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ON KRULL OVERRINGS OF AN AFFINE RING

WILLIAM HEINZER

By an overring of an integral domain A we mean a ring
which contains A and is contained in the quotient field of A.
We consider the following question. If D is a Krull overring
of an affine ring A is D necessarily Noetherian? Our main
result is an affirmative answer to this question when A is a
normal affine ring of dimension two defined over a field or
pseudogeometric Dedekind domain such that each localization
of A has torsion class group.

We recall that an integral domain J is called a Krull ring if J
is an intersection of rank one discrete valuation rings, say / = f\ Va,
such that each nonzero element of J is a nonunit in only finitely many
of the Va. One may assume that each Va is an overring of J and is
irredundant in the representation J = f\a Va. In this case each Va is
centered on a minimal prime (prime of height one) of / and if Va has
center Pa on J, then JPa = Va. The set {Va} = {JPJ is called the set
of essential valuation rings for J. We use the notation E(J) to denote
the set of essential valuation rings of the Krull ring J.

A one dimensional Krull ring is a Dedekind domain and hence is
Noetherian. There exist non-Noetherian 3 dimensional Krull rings, an
example being given by Nagata [6, p. 207] who showed that the derived
normal ring of a 3 dimensional local domain need not be Noetherian.
Whether a 2 dimensional Krull ring is necessarily Noetherian remains
open1. Since the derived normal ring of a 2 dimensional Noetherian
domain is again Noetherian one can not hope to construct non-Noe-
therian 2 dimensional Krull rings by a method similar to Nagata's.
Our results here show that in certain special cases 2 dimensional Krull
rings are Noetherian. In fact, the original motivation for our work
was to determine if each Krull overring of Z[X] (Z the ring of integers
and X an indeterminate over Z) is Noetherian, a question brought to
our attention by Jack Ohm. We are grateful to Ohm for several
helpful conversations concerning this topic.

2* We will consistently use A to denote a normal affine ring of
dimension 2 defined over a field or pseudogeometric Dedekind domain.
We will further assume that each localization R of A has torsion class

1 An exercise in Bourbaki [3, p. 83] outlines a method for constructing a two
dimensional Krull ring which is asserted not to be Noetherian. However in [5] an
argument is given to the effect that the Bourbaki construction must necessarily
yield a Noetherian Krull ring. Recently Paul Eakin has constructed a non-Noetherian
2 dimensional Krull ring.
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group. This, of course, is equivalent to the assumption that each
minimal prime of R is the radical of a principal ideal.

Our first results concern Krull overrings of a localization of A.
Let J? be a localization of A. R has dimension either one or two and
if R has dimension one then R is a rank one discrete valuation ring
and has no nontrivial overrings. We assume therefore that R is of
dimension two with maximal ideal M. Let D be a Krull overring of
R. If V is an essential valuation ring for D then V either has center
M on R or else V is centered on a minimal prime P of R. In the
latter case RP ci V, and since RP is also a rank one discrete valuation
ring we have RP = V and VeE(R). Thus E(D) - E(R) consists
precisely of the essential valuation rings of D having center M on R
and the finiteness condition in the definition of a Krull ring insures
that E(D) - E(R) is a finite set.

If V is a valuation overring of R centered on M we recall that
the iu-dimension of V is defined to be the transcendence degree over
R/M of the residue field of V. (Here we are using the canonical
embedding of R/M in the residue field of V). Since R is two dimen-
sional and Noetherian each such V has i?-dimension either zero on
one [1, p. 328], Moreover, if V has 22-dimension zero then V is
necessarily centered on a maximal ideal of any domain between R
and V. Let {FJJU be the subset of E(D) - E(R) consisting of those
elements of E(D) — E(R) which have J?-dimension zero and let Όf be
the Krull ring having E(D) — {Vι} as its set of essential valuation
rings. We now observe that to show D is Noetherian it will suffice
to show that D' is Noetherian. This is a consequence of the following
proposition.

PROPOSITION 1. Let J be a Krull ring and let V be an essential
valuation ring for J whose center P on J is a maximal ideal. Let
J' be the Krull overring of J having E(J) — {V} as its set of essential
valuation rings. If Jr is Noetherian, then J is Noetherian.

Proof. We note that J' is the P-transform of J as defined by
Nagata in [7, p. 58], Also PJr Π / properly contains P so that PJr — J''.
Hence there is a one-to-one correspondence between the prime ideals
of Jf and the prime ideals of J excluding P where a prime ideal Q' of
J' is associated with Q' Π J = Q [7, p. 58] or [8, p. 198]. We choose
{#!, •••, xn} = X^P so that XJ' = Jf. We may also assume that
χjp = pjp. Then XJ = P since XJQ = PJQ = JQ for each maximal
ideal Q of J distinct from P. Hence P is finitely generated2. Let Q
be a prime of J distinct from P with Q' being the unique prime of

2 We have in fact established that P is invertible, for P is finitely generated
and localized at any maximal ideal P is principal.
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Jf such that Qr Π J — Q. By assumption Q' is finitely generated, say
{Vii '"iVm) = Y generates Q'. There exists an integer t such that
YPιckJ. Hence YJ P1 = B is a finitely generated ideal of J such
that BJ' = Q'. By enlarging I? if necessary we may assume that
B£P. Thus BJP = QJP = J P . If JV is a maximal ideal of J distinct
from P and Nr is the unique maximal ideal of J' with N' Π J = N
then JiV = JV Hence QJN = Q'J'N, = JSJV. It follows that £ =
Q[9, p. 94], We have thus shown that each prime ideal of J is finitely
generated and hence that J is Noetherian. This completes the proof
of Proposition 1.

We now construct a normal Noetherian ring Rf such that R' is
finitely generated over R and E(D') c E(R'). Let {W%)T=ι = E(D') - E(R)
and let Ti be the maximal ideal of W{. Since Wi is a quotient ring
of D' we see that Dt\Ti Π Z>' has quotient field WVTV By assumption
WJTi is transcendental over R/TiΠR^R/M. We choose αt in D'
such that the residue of a{ in WJTi is transcendental over i?/M.
Then TΓi is not centered on a maximal ideal of R[a{] so that Wi is
necessarily an essential valuation ring for Rf', the integral closure
of R[au , am]. Since i?' is a finite J R ^ , , αw]-module we conclude
that R' is again a quotient ring of a normal affine ring of dimension
two defined over a field or pseudogeometric Dedekind domain. More-
over E{Df)<^E{Rf).

We proceed to show that Dr is Noetherian. If J is a Krull ring
let C(J) denote the class group of J and let C^J) be the torsion free
quotient group C(J)/C2(J) where C2(J) is the torsion subgroup of C(J).
As Claborn observed in [4, p. 220] if / and J' are Krull rings with
E{Jf) c= E(J) then C{J') is a homomorphic image of C(J) and the kernel
of this canonical homomorphism is generated by the classes of all
minimal primes P of J such that JPeE(J) — E{Jf). Since C^R) is
trivial3 and E(R') — E(R) is a finite set we see that C^R') is finitely
generated. Hence Cx{Rf) is free abelian on a finite set of generators.
The canonical homomorphism φ: C(R') —• C(D') enduces an onto homo-
morphism φ^C^R) —>d(D') Let {PJiU be minimal primes of iϋ'
whose equivalence classes in C^R') generate the kernel of <pl9 Let Q =
Π?=i P* and let S be the Q-transform of R'. Since Rr is a quotient ring
of a normal affine ring of absolute dimension two, Nagata's results
in [7] and [8] imply that S is finitely generated over Rf. Moreover the
canonical homomorphism ψλ\ CX{S) —* C^D') is an isomorphism. This means
that each minimal prime P of S such that SP e E(S) — E(Dr) is the radical
of a principal ideal which in turn implies that Dr is a quotient ring of S.
Since S is Noetherian we conclude that D' is Noetherian4. We sum-
marize the results of this section in the following theorem.

3 It would suffice here to assume that Ci(R) is finitely generated.
4 We have actually shown that Ώf is a quotient ring of a normal affine ring.
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THEOREM 2. Let R be a localization of a normal affine ring A,
where A is defined over a field on pseudogeometric Dedekind domain
and has dimension two. If the class group of R is a torsion group,
or more generally if Cλ{R) is finitely generated, and if D is a Krull
overring of R then D is Noetherian.

3* We turn now to the consideration of an arbitrary Krull
overring D of A. Our main result is the following.

THEOREM 3. Let A be a normal affine ring of dimension two
defined over a field or psuedogeometric Dedekind domain and assume
that each localization of A has torsion class group. If D is a Krull
overring of A, then D is Noetherian.5

Proof. Let P' be a prime ideal of D and let P = P' Π A. If
S = A — P then As c Ds and by Theorem 2 Ds is a Noetherian domain.
Let X be a finite set of generators for P and let Y be a finite subset
of D such that YDS = P'DS. If P is a maximal ideal of A we observe
that I U Γ = 2 is a finite basis for Pf. For this purpose it will
suffice to show that ZDM, = PrDM, for each maximal ideal Mf oί D.
If P£M' then I J M ' and ZDM, = P'DM, = DM,. However if P c M'
then DS<^DM,. Hence P'DM. = YDM, = ZDU,. We conclude that P'

is finitely generated when P' n A = P is a maximal ideal of A.
Consider now the case when P is a minimal prime of A. We

have AP cz DP, and AP is a discrete rank one valuation ring. Hence
AP = Dp, and DP, is an essential valuation ring for D. Now the non-
zero elements of P are positive in only finitely many of the essential
valuation rings for D. Let {FJlU be the essential valuation rings for
D distinct from DP, in which the elements of P are positive. (Of
course the set {FJ may be empty). Each Vi is centered on a maximal
ideal Mi of A. Let Si = A — Mi. Then As. c: Z^. and again by
Theorem 2, Ds. is a Noetherian domain. Let Yt be a finite subset
of D such that YiDs. = P'D^ and again let X be a finite basis for
P. In this case we set Z = U?=i ^ U -X". If -M7 is a maximal ideal
of Z> and P^Mf then as before X£M' and ZDM, = PfDM, = DM,.
If P e l ' and I f n A = Mi then ZD*, = Γ.D^ = PfDκ,. In the
remaining case let M = M' Π A and S = A — Jlί. We have As Q £>5

and E(DS)^E(AS). Moreover C(AS) is a torsion group so that Ds

is a quotient ring of As[4, p. 219]. Hence PrDs = PDS = ZDSj and
P'DM, = ZZ)^. We conclude that P' = ZD and hence that D is
Noetherian.

5 That not every Krull overring of a 3 dimensional normal affine ring need be
Noetherian has recently been shown in joint work of the author and Paul Eakin.
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COROLLARY 4. If A is a polynomial ring in two variables over
a field or more generally a polynomial ring in one variable over a
pseudogeometric Dedekind domain^ then each Krull overring of A is
Noetherian.

Proof. We need only observe that each localization of A has
torsion class group. If A = D[X] with D a Dedekind domain and if
P is a prime of height 2 in A with Q = P Π D then AP is a quotient
ring of the unique factorization domain DQ[X\. Thus each localization
of A has torsion class group.

Added in proof. In a paper submitted to Proc. Amer. Math. Soc,
the author has now shown that each Krull overring of a 2-dimensional
Noetherian domain is again Noetherian.
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