E = \{1\}$ and S is the union of the sequences $a_k = 1 - 2^{-k}$ $(k = 1, 2, \cdots)$ with any sequence $\{b_k\}$ of distinct points on C converging to 1 $(b_k \neq 1)$. For a proof that $\{a_k\}$ is uniformly separated, see [8, p. 204]. Our result then applies and asserts that for any pair of bounded sequences $\{\alpha_k\}$ and $\{\beta_k\}$ there exists a function f in H^{∞} , continuous on $\overline{D} - \{1\}$, such that $f(a_k) = \alpha_k$ and $f(b_k) = \beta_k$ $(k = 1, 2, \cdots)$. For $S = \{b_k\}$ alone this is a result of E. L. Stout [11, Lemma 4.1].

Our proof of Theorem 1, presented in §2, depends on Theorem C and the generalized Rudin-Carleson theorem [4]. We also show in §2 that the interpolation sets for B_E which are subsets of C - E have the property that every bounded continuous function α on S has an extension f in B_E with $||f|| = ||\alpha||$ (all norms are supremum norms on the relevant domains). In §3 we present an argument which, in particular, shows that the existence of peak sets for the disc algebra A implies the existence of infinite interpolation sets for H^{∞} .

2. Interpolation in B_{E} . First we shall deal with those interpolation sets for B_{E} which are contained in D. Naturally, such sets are countable.

LEMMA 1. A sequence $\{z_k\}$ of distinct points in D is an interpolation set for B_E if and only if it is uniformly separated and all of its limit points belong to E. If this condition is satisfied then there is a constant $m(\delta/2)$ such that if $\{w_k\}$ is a bounded sequence there exists an f in B_E such that

- (i) $f(z_k) = w_k$ $(k = 1, 2, \dots),$
- (ii) $||f|| \leq m(\delta/2) \sup_k |w_k|.$

Proof. If $\{z_k\}$ is an interpolation set for B_E it is certainly one also for H^{∞} and is therefore uniformly separated by Theorem C. And if $e^{i\theta}$ is a limit point of $\{z_k\}$ there is a function in B_E which is dis-

544

AN INTERPOLATION PROBLEM FOR SUBALGEBRAS OF H^{∞}

continuous there; hence E contains all the limit points of $\{z_k\}$.

Now suppose that the sequence $\{z_k\}$ of distinct points in D is uniformly separated with relevant constant δ and has all its limit points in E. It is no restriction to suppose in addition that no z_k is zero. (To avoid the situation covered by Theorem C we assume that E is a proper subset of the unit circle.) The Blaschke product

(2)
$$B(z) = \prod_{k=1}^{\infty} \frac{\overline{z}_k}{|z_k|} \frac{z_k - z}{1 - \overline{z}_k z}$$

and each of its subproducts represent functions analytic in the complement of the compact set K consisting of E together with the points $1/\bar{z}_k$ [8]. Thus B is analytic and of unit modulus at each point which belongs to one of the arcs β_1, β_2, \cdots in C complementary to E. This means that each point of β_n is the center of a small disc contained in the complement of K and on which B is analytic and $|B(z)| \leq 2$. Cover β_n by a countable and locally finite (relative to β_n) collection of such discs and let β'_n be that part of the boundary of the union of these discs which lies outside D. The set β'_n is a Jordan arc having the same endpoints as β_n , and, except for these endpoints it is contained in the complement of \overline{D} . Now let D^* be the simply connected domain containing D whose boundary is E together with the nonintersecting arcs β'_n $(n = 1, 2, \cdots)$. Clearly $|B(z)| \leq 2$ for $z \in D^*$.

Let $B(D^*)$ denote the space of functions bounded and analytic on D^* . If we can show that $\{z_k\}$ is an interpolation set for $B(D^*)$ the proof will be complete since $B(D^*) \subset B_E$. (In this connection compare Stout's general characterization of interpolation sets [11, Th. 5.9].) To this end choose a conformal map ϕ from D^* onto D and set

$$\phi(z_k) = y_k, f_k = B_k \circ \phi^{-1} (k = 1, 2, \cdots)$$

where B_k is the Blaschke product B with the k^{th} factor removed. For each $k, f_k \in H^{\infty}$, $||f_k|| \leq 2$, $|f_k(y_k)| \geq \delta$ (see (1)) and

$$|f_k(y_j)| = 0 \ (j \neq k)$$
.

If C_{ks} is the finite Blaschke product (see (2)) associated with the points $y_1, y_2, \dots, y_{k-1}, y_{k+1}, \dots, y_s$ $(1 \le k \le s, s = 2, 3, \dots)$, we have

$$rac{\delta}{\mid C_{ks}(y_k)\mid} \leq rac{\mid f_k(y_k)\mid}{\mid C_{ks}(y_k)\mid} \leq \left\|rac{f_k}{C_{ks}}
ight\| \leq 2 \;,$$

that is,

$$\prod_{j=1:\,j\neq k}^{s} \left| \frac{y_j - y_k}{1 - y_j y_k} \right| \geq \delta/2 \ .$$

This proves that $\{y_k\}$ is uniformly separated in D. Hence if $\{w_k\}$ is

a bounded sequence, there exists an f in H^{∞} such that $f(y_k) = w_k$ $(k = 1, 2, \dots)$ and $||f|| \leq m(\delta/2) \sup |w_k|$. The function $f \circ \phi$ is bounded and analytic on D^* , $f \circ \phi(z_k) = w_k$ and $||f \circ \phi|| \leq m(\varepsilon/2) \sup |w_k|$. This completes the proof.

A remark is in order concerning Lemma 1. In [1] Akutowicz and Carleson considered the general question of analytic continuation of interpolating functions. In the course of their work it was shown that if $\{z_k\}$ is an interpolation set for H^{∞} which clusters on the closed set E, then there exists a solution to the interpolation problem which has an analytic continuation to a larger domain obtained by pushing out through proper subarcs of finitely many of the complementary arcs β_1, β_2, \cdots [1, Th. 4]. Note that the interpolation function $f \circ \phi$ of the preceding argument is analytic in a domain which contains all the complementary arcs β_n .

For a proof of the following lemma see [2, Th. 1.2].

LEMMA 2. Let $T: X \to Y$ be a linear and continuous map from the Banach space X into the normed linear space Y. Suppose there exist constants $\delta < 1$ and M such that for each $y \in Y$ with $||y|| \leq 1$, there exists an $x \in X$ such that

$$|| Tx - y || \leq \delta, || x || \leq M.$$

Then TX = Y. If $||y|| \leq 1$, there exists an x such that Tx = y and $||x|| \leq M(1 - \delta)^{-1}$.

LEMMA 3. The relatively closed subset K of C - E is an interpolation set for B_E if, and only if, K has measure 0.

Proof. Clearly every such interpolation set for B_E must be of measure 0.

For the converse we need to know that any relatively closed subset K of C - E of measure 0 can be written as the disjoint union of compact sets

$$K = igcup_{n=1}^{\infty} K_n$$

in such a way that there exist disjoint open sets $O_n \subset C - E$ which satisfy the inclusions

$$K_n \subset O_n \ (n = 1, 2, \cdots)$$
.

Because K is nowhere dense in C - E it is possible to replace any finite disjoint collection of open arcs J_1, J_2, \dots, J_s which cover E by another collection of open arcs $I_p \subset J_p$ $(p = 1, 2, \dots, s)$ which cover

E and have all their endpoints in $C - E \bigcup K$. Hence there exists a sequence $G_1 \supseteq G_2 \supseteq G_3 \supseteq \cdots$ such that $E = \bigcap_{n=1}^{\infty} G_n$ and each G_n is a finite disjoint collection of open arcs, all of whose endpoints lie in $C - E \bigcup K$. Define

$$K_{1} = K \bigcap (C - G_{1}), O_{1} = C - \overline{G}_{1}$$

and, for n > 1,

$$K_n = K \bigcap (ar{G}_{n-1} - G_n)$$
, $O_n = G_{n-1} - ar{G}_n$.

Now let α be a bounded, complex-valued continuous function on K with $||\alpha|| = 1$. Denote the restriction of α to K_n by α_n and fix δ , $0 < \delta < 1$. According to the general Rudin-Carleson interpolation theorem [4] we may choose positive continuous functions Δ_n $(n = 1, 2, \dots)$ on C such that

(a) $\Delta_n = |\alpha_n| + \delta/2^n$ on K_n ,

(b) $\Delta_n = \delta/2^n$ on $C - O_n$,

(c) $0 < \Delta_n \leq ||\alpha|| + \delta/2^n$ everywhere;

then select functions $f_n \in A$ (the disc algebra) having the following properties:

(d) $f_n = \alpha_n$ on K_n ,

(e) $|f_n| \leq \Delta_n$ on C.

For the function f defined by

(3)
$$f(z) = \sum_{n=1}^{\infty} f_n(z) \qquad (z \in X) ,$$

we make the following claims:

- (i) $f \in B_E$,
- (ii) $||f|| \leq 1 + \delta$,
- (iii) $\sup_{z \in K} |f(z) \alpha(z)| \leq \delta$.

It follows from (b), (c) and (e) that the series (3) converges for every $z \in C$ and that its partial sums are bounded by δ for

$$\pmb{z} \in C \, - \, \bigcup_{n=1}^{\infty} \, O_n$$

and by $1 + \delta$ if $z \in O_n$ for some positive integer *n*. Therefore the series converges pointwise on X to an H^{∞} function with norm satisfying (ii). Further, (b) and (e) show that convergence in (3) is uniform on any compact subset of C - E because such a set misses all but a finite number of the sets O_n .

Thus f is continuous on C - E, hence continuous on X and (i) holds. In order to establish (iii), suppose $z \in K$; then $z \in K_p$ for some positive integer p so, by (d), $f(z) - \alpha(z) = \sum_{n \neq p} f_n(z)$ and, by (b) and (e), $|f(z) - \alpha(z)| \leq \sum_{n \neq p} \delta 2^{-n} < \delta$ as required.

Let C(K) be the Banach space of bounded continuous functions on K, and let T be the restriction mapping from B_E into C(K). Conditions (i), (ii) and (iii) above show that Lemma 2 applies. Hence if $\delta < 1$ and $\alpha \in C(K)$, there exists an f in B_E such that $f = \alpha$ on the set K and $||f|| \leq (1 + \delta)(1 - \delta)^{-1} ||\alpha||$. This is the desired conclusion.

LEMMA 4. Let K be a relatively closed subset of C - E of measure 0. Then the ideal

$$J(K) = \{ f \in B_E : f(K) = 0 \}$$

has an approximate unit.

Proof. The implication is that there exists a net $\{e_{\tau}\}$ in J(K) such that $||e_{\tau}|| \leq 1$ and $e_{\tau} \to 1$ uniformly on closed subsets of X disjoint from the set K.

We assume the notation and decomposition of Lemma 3 except that each of the sets O_n is replaced by

$${V}_{\scriptscriptstyle n} = \{re^{i heta} \colon e^{i heta} \in {O}_{\scriptscriptstyle n}, \, 1 - rac{1}{n} < r \leqq 1\}$$
 .

The sets V_n are pairwise disjoint, open in X, and $K_n \subset V_n$. Choose numbers $c_n, 0 < c_n < 1$, so that $\sum_{n=1}^{\infty} c_n < \infty$ and functions $g_n \in A$ such that $||g_n|| \leq 1, g_n$ vanishes exactly on K_n and $|1 - g_n| < c_n$ on $X - V_n$ (the existence of such functions follows immediately from the construction given in [8, Chapter 6, p-80]). Define g by

$$g(z) = \prod_{n=1}^{\infty} g_n(z)$$
 $(z \in X)$.

The inequality

$$ig| 1 - \prod_{n=N}^{N+p} g_n(z) ig| \leq \prod_{n=N}^{N+p} (1 + |1 - g_n(z)|) - 1 \ \leq \exp \sum_{n=N}^{N+p} c_n - 1 \;,$$

valid for $z \notin \bigcup_{n=N}^{\infty} V_n$, shows that the product defining g converges uniformly on compact subsets of X. Thus $g \in B_E$ and

$$|1-g(z)| \leq \exp\sum_{n=1}^{\infty} c_n - 1$$

for $z \in X - \bigcup_{n=1}^{\infty} V_n$. This argument shows that if $\varepsilon > 0$ and S is a closed subset of X disjoint from K, then proper choices for V_n and c_n yield a g in J(K) such that $||g|| \leq 1$, g vanishes precisely on K in

548

X and $|1 - g(z)| < \varepsilon (z \in S)$.

Proof of Theorem 1. If the relatively closed subset S of X is an interpolation set for B_E , then clearly $S \cap D$ is countable and $S \cap C$ has measure 0. The proof that $S \cap D$ is uniformly separated is identical with the corresponding proof for H^{∞} [8, p. 196].

For the converse let the relatively closed subset S of X be the union of a uniformly separated sequence $\{z_k\}$ in D and a subset K of C-E of measure 0. Let α be a bounded, continuous function on S with $||\alpha|| \leq 1$. By Lemma 3 there exists an f_1 in B_E such that $f_1 = \alpha$ on K and $||f_1|| \leq 3/2$; hence $\alpha_1 = \alpha - f_1$ vanishes on K and $||\alpha_1|| \leq 5/2$. Lemma 1 guarantees the existence of a constant c, depending only on the points z_k , and a function h in $B_{E \cup K}$ such that

$$h(z_k) = lpha_1(z_k) \ (k = 1, 2, \cdots), \ || h || \leq c \cdot 5/2$$

Since α_1 is continuous on S and vanishes on K, we may choose open sets U_n in X such that $K_n \subset U_n \subset V_n$ $(n = 1, 2, \dots)$ (we assume the decomposition and notation of Lemma 4) and $|\alpha_1| < 1/4$ on the set $\bigcup_{n=1}^{\infty} U_n$. Now choose, by Lemma 4, a function g in J(K) such that $||g|| \leq 1$ and |1 - g(z)| < 1/4 for $z \notin \bigcup_{n=1}^{\infty} U_n$; hence the product ghbelongs to B_E and for all k

$$||g(z_k)h(z_k)-lpha_{_1}\!(z_k)|=||(g(z_k)-1)lpha_{_1}\!(z_k)|< 3/4$$
 ,

since $|g(z_k) - 1| < 1/4$, $|\alpha_i(z_k)| \leq 5/2$ for $z_k \notin \bigcup U_n$ and

 $|1 - g(z_{\scriptscriptstyle k})| \leq 2, |lpha_{\scriptscriptstyle 1}(z_{\scriptscriptstyle k})| < 1/4$

otherwise. This proves that the function $f = f_1 + gh$ has the following properties:

 $\begin{array}{ll} ({\rm \ i\ }) & f\in B_{\scriptscriptstyle E}\\ ({\rm \ ii\ }) & ||f||\leq 3/2+5/2\cdot c=M\\ ({\rm \ iii\ }) & \sup_{z\in S}|f(z)-\alpha(z)|\leq 3/4.\\ \text{\ In \ view \ of \ Lemma \ 2 \ the \ proof \ is \ complete.} \end{array}$

THEOREM 2. Let K be the closed subset of C - E of measure 0. Then any bounded continuous function α on K has an extension g in B_E with precisely the same norm as α ; in fact g can be chosen in B_E so that $g = \alpha$ on K and

$$|g(z)| < ||\alpha||, z \in X - K$$
.

Proof. We have already established the following weaker result (see Lemma 3): if $\varepsilon > 0$, α has an extension g_{ε} in B_E such that $||g_{\varepsilon}|| \leq (1 + \varepsilon) ||\alpha||$. In addition, Lemma 4 asserts that K is a strong hull in the Banach function algebra B_E [7], that is, for each closed subset S of X disjoint from K and each $\varepsilon > 0$ there exists a function

f in β_E such that f(K) = 0, $||f|| \leq 1$, and $|1 - f(S)| < \varepsilon$. The conditions guarantee the existence of the required function g [see 7, Th. 4.6].

3. Peak points and interpolating sequences. Previous to Carleson's paper [5], Gleason and Newman had constructed examples (unpublished) proving the existence of infinite interpolation sets for H^{∞} . In this section we present a process, depending only on the existence of peak points in the underlying algebra, which constructs infinite interpolation sets in some rather general H^{∞} spaces. According to Bishop's minimal boundary theorem [3] peak points always exist for a sup norm algebra defined on a compact metric space.

Let A be a sup norm algebra on the compact Hausdorff space X and suppose that the function $F \in A$ peaks at x, that is,

$$F(x) = 1 \text{ and } |F(y)| < 1$$
 $(y \in X, y \neq x)$.

Let S_x be the set of all bounded and continuous functions f on $X - \{x\}$ for which there exists a constant m and a sequence $\{f_n\}$ in A with $||f_n|| \leq m$ and such that $f_n \to f$ uniformly on compact subsets of $X - \{x\}$. B_x is the uniform closure of S_x .

THEOREM 3. Suppose P is a connected subset of X and $x \in \overline{P} - P$. Then there is an infinite sequence $\{z_k\}$ of distinct points in P which interpolates for B_x , that is, the map $T: B_x \to l^{\infty}$ defined by $Tf = \{f(z_k)\}$ is an onto map.

Proof. Choose δ , $0 < \delta < 1/4$, so that the closed set

 $U_1 = \{y \colon |F(y) - 1| \ge \delta\}$

intersects P. Set $F_1 = F$ and n(1) = 1. We wish to construct an increasing sequence $n(1) < n(2) < \cdots$ of integers which obey

(4)
$$n(k+1) > kn(k)$$
 $(k = 1, 2, \cdots)$

and for which the sets

$$egin{array}{lll} (\, 5\,) & U_k = \{y \colon |\, F_k(y) - 1\,| \ge \delta/2^{k-1} \} \ , \ V_k = \{y \colon |\, F_k(y)\,| < \delta/2^{k-1} \} \end{array}$$

associated with the functions

(6)
$$F_k = F^{n(k)}$$

satisfy

$$(7) U_1 \subset V_2 \subset U_2 \subset V_3 \cdots$$

and

$$(8) X - \{x\} = \bigcup_{i=1}^{\infty} U_i$$

In order to construct F_2 let n(2) > 1 be an integer so large that

 $|F^{n(2)}|<\delta/2$

on U_1 and define $F_2 = F^{n(2)}$. Notice that $U_1 \subset V_2 \subset U_2$. Suppose $n(1), n(2), \dots, n(k)$ have been chosen. Choose

$$n(k+1) > kn(k)$$

so large that $|F^{n(k+1)}| < \delta/2^k$ on the closed set U_k and define $F_{k+1} = F^{n(k+1)}$. Clearly $U_k \subset V_{k+1} \subset U_{k+1}$. The existence of the required sequence $\{n(k)\}$ follows by induction. If a point y belongs to none of the sets V_k then, by (4) and (6), $|F(y)| > \delta^{1/n(k+1)} 2^{-k/n(k+1)} \to 1$ as $k \to \infty$ showing that y = x. Hence (8) holds also.

For each integer k choose a point z_k from the set $P \bigcap (V_{k+1} - U_k)$, this being possible because U_k and $X - V_{k+1}$ are disjoint closed sets both of which intersect the connected set P. Fix a bounded sequence $\{w_k\}, ||w|| \leq 1$, and define g by

(9)
$$g = \sum_{p=1}^{\infty} w_p (F_p - F_{p+1})$$

The series converges uniformly on compact subsets of $X - \{x\}$ since any such set is eventually captured by a V_k . In order to establish bounds on the partial sums for the series (9) notice that

$$X - \{x\} = U_1 \bigcup (U_2 - U_1) \bigcup (U_3 - U_2) \bigcup \cdots$$

(the sets in the union being pairwise disjoint) and for any point y,

$$egin{aligned} g(y) &= \sum\limits_{p=1}^{k-1} w_p(F_p(y) - F_{p+1}(y)) + \, w_k(F_k(y) - F_{k+1}(y)) \ &+ \, w_{k+1}(F_{k+1}(y) - F_{k+2}(y)) + \sum\limits_{p=k+2}^\infty w_p(F_p(y) - F_{p+1}(y)) \end{aligned}$$

If $y \in U_{k+1} - U_k$, we have the inequalities

$$\begin{aligned} \text{(A)} \qquad \left|\sum_{p=1}^{k-1} w_p(F_p(y) - F_{p+1}(y))\right| &\leq \sum_{p=1}^{k-1} \left(|F_p(y) - 1| + |F_{p+1}(y) - 1|\right) \\ &< \sum_{p=1}^{k-1} \left(\delta/2^{p-1} + \delta/2^p\right) \text{;} \end{aligned}$$

(B) $|w_p(F_p(y) - F_{p+1}(y))| \le 2$ (p = k, k+1);

(C)
$$\left|\sum_{p=k+2}^{\infty} w_p(F_p(y) - F_{p+1}(y))\right| < \sum_{p=k+2}^{\infty} (\delta/2^{p-1} + \delta/2^p)$$
.

Hence $4 + 2\delta \sum 2^{-p} = 4 + 4\delta$ is a bound for the partial sums. Inequalities (B) and (C) give the same bounds when $y \in U_1$. Therefore $g \in S_x$.

In order to estimate $g(z_k) - w_k$ subtract w_k from both members of (9) and replace y by z_k in (A) and (C). In place of (B) we have the inequalities

$$\begin{array}{l} (\mathrm{B'}) \qquad \qquad \quad |\,w_{\scriptscriptstyle k}(F_{\scriptscriptstyle k}(z_{\scriptscriptstyle k})-1-F_{\scriptscriptstyle k+1}(z_{\scriptscriptstyle k}))\,| \leq \delta/2^{k-1}+\delta/2^k \ , \\ |\,w_{\scriptscriptstyle k+1}(F_{\scriptscriptstyle k+1}(z_{\scriptscriptstyle k})-F_{\scriptscriptstyle k+2}(z_{\scriptscriptstyle k}))\,| \leq \delta/2^k+\delta/2^{k+1} \end{array}$$

because $z_k \in V_{k+1} - U_k$ implies $|F_{k+1}(z_k)| < \delta/2^k$, $|F_{k+2}(z_k)| < \delta/2^{k+1}$ and $|F_k(z_k) - 1| < \delta/2^{k-1}$. Addition of (A), (B') and (C) gives

$$||g(z_k)-w_k|<4\delta$$
 $(k=1,\,2,\,\cdots)$.

In summary, we have shown that for any $w = \{w_n\} \in l^{\infty}$ with $||w|| \leq 1$ there exists a function g in S_x with $||g|| \leq 4 + 4\delta$ and

$$\sup_k |g(z_k) - w_k| \leq 4\delta$$
 .

Since $\delta < 1/4$ Lemma 2 applies; hence there exists a function f in B_x such that

$$f(\boldsymbol{z}_k) = w_k$$
 $(k = 1, 2, \cdots)$.

This completes the proof.

The preceding argument shows that the series (9) converges absolutely and has uniformly bounded partial sums for every bounded sequence $\{w_k\}$ and will therefore converge uniformly on X provided $\lim w_k = 0$. This means that we may again apply Lemma 2, this time with T identified as the map $f \rightarrow \{f(z_k)\}$ from A into the space c of convergent sequences.

COROLLARY. Let A be a sup norm function algebra on the compact Hausdorff space, let P be a connected subset of X and let $x \in \overline{P} - P$ be a peak point for A. Then there exists an infinite sequence of distinct points in P which converges to x and has the property that for every convergent sequence $\{c_k\}$ there exists an f in A such that $f(z_k) = c_k \ (k = 1, 2, \cdots)$.

Let *m* be a positive Baire measure on *X* which is multiplicative on the sup norm algebra *A* and not equal to point evaluation at *x*. Clearly, the functions in S_x are elements of $H^2(dm)$, the closure of *A* in $L^2(dm)$, and therefore

$$S_x \subset H^\infty(dm) = L^\infty(dm) \bigcap H^2(dm)$$
.

552

Since the norm in $H^{\infty}(dm)$ is the essential supremum norm relative to m, it follows that $B_x \subset H^{\infty}(dm)$. Thus, under the assumptions of Theorem 3, we can make the following rather weak statement: there exist infinite interpolation sets for $H^{\infty}(dm)$ whenever point evaluations on the set P extend to homomorphisms of $H^{\infty}(dm)$.

Finally, we remark that in so far as we know the Carleson corona theorem, the question of whether D is dense in the maximal ideal space of B_{E} , is open in case E is a proper nonempty subset of C.

We wish to express our appreciation to the referee for several valuable comments and suggestions.

References

1. E. J. Akutowicz and L. Carleson, The analytic continuation of interpolating functions, J. Analyse Math. 7 (1959-1960), 223-247.

2. W. G. Bade and Philip C. Curtis, Jr., *Embedding theorems for commutative Banach algebras*, Pacific J. Math. **18** (1966), 391-409.

3. E. Bishop, A minimal boundary for function algebras, Pacific J. Math. 9 (1959), 629-642.

4. ____, A general Rudin-Carleson theorem, Proc. Amer. Math. Soc. 13 (1962), 140-143.

5. Lennart Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930.

6. ____, Research on interpolation problems, Tech. Rep., Department of Mathematics, Uppsala University, Uppsala, 1962.

7. P. C. Curtis and A. Figa-Talamanca, *Factorization theorems for Banach algebras*, Symposium on Function Algebras, Scott Foresman and Co., 1966, 169-185.

8. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.

9. J.-P. Kahane, Another theorem on bounded analytic functions, Proc, Amer. Math. Soc. 18 (1967), 827-831.

10. W. Rudin, Boundary values of continuous analytic functions, Proc. Amer. Math. Soc. 7 (1956), 808-811.

11. E. L. Stout, Bounded holomorphic functions, Trans. Amer. Math. Soc. 120 (1965), 255-285.

Received January 8, 1968. This research was supported in part by National Science Foundation Contract GP-7373.

UNIVERSITY OF KENTUCKY LEXINGTON, KENTUCKY