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THE POWER-COMMUTATOR STRUCTURE
OF FINITE i>-GROUPS

DEANE E. ARGANBRIGHT

For a finite p-group G, Gn is the n-ih element in the de-
scending central series of G; P(G) is the subgroup of G ge-
nerated by the set of all xp for x belonging to G; and Φ(G)
is the Frattini subgroup of G.

Hobby has characterized finite p-groups G (for p > 2) in
which P(G) = Φ(G). Since Φ(G) = G2P(G), the condition P(G) =
Φ(G) is clearly equivalent to G2 £ P(G). In this paper we
examine the class of finite ^-groups G which have the pro-
perty that Gn £ P(Gm) for 1 < njm < p. In §2 we consider
consequences of this property in the case m = 1. For example,
if Gp-ί £ P(G), then the product of p-th powers of elements
of G is the p-th power of an element of G (Theorem 2), In
§ 3 we examine some connections between the property Gn £=
P(Gm) and regularity, and obtain a characterization of regular
3-groups (Theorem 4). In § 4 we obtain bounds on the number
of generators of various commutator subgroups of G in the
case G3 £ P(G), p > 3.

For a discussion of ^-groups G for which G2 g P(G) see [ 6 ] .

1* Notation* Throughout this paper G is a finite £>-group. If
Xlf X2, , Xn are subsets of G, then ζXu X2, , JSΓW> is the smallest

subgroup of G containing all the Xi9 If X — {x} for some element a?,

we write X = x. We denote by d(G) the minimal number of elements

of G which generate G, while | G \ is the order of G. We set Pn(G) =

<{α?pW I α? e (?}>. Also, Z(G) is the center of G and Φ(G) is the Frattini

subgroup of G.

Simple commutators of weight n are defined inductively by setting

(xly x2) - XT'X^X^Z and (xί9 . . , xn) = ((xιy , x^), xn) for w > 2. In

addition, we define (x, ly) = (a?, 3/) and (&, wj/) = (x, (n — l)y, y) for

n > 1. For subgroups ί^, £Γ2, , Hn of G we set

{Hl9Hif -..,Hn) = <{(hlyh2, . . . ^ J I ^ e H , } ) .

Similarly, (H19 1H2) = (i^, ίί2) and (fli, wfl"2) = (iϊ,, (n ~ 1)H2, H2) for

n > 1. The descending central series of G is defined by setting GL = G

and Gn = (G%_i, G) for π > 1. A group G is said to have class c if

Gc + 1 = 1 and Gc Φ 1. Finally, the derived series of G is defined by

setting G{0) = G and Giί+1) = (G( ί ), G(ί)) for i ^ 0.

2 Basic results^ It is known ([4], Th. 3.1, p. 63) that when-
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ever x and y belong to G,

( * ) (xy)p = xpypcd

where c e P{ζx, y*)2) and d e ζx, y)p. Applying this result to the ex-
pression (ap, b) = a~p(a(a, b))p one can obtain the following lemma by
repeated induction.

LEMMA 1. // s, n, k ^ 1, then (P(Gn), sGk) a P(Gn+sk)Gpn+sk.

THEOREM 1. Let n and m be integers and p be a prime such
that l<n/m< p. If Gn a P ( G J , then Gn+k a P(Gm+k) for k ^ 0.

Proof. We proceed by induction on k, the case k = 0 being the
hypothesis. Suppose that Gn+k a P(Gm+k) and that G is a group of
minimal order for which Gn+k+ί <g P(Gm + f c + 1). Clearly we may assume
P(Gm+k+ι) = 1. It follows from Lemma 1 that (P(Gm+k), G) S (τp ( m + A)+ 1.
Hence Gn+k+1 g (P(Gm+k), G) S G p ( w + f t ) + 1 . However, p(m + fc) + 1 > π +
k + 1, so GΛ+Jfe+1 c GΛ+Jfc+1, a contradiction. Thus Gn+k+1 £ P(Gm + A ; + 1).

REMARK. We shall be most concerned with the case m = 1 of
Theorem 1: If Gn £ P(G) and w < p, then Gw+fc S P(G1+k) for fc ̂  0.
In Example 1 we show that this result cannot be extended to the
case n 7> p.

COROLLARY 1.1. If n <p and Gn £ P(G), then
(a) {Gdn £ P ( ^ ) for i = 1,2,3, •-.,
(b) (P{G))n £ P(Gn) £ P(P(G)), and
(c) /or α ^ x e G, if H = <G2, α>, ίΛβπ Jϊπ g P(G2) S

Proo/. (a) It is known ([4], Th. 2.55, p. 55) that (G<)n S Gin.
Since m — (n — 1) ̂  i it follows from Theorem 1 that

Gin S P(G<w-(n-l,) S P ( ^ ) .

(b) It follows from Lemma 1 that (P(G))n £ {P(G), (n - 1)G) S
P(Gn)Gp+n^. By Theorem 1, G , ^ C P(GP), so

(P(G))n a P(Gn)P(Gp) a P(P(G)) .

(c) Since G2 is central modulo G3 and ί//G2 is cyclic, we have
H2 a G3. It follows that if, a G ί + 1 for i ^ 2. By Theorem 1, Gw+1 a
p(G2). Thus fl. a G Λ + 1 a P(G2) a

COROLLARY 1.2. // w < p, Gn a P(G), α^d ί is αw integer such
that 2* ̂  n + 1, ί/^e^ G ί&+<-1) a P(G(fc)) /or fc ̂  1.
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Proof. We assume that the result holds for all groups of order
less than \G\. It follows from Corollary 1.1 that G(1) satisfies the
hypothesis of this corollary. Since |G ( 1 ) \ < \G\ we have

(**) (G<i>)<*+<-i> g P((G{1)Yk))

for k ^ 1.
By Theorem 2.54 of [4], G{t) S G2t. Hence for k - 1 it follows

from Theorem 1 that G( ί ) S Gn+1 S P(G2) = P(G{1)). If A > 1 we re-
place k by k — 1 in (**) and obtain

REMARK. When w = ί = 2 in Corollary 1.2 we obtain Theorem 2

of [6].

We now show that Theorem 1 for the case m = 1 cannot be ex-
tended to include n 2> p.

EXAMPLE 1. Let <V> I (py be the wreath product of (ay by <δ>,
where ap = b*r = 1 and r > 0. Then Gp S P(G), ί"(G2) = 1, and

It is clear that the property Gn §Ξ P(G), n < p, is inherited by
factor groups and preserved by direct products. By the following
example we show that this property is not always inherited by a sub-
group H of G.

EXAMPLE 2. Let W = (ayi (by, where ap = bp = 1. For 2 ^ w g
p — 1, set if = W/Wn+1 and fl"Λ = <«>. Let (dy be the cyclic group
of order p2, and G be the group formed by taking the direct product
of H and (dy with the amalgamation dp = z. Then Gn = Hn = <(̂ )> =
P(G), while P(JΪ) = 1.

THEOREM 2. / / GΛ S P(G) α^d n < p, then for any xu - -,xk

in G, there is an element h in G such that xf x\ ~ hp.

Proof. The result is clear if G is abelian. Suppose that G is
nonabelian and that the theorem holds for all groups H with | H\ <
\G\. It follows from (*) that {xx %) ? ) = xf x\gl #f#, where
Qi G G2 for 1 g i ^ ί and 0 e Gp. By Theorem 1, Gp S P(G2), so there
exist elements grί+1, , gr in G2 such that g = gf+1 gv

r.
By Corollary 1.1, (G2)w S P(G2). Since | G21 < | G | it follows from

the induction hypothesis applied to G2 that g\ gΐgϊ+ι "% gl = Vp

1

where y e G2. That is, xf x\ = (xx xk)
psp, where s = T/"1 is in
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G2. Next set x = x, xk and let H = <G2, &>. By Corollary 1.1,
£ΓW g P(H). It follows from the Burnside Basis Theorem (see e.g.
[3], p. 176) that d(G) = d(G/K) if if is a normal subgroup of G and
K^Φ(G). Thus, since G is nonabelian, HaG. Hence, applying the
induction hypothesis to H, xpsp = hp for some h in H. Therefore
X* . . . χl = hp.

COROLLARY 2.1. If Gn s P(G) and n < p, then P(P(G)) = P\G).

REMARK. The results of Theorem 2 and Corollary 2.1 are the
best possible. That is, if n >̂ p then it does not follow from Gn £
P(G) that the products of p-th powers are p-th powers or that
P(P(G)) = P2(G). For if we let G = <α> I <&>, where α*2 = bp2 = 1,
then it can be shown that Gp S P((J), while b~p(baQ)p is not a p-th
power for some α0, δ e G , and P2(G) Φ P(P(G)).

3. Regularity. A p-group G is regular if for each pair of ele-
ments α, b of G, (ab)p = apbpc where c e P « α , 6>2). If G is not regular,
G is called irregular. It follows from (*) that G is regular if
Kflj byp S P(<(a, by2) for each 2-generator subgroup <(α, δ)> of G. By com-
parison, Gp S P(G2) whenever Gw S P(G) and n < p. In addition, the
result of Theorem 2 is also true in regular ^-groups. Thus the property
Gn £ P(G), n < p, is similar to regularity. However, neither of these
properties implies the other, as is shown in the next two examples.

First we construct a regular group G for which Gί>_1 $£ P(G).

EXAMPLE 3. Let W = <α> I <&>, where ap = bp = 1. Set G =
TΓ/WP. Since Wp = P(W), clearly G ^ ^ 1 and P(G) = 1. However,
G has class p — 1, and is thus regular ([4], Corollary 4.13, p. 73).

Next we construct an irregular group G for which G2 S P(G).

EXAMPLE 4. Let H = <α, 6>, where apP = bpP~τ = 1 and b~ιab =
ap+1. Then (α, nb) - a25", so H2 c <ap>. Thus | ίΓ21 = p^"1 and Hp+1 = 1.
On the other hand, (α, (p — 1)6) Φ 1, so Hp Φ 1. Thus J ϊ has class
p, Hz is abelian and d{H) = 2. It follows from Theorem 1.4 of [7]
that there is a positive integer n such that if Hi = iJ(ί = 1, . . . , % ) ,
then G = f̂  x x Hn is irregular. However, it is clear that
G2 S P(G).

We know from Example 4 that G2 S P(G) does not imply regu-
larity. However, in that example d(G) > 2. We now show that in a
finite 2-generator p-group (p Φ 2) G2Q P(G) does imply regularity.

THEOREM 3. Let G be a finite p-group (p Φ 2) with G2 £ P(G)
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and d(G) = 2. Then G is regular.

Proof. By Theorem 1, G3 £ P(G2). Hence d(G2/P(G2)) ^ d(G2/G3).
It follows from Theorem 2.83 of [4] that d(G2/G3) ̂  1. By Corollary
1.1, (G2)2 £ P(G2), so G2/P(G2) is an elementary abelian p-group. Thus
[G2: P(G2)] ^ p, and G is regular by Theorem 2.3 of [5].

We next obtain a characterization of regular 3-groups.

THEOREM 4. // G is a finite 3-group, then G is regular if, and
only if, H3 £ P{H2) for each 2-generator subgroup H of G.

Proof. It follows from (*) that the latter condition implies re-
gularity. On the other hand, if G is regular, then all subgroups of
G are regular. Alperin ([1], Lemma 3.1.1, p. 96) has shown that if
H is a regular 2-generator 3-group, then its derived group is cyclic.
Hence H3 £ P(H2).

REMARK. If p = 3 or p = 2 and G is a regular 2-generator p-
group, then Gp £ P(G2). However, these are the only primes for
which this result holds, since the Burnside group of exponent p and
2 generators has class greater than p when p > 3.

As in the proof of Theorem 4, if G, is cyclic, then G i + 1 £ P(G,).
In particular, G3 £ P(G2) if d(G2) = 1. If d(G2) = 2 a theorem of
Blackburn gives a similar result.

THEOREM 5. Le£ G be a finite p-group such that d(G2) = 2. Then

G4 £ P(G2).

Proof. We may assume P(G2) = 1. It follows from Theorem 1
of [2] that [G2: P(G2)] ^ p2, so G4 = 1.

We now show that for each prime p and each integer n ^ 3,
there is a finite p-group G such that d(G2) = n and <S4 g£ P(G2). This
shows that the result of Theorem 5 is not true if rf(G2) > 2.

EXAMPLE 5. Let W = <α> 2 <&>, where α^ = 6p3 = 1. Then
I Wi/Wi+ί \ = p for i ^ 2 and ΫF has class p3. Thus W5 Φ 1. Let
# = W/W6. Then fl"2 is an elementary abelian p-group, d(H2) = 3,
iϊ 4 ^ 1, and P(H2) = 1. Thus ί ί 4 g P ί f t ) . If w = 3 we may let
G = H. If % > 3, let D be one of the nonabelian groups of order
p3. Then \D2\ = p. Let if be the group formed by taking the direct
product on n — 3 copies of D. Set G = H x K. Then G2 = H2 x J^2

and d(G2) = d(ίf2) + (w - 3) = n. Clearly G4 g P(G2).
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4* Bounds on generators of commutator subgroups* Hobby
([6], Th. 3, p. 855) has shown that the condition G2 C P(G) (p > 2)
imposes restrictions on the generating elements of G{i) for i ^ 0. In
this section we obtain similar results in the case G3 S P(G) and p > 3.
The procedure used here can be extended to the general case Gn S
P(G), n < p, although the estimates thus obtained are not as precise.

THEOREM 6. Suppose p > 3, G3 g P(G), and d = d(G). Then
d(G3) ^ (l/2)d(d2 - 1).

Proof. We may assume <2>(G3) = 1. It then follows from Theorem
1 that G4 C P(G2) and G5 S P(G3) = 1. Also P(G2) is abelian, since

(P(G2))2 s (P(G2), G2) s P(G<)Gilp+1) = 1

by Lemma 1.
We next claim that d(P(G2)) ^ d(G2/G3). For if d(G2/G3) = ί, then

there exist elements gly-"ygt in G2 such that for each geG2,g —
gm(i) # . # ^(^/^ for some integers m(i) and Λ G G3. It follows from (*)
that g* = (^f)m(1) (gΐ)m{t)hpcd, where /^ and c are elements of P(G3)
and d e G2V. Hence hp = c = d = 1 and the assertion follows.

Since P(G2) is abelian and G4 g P(G2) we thus have d(G4) ^ d(G2/G3).
Hence

d(GA)

d(G2/G3)

^ (lβ)d\d - 1) + (l/2)d(d - 1) ,

where the last inequality follows from Theorem 2.83 of [4],

THEOREM 7. Suppose p > 3 and k ^ 2. Le£ α̂ , .τ2, , xd be coset
representatives of a minimal basis of the abelian group Gk/G^ If
G3 ϋ P(G), then there exist integers n(i) such that

Proof. In any p-group, (Gk)2 C G2fc. Since Λ ^ 2 it follows from
Theorem 1 that G2k S P(G2,_2) C P(Gfc). Thus the theorem follows
from Theorem 3 of [6].

COROLLARY 7.1. Suppose G3 g P(G) wΛβrβ p > 3. // k ^ 2
i/ Gfc cαπ 6e generated by d elements, then (Gk)

{ί) can be generated
by d elements for i — 1, 2, 3, .

A p-group G is called p-abelian if (ίπ/)p = xϊ)?/2) for all elements
x,y of G. The properties of p-abelian groups used below may be
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found in [6] (p. 853).

THEOREM 8. If p > 3, G3 £ P(G), and d = d(G), then d(G{ί)) ^
(l/2)d(d + l) /or i = 1,2,3, . . . .

Proof. We first consider the case ΐ = 1. The result is clearly
true in this case if \G\ = p. Suppose the theorem is true when i = 1
for all groups H with \H\ < \G\. We may assume Φ(G{ί)) = 1. By
Theorem 2.83 of [4], d(G{1)/G,) ̂  (l/2)d(d - 1). A p-group G is p-
abelian modulo P(Ga))Gp. Since p > 3,GP £ P(GP_2) = 1, soP(Ga))Gp = 1
and (? is p-abelian. Hence d(P(G)) S d. In a p-abelian group P{G) £
Z(G), so P(G) is abelian. Since G3 £ P(G) we have d(G3) ^ d, so

d(G(1)) < d(G(1)/G3) + d(G3) ^ (l/2)d(d + 1)..

Thus the theorem is true for i = 1.
For i > 1, Corollary 7.1 yields.

The author wishes to thank the referee for his suggestions.
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