THE POWER-COMMUTATOR STRUCTURE OF FINITE p-GROUPS

Deane E. Arganbright

For a finite p-group G, G_{n} is the n-th element in the descending central series of $G ; P(G)$ is the subgroup of G generated by the set of all x^{p} for x belonging to G; and $\mathscr{D}(G)$ is the Frattini subgroup of G.

Hobby has characterized finite p-groups $G($ for $p>2$) in which $P(G)=\mathscr{D}(G)$. Since $\mathscr{\Phi}(G)=G_{2} P(G)$, the condition $P(G)=$ $\mathscr{G}(G)$ is clearly equivalent to $G_{2} \cong P(G)$. In this paper we examine the class of finite p-groups G which have the property that $G_{n} \cong P\left(G_{m}\right)$ for $1<n / m<p$. In $\S 2$ we consider consequences of this property in the case $m=1$. For example, if $G_{p-1} \subseteq P(G)$, then the product of p-th powers of elements of G is the p-th power of an element of G (Theorem 2). In $\S 3$ we examine some connections between the property $G_{n} \cong$ $P\left(G_{m}\right)$ and regularity, and obtain a characterization of regular 3 -groups (Theorem 4). In § 4 we obtain bounds on the number of generators of various commutator subgroups of G in the case $G_{3} \cong P(G), p>3$.

For a discussion of p-groups G for which $G_{2} \cong P(G)$ see [6].

1. Notation. Throughout this paper G is a finite p-group. If $X_{1}, X_{2}, \cdots, X_{n}$ are subsets of G, then $\left\langle X_{1}, X_{2}, \cdots, X_{n}\right\rangle$ is the smallest subgroup of G containing all the X_{i}. If $X=\{x\}$ for some element x, we write $X=x$. We denote by $d(G)$ the minimal number of elements of G which generate G, while $|G|$ is the order of G. We set $P^{n}(G)=$ $\left\langle\left\{x^{p^{n}} \mid x \in G\right\}\right\rangle$. Also, $Z(G)$ is the center of G and $\Phi(G)$ is the Frattini subgroup of G.

Simple commutators of weight n are defined inductively by setting $\left(x_{1}, x_{2}\right)=x_{1}^{-1} x_{2}^{-1} x_{1} x_{2}$ and $\left(x_{1}, \cdots, x_{n}\right)=\left(\left(x_{1}, \cdots, x_{n-1}\right), x_{n}\right)$ for $n>2$. In addition, we define $(x, 1 y)=(x, y)$ and $(x, n y)=(x,(n-1) y, y)$ for $n>1$. For subgroups $H_{1}, H_{2}, \cdots, H_{n}$ of G we set

$$
\left(H_{1}, H_{2}, \cdots, H_{n}\right)=\left\langle\left\{\left(h_{1}, h_{2}, \cdots, h_{n}\right) \mid h_{i} \in H_{i}\right\}\right\rangle .
$$

Similarly, $\left(H_{1}, 1 H_{2}\right)=\left(H_{1}, H_{2}\right)$ and $\left(H_{1}, n H_{2}\right)=\left(H_{1},(n-1) H_{2}, H_{2}\right)$ for $n>1$. The descending central series of G is defined by setting $G_{1}=G$ and $G_{n}=\left(G_{n-1}, G\right)$ for $n>1$. A group G is said to have class c if $G_{c+1}=1$ and $G_{c} \neq 1$. Finally, the derived series of G is defined by setting $G^{(0)}=G$ and $G^{(i+1)}=\left(G^{(i)}, G^{(i)}\right)$ for $i \geqq 0$.
2. Basic results. It is known ([4], Th. 3.1, p. 63) that when-
ever x and y belong to G,

$$
\begin{equation*}
(x y)^{p}=x^{p} y^{p} c d \tag{}
\end{equation*}
$$

where $c \in P\left(\langle x, y\rangle_{2}\right)$ and $d \in\langle x, y\rangle_{p}$. Applying this result to the expression $\left(a^{p}, b\right)=a^{-p}(a(a, b))^{p}$ one can obtain the following lemma by repeated induction.

Lemma 1. If $s, n, k \geqq 1$, then $\left(P\left(G_{n}\right), s G_{k}\right) \subseteq P\left(G_{n+s k}\right) G_{p n+s k}$.
Theorem 1. Let n and m be integers and p be a prime such that $1<n / m<p$. If $G_{n} \subseteq P\left(G_{m}\right)$, then $G_{n+k} \subseteq P\left(G_{m+k}\right)$ for $k \geqq 0$.

Proof. We proceed by induction on k, the case $k=0$ being the hypothesis. Suppose that $G_{n+k} \subseteq P\left(G_{m+k}\right)$ and that G is a group of minimal order for which $G_{n+k+1} \nsubseteq P\left(G_{m+k+1}\right)$. Clearly we may assume $P\left(G_{m+k+1}\right)=1$. It follows from Lemma 1 that $\left(P\left(G_{m+k}\right), G\right) \subseteq G_{p(m+k)+1}$. Hence $G_{n+k+1} \subseteq\left(P\left(G_{m+k}\right), G\right) \subseteq G_{p(m+k)+1}$. However, $p(m+k)+1>n+$ $k+1$, so $G_{n+k+1} \subset G_{n+k+1}$, a contradiction. Thus $G_{n+k+1} \subseteq P\left(G_{m+k+1}\right)$.

Remark. We shall be most concerned with the case $m=1$ of Theorem 1: If $G_{n} \subseteq P(G)$ and $n<p$, then $G_{n+k} \subseteq P\left(G_{1+k}\right)$ for $k \geqq 0$. In Example 1 we show that this result cannot be extended to the case $n \geqq p$.

Corollary 1.1. If $n<p$ and $G_{n} \cong P(G)$, then
(a) $\quad\left(G_{i}\right)_{n} \subseteq P\left(G_{i}\right)$ for $i=1,2,3, \cdots$,
(b) $\quad(P(G))_{n} \cong P\left(G_{n}\right) \subseteq P(P(G))$, and
(c) for any $x \in G$, if $H=\left\langle G_{2}, x\right\rangle$, then $H_{n} \cong P\left(G_{2}\right) \subseteq P(H)$.

Proof. (a) It is known ([4], Th. 2.55, p. 55) that $\left(G_{i}\right)_{n} \cong G_{i n}$. Since $i n-(n-1) \geqq i$ it follows from Theorem 1 that

$$
G_{i n} \cong P\left(G_{i n-(n-1)}\right) \cong P\left(G_{i}\right)
$$

(b) It follows from Lemma 1 that $(P(G))_{n} \cong(P(G),(n-1) G) \subseteq$ $P\left(G_{n}\right) G_{p+n-1}$. By Theorem 1, $G_{p+n-1} \subseteq P\left(G_{p}\right)$, so

$$
(P(G))_{n} \subseteq P\left(G_{n}\right) P\left(G_{p}\right) \subseteq P(P(G))
$$

(c) Since G_{2} is central modulo G_{3} and H / G_{2} is cyclic, we have $H_{2} \subseteq G_{3}$. It follows that $H_{i} \subseteq G_{i+1}$ for $i \geqq 2$. By Theorem $1, G_{n+1} \subseteq$ $P\left(G_{2}\right)$. Thus $H_{n} \cong G_{n+1} \subseteq P\left(G_{2}\right) \subseteq P(H)$.

Corollary 1.2. If $n<p, G_{n} \subseteq P(G)$, and t is an integer such that $2^{t} \geqq n+1$, then $G^{(k+t-1)} \cong P\left(G^{(k)}\right)$ for $k \geqq 1$.

Proof. We assume that the result holds for all groups of order less than $|G|$. It follows from Corollary 1.1 that $G^{(1)}$ satisfies the hypothesis of this corollary. Since $\left|G^{(1)}\right|<|G|$ we have

$$
\begin{equation*}
\left(G^{(1)}\right)^{(k+t-1)} \cong P\left(\left(G^{(1)}\right)^{(k)}\right) \tag{**}
\end{equation*}
$$

for $k \geqq 1$.
By Theorem 2.54 of [4], $G^{(t)} \leqq G_{2}$. Hence for $k=1$ it follows from Theorem 1 that $G^{(t)} \subseteq G_{n+1} \subseteq P\left(G_{2}\right)=P\left(G^{(1)}\right)$. If $k>1$ we replace k by $k-1$ in (**) and obtain

$$
G^{(k+t-1)}=\left(G^{(1)}\right)^{(k-1+t-1)} \subseteq P\left(\left(G^{(1)}\right)^{(k-1)}\right)=P\left(G^{(k)}\right) .
$$

Remark. When $n=t=2$ in Corollary 1.2 we obtain Theorem 2 of [6].

We now show that Theorem 1 for the case $m=1$ cannot be extended to include $n \geqq p$.

Example 1. Let $\langle a\rangle\langle\langle b\rangle$ be the wreath product of $\langle a\rangle$ by $\langle b\rangle$, where $a^{p}=b^{p r}=1$ and $r>0$. Then $G_{p} \subseteq P(G), \quad P\left(G_{2}\right)=1$, and $G_{p^{r}} \neq 1$.

It is clear that the property $G_{n} \subseteq P(G), n<p$, is inherited by factor groups and preserved by direct products. By the following example we show that this property is not always inherited by a subgroup H of G.

Example 2. Let $W=\langle a\rangle\left\langle\langle b\rangle\right.$, where $a^{p}=b^{p}=1$. For $2 \leqq n \leqq$ $p-1$, set $H=W / W_{n+1}$ and $H_{n}=\langle z\rangle$. Let $\langle d\rangle$ be the cyclic group of order p^{2}, and G be the group formed by taking the direct product of H and $\langle d\rangle$ with the amalgamation $d^{p}=z$. Then $G_{n}=H_{n}=\langle z\rangle=$ $P(G)$, while $P(H)=1$.

Theorem 2. If $G_{n} \subseteq P(G)$ and $n<p$, then for any x_{1}, \cdots, x_{k} in G, there is an element h in G such that $x_{1}^{p} \cdots x_{k}^{p}=h^{p}$.

Proof. The result is clear if G is abelian. Suppose that G is nonabelian and that the theorem holds for all groups H with $|H|<$ $|G|$. It follows from (*) that $\left(x_{1} \cdots x_{k}\right)^{p}=x_{1}^{p} \cdots x_{k}^{p} g_{1}^{p} \cdots g_{t}^{p} g$, where $g_{i} \in G_{2}$ for $1 \leqq i \leqq t$ and $g \in G_{p}$. By Theorem $1, G_{p} \leqq P\left(G_{2}\right)$, so there exist elements g_{t+1}, \cdots, g_{r} in G_{2} such that $g=g_{t+1}^{p} \cdots g_{r}^{p}$.

By Corollary 1.1, $\left(G_{2}\right)_{n} \cong P\left(G_{2}\right)$. Since $\left|G_{2}\right|<|G|$ it follows from the induction hypothesis applied to G_{2} that $g_{1}^{p} \cdots g_{t}^{p} g_{t+1}^{p} \cdots g_{r}^{p}=y^{p}$, where $y \in G_{2}$. That is, $x_{1}^{p} \cdots x_{k}^{p}=\left(x_{1} \cdots x_{k}\right)^{p} s^{p}$, where $s=y^{-1}$ is in
G_{2}. Next set $x=x_{1} \cdots x_{k}$ and let $H=\left\langle G_{2}, x\right\rangle$. By Corollary 1.1, $H_{n} \subseteq P(H)$. It follows from the Burnside Basis Theorem (see e.g. [3], p. 176) that $d(G)=d(G / K)$ if K is a normal subgroup of G and $K \subseteq \Phi(G)$. Thus, since G is nonabelian, $H \subset G$. Hence, applying the induction hypothesis to $H, x^{p} s^{p}=h^{p}$ for some h in H. Therefore $x_{1}^{p} \cdots x_{k}^{p}=h^{p}$.

Corollary 2.1. If $G_{n} \subseteq P(G)$ and $n<p$, then $P(P(G))=P^{2}(G)$.

Remark. The results of Theorem 2 and Corollary 2.1 are the best possible. That is, if $n \geqq p$ then it does not follow from $G_{n} \subseteq$ $P(G)$ that the products of p-th powers are p-th powers or that $P(P(G))=P^{2}(G)$. For if we let $G=\langle a\rangle\left\langle\langle b\rangle\right.$, where $a^{p^{2}}=b^{p^{2}}=1$, then it can be shown that $G_{p} \cong P(G)$, while $b^{-p}\left(b a_{0}\right)^{p}$ is not a p-th power for some $a_{0}, b \in G$, and $P^{2}(G) \neq P(P(G))$.
3. Regularity. A p-group G is regular if for each pair of elements a, b of $G,(a b)^{p}=a^{p} b^{p} c$ where $c \in P\left(\langle a, b\rangle_{2}\right)$. If G is not regular, G is called irregular. It follows from (*) that G is regular if $\langle a, b\rangle_{p} \subseteq P\left(\langle a, b\rangle_{2}\right)$ for each 2-generator subgroup $\langle a, b\rangle$ of G. By comparison, $G_{p} \subseteq P\left(G_{2}\right)$ whenever $G_{n} \subseteq P(G)$ and $n<p$. In addition, the result of Theorem 2 is also true in regular p-groups. Thus the property $G_{n} \subseteq P(G), n<p$, is similar to regularity. However, neither of these properties implies the other, as is shown in the next two examples.

First we construct a regular group G for which $G_{p-1} \nsubseteq P(G)$.
Example 3. Let $W=\langle a\rangle\left\langle\langle b\rangle\right.$, where $a^{p}=b^{p}=1$. Set $G=$ W / W_{p}. Since $W_{p}=P(W)$, clearly $G_{p-1} \neq 1$ and $P(G)=1$. However, G has class $p-1$, and is thus regular ([4], Corollary 4.13, p. 73).

Next we construct an irregular group G for which $G_{2} \subseteq P(G)$.
Example 4. Let $H=\langle a, b\rangle$, where $a^{p p}=b^{p p-1}=1$ and $b^{-1} a b=$ a^{p+1}. Then $(a, n b)=a^{p^{n}}$, so $H_{2} \subseteq\left\langle a^{p}\right\rangle$. Thus $\left|H_{2}\right|=p^{p-1}$ and $H_{p+1}=1$. On the other hand, $(a,(p-1) b) \neq 1$, so $H_{p} \neq 1$. Thus H has class p, H_{2} is abelian and $d(H)=2$. It follows from Theorem 1.4 of [7] that there is a positive integer n such that if $H_{i}=H(i=1, \cdots, n)$, then $G=H_{1} \times \cdots \times H_{n}$ is irregular. However, it is clear that $G_{2} \cong P(G)$.

We know from Example 4 that $G_{2} \subseteq P(G)$ does not imply regularity. However, in that example $d(G)>2$. We now show that in a finite 2 -generator p-group ($p \neq 2$) $G_{2} \subseteq P(G)$ does imply regularity.

Theorem 3. Let G be a finite p-group $(p \neq 2)$ with $G_{2} \subseteq P(G)$
and $d(G)=2$. Then G is regular.
Proof. By Theorem 1, $G_{3} \subseteq P\left(G_{2}\right)$. Hence $d\left(G_{2} / P\left(G_{2}\right)\right) \leqq d\left(G_{2} / G_{3}\right)$. It follows from Theorem 2.83 of [4] that $d\left(G_{2} / G_{3}\right) \leqq 1$. By Corollary 1.1, $\left(G_{2}\right)_{2} \cong P\left(G_{2}\right)$, so $G_{2} / P\left(G_{2}\right)$ is an elementary abelian p-group. Thus [$\left.G_{2}: P\left(G_{2}\right)\right] \leqq p$, and G is regular by Theorem 2.3 of [5].

We next obtain a characterization of regular 3-groups.
Theorem 4. If G is a finite 3 -group, then G is regular if, and only if, $H_{3} \subseteq P\left(H_{2}\right)$ for each 2-generator subgroup H of G.

Proof. It follows from (*) that the latter condition implies regularity. On the other hand, if G is regular, then all subgroups of G are regular. Alperin ([1], Lemma 3.1.1, p. 96) has shown that if H is a regular 2 -generator 3 -group, then its derived group is cyclic. Hence $H_{3} \cong P\left(H_{2}\right)$.

Remark. If $p=3$ or $p=2$ and G is a regular 2-generator p group, then $G_{p} \subseteq P\left(G_{2}\right)$. However, these are the only primes for which this result holds, since the Burnside group of exponent p and 2 generators has class greater than p when $p>3$.

As in the proof of Theorem 4, if G_{i} is cyclic, then $G_{i+1} \subseteq P\left(G_{i}\right)$. In particular, $G_{3} \cong P\left(G_{2}\right)$ if $d\left(G_{2}\right)=1$. If $d\left(G_{2}\right)=2$ a theorem of Blackburn gives a similar result.

Theorem 5. Let G be a finite p-group such that $d\left(G_{2}\right)=2$. Then $G_{4} \subseteq P\left(G_{2}\right)$.

Proof. We may assume $P\left(G_{2}\right)=1$. It follows from Theorem 1 of [2] that $\left[G_{2}: P\left(G_{2}\right)\right] \leqq p^{2}$, so $G_{4}=1$.

We now show that for each prime p and each integer $n \geqq 3$, there is a finite p-group G such that $d\left(G_{2}\right)=n$ and $G_{4} \nsubseteq P\left(G_{2}\right)$. This shows that the result of Theorem 5 is not true if $d\left(G_{2}\right)>2$.

Example 5. Let $W=\langle a\rangle\left\langle\langle b\rangle\right.$, where $a^{p}=b^{p^{3}}=1$. Then $\left|W_{i} / W_{i+1}\right|=p$ for $i \geqq 2$ and W has class p^{3}. Thus $W_{5} \neq 1$. Let $H=W / W_{5}$. Then H_{2} is an elementary abelian p-group, $d\left(H_{2}\right)=3$, $H_{4} \neq 1$, and $P\left(H_{2}\right)=1$. Thus $H_{4} \nsubseteq P\left(H_{2}\right)$. If $n=3$ we may let $G=H$. If $n>3$, let D be one of the nonabelian groups of order p^{3}. Then $\left|D_{2}\right|=p$. Let K be the group formed by taking the direct product on $n-3$ copies of D. Set $G=H \times K$. Then $G_{2}=H_{2} \times K_{2}$ and $d\left(G_{2}\right)=d\left(H_{2}\right)+(n-3)=n$. Clearly $G_{4} \nsubseteq P\left(G_{2}\right)$.
4. Bounds on generators of commutator subgroups. Hobby ([6], Th. 3, p. 855) has shown that the condition $G_{2} \subseteq P(G)(p>2)$ imposes restrictions on the generating elements of $G^{(i)}$ for $i \geqq 0$. In this section we obtain similar results in the case $G_{3} \subseteq P(G)$ and $p>3$. The procedure used here can be extended to the general case $G_{n} \subseteq$ $P(G), n<p$, although the estimates thus obtained are not as precise.

Theorem 6. Suppose $p>3, G_{3} \subseteq P(G)$, and $d=d(G)$. Then $d\left(G_{3}\right) \leqq(1 / 2) d\left(d^{2}-1\right)$.

Proof. We may assume $\Phi\left(G_{3}\right)=1$. It then follows from Theorem 1 that $G_{4} \subseteq P\left(G_{2}\right)$ and $G_{5} \subseteq P\left(G_{3}\right)=1$. Also $P\left(G_{2}\right)$ is abelian, since

$$
\left(P\left(G_{2}\right)\right)_{2} \subseteq\left(P\left(G_{2}\right), G_{2}\right) \cong P\left(G_{4}\right) G_{2(p+1)}=1
$$

by Lemma 1.
We next claim that $d\left(P\left(G_{2}\right)\right) \leqq d\left(G_{2} / G_{3}\right)$. For if $d\left(G_{2} / G_{3}\right)=t$, then there exist elements g_{1}, \cdots, g_{t} in G_{2} such that for each $g \in G_{2}, g=$ $g_{1}^{m(1)} \cdots g_{t}^{m(t)} h$ for some integers $m(i)$ and $h \in G_{3}$. It follows from (*) that $g^{p}=\left(g_{1}^{p}\right)^{m(1)} \cdots\left(g_{t}^{p}\right)^{m(t)} h^{p} c d$, where h^{p} and c are elements of $P\left(G_{3}\right)$ and $d \in G_{2 p}$. Hence $h^{p}=c=d=1$ and the assertion follows.

Since $P\left(G_{2}\right)$ is abelian and $G_{4} \subseteq P\left(G_{2}\right)$ we thus have $d\left(G_{4}\right) \leqq d\left(G_{2} / G_{3}\right)$. Hence

$$
\begin{aligned}
d\left(G_{3}\right) & \leqq d\left(G_{3} / G_{4}\right)+d\left(G_{4}\right) \\
& \leqq d\left(G_{3} / G_{4}\right)+d\left(G_{2} / G_{3}\right) \\
& \leqq(1 / 2) d^{2}(d-1)+(1 / 2) d(d-1),
\end{aligned}
$$

where the last inequality follows from Theorem 2.83 of [4].
Theorem 7. Suppose $p>3$ and $k \geqq 2$. Let $x_{1}, x_{2}, \cdots, x_{d}$ be coset representatives of a minimal basis of the abelian group $G_{k} / G_{k}^{(1)}$. If $G_{3} \subseteq P(G)$, then there exist integers $n(i)$ such that

$$
\left(G_{k}\right)^{(1)}=\left\langle x_{1}^{p^{n(1)}}, \cdots, x_{d}^{p^{n(d)}}\right\rangle
$$

Proof. In any p-group, $\left(G_{k}\right)_{2} \subseteq G_{2 k}$. Since $k \geqq 2$ it follows from Theorem 1 that $G_{2 k} \subseteq P\left(G_{2 k-2}\right) \subseteq P\left(G_{k}\right)$. Thus the theorem follows from Theorem 3 of [6].

Corollary 7.1. Suppose $G_{3} \subseteq P(G)$ where $p>3$. If $k \geqq 2$ and if G_{k} can be generated by d elements, then $\left(G_{k}\right)^{(i)}$ can be generated by d elements for $i=1,2,3, \cdots$.

A p-group G is called p-abelian if $(x y)^{p}=x^{p} y^{p}$ for all elements x, y of G. The properties of p-abelian groups used below may be
found in [6] (p. 853).
Theorem 8. If $p>3, G_{3} \subseteq P(G)$, and $d=d(G)$, then $d\left(G^{(i)}\right) \leqq$ $(1 / 2) d(d+1)$ for $i=1,2,3, \cdots$.

Proof. We first consider the case $i=1$. The result is clearly true in this case if $|G|=p$. Suppose the theorem is true when $i=1$ for all groups H with $|H|<|G|$. We may assume $\Phi\left(G^{(1)}\right)=1$. By Theorem 2.83 of [4], $d\left(G^{(1)} / G_{3}\right) \leqq(1 / 2) d(d-1)$. A p-group G is p abelian modulo $P\left(G^{(1)}\right) G_{p}$. Since $p>3, G_{p} \cong P\left(G_{p-2}\right)=1$, so $P\left(G^{(1)}\right) G_{p}=1$ and G is p-abelian. Hence $d(P(G)) \leqq d$. In a p-abelian group $P(G) \subseteq$ $Z(G)$, so $P(G)$ is abelian. Since $G_{3} \cong P(G)$ we have $d\left(G_{3}\right) \leqq d$, so

$$
d\left(G^{(1)}\right)<d\left(G^{(1)} / G_{3}\right)+d\left(G_{3}\right) \leqq(1 / 2) d(d+1)
$$

Thus the theorem is true for $i=1$.
For $i>1$, Corollary 7.1 yields.

$$
d\left(G^{(i)}\right)=d\left(\left(G^{(1)}\right)^{(i-1)}\right) \leqq d\left(G^{(1)}\right) \leqq(1 / 2) d(d+1)
$$

The author wishes to thank the referee for his suggestions.

Bibliography

1. J. L. Alperin, On a special class of regular p-groups, Trans. Amer. Math. Soc. 106 (1963), 77-99.
2. N. Blackburn, On prime-power groups in which the derived group has two generators, Proc. Camb. Phil. Soc. 53 (1957), 19-27.
3. M. Hall, The theory of groups, Macmillan, New York, 1959.
4. P. Hall, A contribution to the theory of groups of prime-power order, Proc. Lond. Math. Soc. (2) 36 (1933), 29-95.
5. - On a theorem of Frobenius, Proc. Lond. Math. Soc. (2) 40 (1936), 468-501. 6. C. Hobby, A characteristic subgroup of a p-group, Pacific J. Math. 10 (1960), 853-858.
6. P. M. Weichsel, Regular p-groups and varieties, Math. Zeit. 95 (1967), 223-231.

Received November 9, 1967, and in revised form July 15, 1968. This paper contains portions of the author's doctoral thesis at the University of Washington. The research was supported in part by the National Science Foundation under grant NSF GP-5691.

Iowa State University

