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ANALYTIC TWO-DIMENSIONAL SUBCENTER MANIFOLDS
FOR SYSTEMS WITH AN INTEGRAL

AL KELLEY

For a real analytic system of ordinary differential equa-
tions with an integral H

H =3+ y*) + F2) + G, y, 2)

=2y + Xz, y,?)

y=—x+ Y(,vy,2)

2=Bz+ Z(z,y,?)
where © and y are scalars; z is an m-vector; X, Y, Z are
power series with no constant or linear terms; B is a constant
matrix with eigenvalues g, -- -, #, and 127'y; + integer (j =
1, ---, m); the existence of a unique, local, real analytic, two-
dimensional, invariant subcenter manifold

M*={z,vy,2) | lz| +1y| <9, 2z=wk,y)

is proved, where w is a real analytic function with no con-
stant or linear terms in its expansion about the origin. The
manifold M* is composed of a nested, one-parameter (0 = 0)
family of periodic orbits, and as p— 0 the corresponding
periodic orbit goes to the origin and its period goes to 27 | 21|,

In this paper we extend the result of C. L. Siegel [7] to analytic
systems of ordinary differential equations with an integral (see (1)
below). C. L. Siegel proved Theorem 1 below with the additional
restrictions that system (1) is Hamiltonian and that the matrix B in
(1) is a diagonal matrix. The removal of these two restrictions is a
technical improvement; our emphasis is on the invariant manifold
aspect of the theory (see Theorem 2 below). As far as proving the
existence of a local, nested, one-parameter family of periodic orbits
is concerned, the theorem proved by C. L. Siegel [7] is equivalent to
a result of Liapounov [5] proved before the turn of the century.
However, in addition C. L. Siegel proved that the invariant, two-
dimensional manifold comprising the nested, one-parameter family of
periodic orbits is an analytic manifold, and that by means of an
analytic change of variables, the differential equations on the invariant
manifold have a very simple form. Using the proof method of
Liapounov, one is able to conclude only that the invariant manifold
of periodic orbits is continuous. (See A. Kelley [3] for a C' version
of these ideas.) For real analytic systems with an integral we prove
in § 4 below that the invariant manifold is directly computable from
the differential equations, and hence unique and real analytic. Since
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our manifold is imbedded in the center manifold (see A. Kelley [4]),
we call it a subcenter manifold.

The convergence proof in Theorem 1 below is based on techniques
developed in C. L. Siegel [7], J. Moser [6], and A. Kelley [1], [2].

2. Notation. Let z = (2, --+,%,) be a complex vector and let
g be a nonnegative integer. We define I(z) to be the class of
functions {F'} which satisfy (i), (ii), (iii) below.

(i) F = F(z) is a complex scalar valued function, vector valued
function, or matrix valued function (dim F unspecified) defined for z
in some neighborhood of z = 0.

(ii)) F has a convergent power series expansion in z (components
of z) about the point z = 0; the coefficients in the expansion are
either scalars, vectors, or matrices (as the case may be); there are
no terms of degree less than ¢ in the expansion of F.

(iii) For some K > 0 the components of F' are majorized by

K(Z1 4 oo + zp)q[l — K(zl + oo + zl’)]_l °

The constant K depends on F.

Primes in this paper either designate majorants or designate
variables and functions in a complex setting as contrasted to a real
setting. Given F(z) € I"(z) there exists F'(z) such that

F(z) < F'(2)

where the symbol € means F' and F” belong to the same I' class,
dim F = dim F’, and F' is majorized componentwise by F’ in the
sense of Cauchy.

The norm | - | is the euclidean norm on vectors and the operator
norm on matrices. If F = F(z) is a vector valued function of the
vector z, then F, represents the usual Jacobian matrix of partial

derivatives.
If Fel™(x,y) where  and y are scalar variables, then [F],,
represents the coefficient of the z°y® term in the expansion of F.
Let Fel'(x,y) be a vector valued, real analytic function of the
scalar variables x and y, and let

F(z,y) = 332 s=F a0y’ .
In §4 below we will use the notation
F, = [F]n = (Fn,oy Fn-—1,1: "’yFo,n) .

Thus F, is a vector in R»+vaimF,
Throughout this paper R = R(p,q) is used to designate an
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anylytic function, although occassionally (as above) the notation
ze R is used to indicate that z is an n-vector. The distinction will
always be clear from the context.

3. Analytic changes of variables. Consider the complex analytic
system of ordinary differential equations with an integral H

H(x, vy, 2) = inzy + F(z) + Gz, ¥, 2)
T = ine + X(x, v, ?)
¥y = —i\y + Y(x,vy,2)
2= Bz + Z(, vy, ?)

@)

where x and y are complex variables; z is a complex m-vector
variable; )\ is a nonzero complex number; (in the most interesting
case \ is real, see (19) below for the real counterpart to system (1));
B is a constant matrix in Jordan canonical form; B = B’ + B!,

B = diag (llu ct /’em)
B! = subdiag (0,, +++, 0,,_)

with 6, =0 or 9,0 > 0 sufficiently small (to be specified below);
X, Y Zel*x,y,2); dim X = dimx, ete.; F is a quadratic form in
the components of z (F' = 0 is allowed); G e I*(x, ¥, 2) (which implies
that HeI*(x,y,2)); H is an integral for system (1).

THEOREM 1. If ix7'p; + integer (j =1, --+, m), then for system
(1) there exists a change of wvariables (not unique)

=p + P(p, q)
(2) Yy=q+ Q®,q)
z=1r+ R(p, q)
such that
P = M1 + a(pg)p + P(zf, q,7)
3 ¢ = —iM1 + a(pg))q + Q(p, q, 1)

+ = Br + R(p, q,7)
P,@,EEOwhenr:O,

where a = a(pq) is a function of the product Dq; a(w) € I'(w) (which
implies a(pg) € I'(p, )); P,Q, ReI™(p,q); P,Q, ReI*(p, q, ).

Proof. First we construct a formal change of variables (2) such
that
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D = M1 + a(pq)) + 15(23, )
d = —iM1 + d(pq)) + Q(p, q,7)
# = Br + R(p, q,7)

~ o~

P,Q,R=0 when r =0,

(4)

where a and @ are formal power series in the product pg with no
constant terms. Then we will use the fact that H is an integral
for system (1) to prove that @ = ¢ as formal power series. Finally,
convergence will be proved using the Cauchy method of majorants.

If such a change of variables (2) exists, then from (1), (2), (4)
we obtain

P=_—inap+ NP+ X(p+P,qg+Q,r+R)— Pw,q,nr
() Q=i\dg—NQ+ Y+ Pqg+Qr+R)—0Q®qnr)
R=BR+ Zp+ P,q+ Q,r + R) — R(p, q,7)

where P = P(p, q), ete. Taking the Qerivative on the left side of (5)
implicity and using the condition P, @, R = 0 when » = 0, we obtain

plz _'qI% _'1)
= —ap — apP, + @qP, — I "'X(p + P,q + Q, R)
<p(2p - qceq"+ 62
(6) =dq — apQ, + @qQ, — IN'Y(p + P,q + @, R)
Pi R; — Q—?- R; + iv'R;
op 0q
= — N0, Ry — apR; + 3g"_R; — iNZy(p + P,q + Q, R)
op oq
(j = 17 °t Y ”Q)

where 0, = 0. From (6) the coefficients of P,Q, R,a,d can be com-
puted recursively. Let

P(p,q) = 3, P.s:p°9",
a+p=2
etc. From (6) we have

Sia — B — 1P, ;p°q° = —>a5,0°"'q° + - -+
(7) S — B + DQu,sp°q° = 2a,ap*q" ™ + -+
S(a— B+ N )R = oo (G=1--,m.

If we equate corresponding coefficients on the left and right side of
(6) (equivalently (7)), we obtain
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(@ — 8 —1)P,;
=[—ap — apP, + 4P, — "X + P,¢ + Q, )]s
(@ — B+ DQu.s

®) = [@q — ap@, + @qQ, — N"'Y(p + P,q + Q, B)]..s

(@ — B+ INT'U)R; a0
= [-n70, Ry — ap-D R + G0 Ry — N Z(p + P,a+ @, B) |
op oq a8
Clearly, the expressions on the right side of (8) involve only the
coefficients of P, @, R of order less than a + 8 and the coefficient of
R, ---,R;_, of order less than or equal to « + 8. When a =8 + 1,
then az,; must be chosen so that the right side of the first equation
in (8) vanishes. Similarly when 8 = a + 1, then @,, must be chosen

so that the right side of the second equation in (8) vanishes. By
hypothesis \~'y; + integer (j =1, .-+, m). Therefore

a— B+ Ny, #0 (j=1,--+,m)

and all the coefficients of R can be computed recursively from (8).
All the coefficients of P and @ can be computed recursively, except
Py s and Q, .., (a,8=1,2 ...) which can be chosen arbitrarily.
Let

P(p,q) = ;Pﬂﬂ,ﬂpﬁ“qﬁ
Qp, @) = XQuarip’q™"
by any given convergent power series (for example P, Q = 0), and
define
Pgiis = ﬁﬁﬂ,ﬂ
Qa,a+1 = Qa,a+1 (le, B = 1! 29 ° ') .

Now, from (8) and (9) the coefficients of P, Q, R, a, @ can be computed
recursively.

Next we want to show that o and @ are equal as formal power
series. Since H is an integral for (1),

Hp,¢) = H(p + P,q + Q,R)

9)

is a (formal) integral for system (3) restricted to the manifold given
by r = 0; namely for the system

D =11+ a)p

¢ = —in1l+ @) .
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Therefore, operating only in the sense of formal power series, we
obtain

d

ol = Hixd + a)p — HiM1 + @)g =0,

or equivalently
(10) pH, — qH, = —apH, + dqH, .
Let

Hp, q) = 3 How'd’ .
Equating coefficients in (10), we have
an (@ — B)Hes = [—apH, + GgH,..s -

Since a = a(pg) and @ = d(pqg) are power series in the product pgq, it
follows from (11) by induction that H,, = 0 for all @ = 8. There-
fore H is a (formal) power series in the product pq, and this implies

pH, =qH,.
Hence from (10)
(a —d@)pH,=0.
Since
pH, = ixpg + -+
is a nontrivial power series, we conclude that as formal power series
a(pq) = a(pq) .
Equation (6) can now be written
pP, — qP, — P = —ap — o{pP, — qP)} — "X(p + P, ¢ + Q, R)
(12) PR — qQ, + Q = aq — of{pQ, — ¢Q} — N'Y(» + P,q + @, R)
pR, — qR, + iN'B°R
= —iN"'B'R — o{pR, — qR,} —iN"Z(p + P,q + Q,R) .
Let X', Y, Z/, P’, Q’, o' be the smallest majorants of
X, VY, iINZ, P, QL a
respectively. Thus
X', Y, Z' el v,2); P,Q el*p,q) .

The power series a’ must still be shown to be convergent. Define
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P'(p, q) = (| — B + 04p) | Pe,s | p°¢°

13) Q®,9) =3(a— B|+ dup) | Qus | p°¢°
Ri(p, @) = (& — B| + 0up) | Bjop | p°¢°  (7=1,+-+,m)
R = (R}, .-+, Ry)

where 0,; is the Kronecker delta. Clearly

PLP; QLQ; RLR.
Choose K > 0 such that for all nonnegative integers a and S8 (except
as noted)

laa — B —1|"(a— B+ 0u) = K (@ —B—-1+0)
(14) la =B+ 1[7(|a— B+ 0, =K (@ —B+1+0)
Ia_18+i)"—lﬂj|_l(la’"3|+5aﬁ)§K (j:]-y""m)°

From (12), (18), (14) it follows that

P' < K[a'P' + X'(p + P',q + Q, R)] + P’

Q < K[¢Q + Y'(p+P,qg+@Q,R)]+Q’

R <« K[[V'|BR +a'R' + Z'(p + P',q + Q, R)]
adpLadP +X'(p+P,q+Q,R).

(15)

Since P’, @', R’, o’ all have real, nonnegative coefficients, it is sufficient
to prove convergence when p = q¢ = {. Let

{"(C, 0= le”(C); @'(C, 0) = ?SQ"(C); R'(C, ) = CR7(C);

P, Q) =LCP"(Q); Q0 =LR"(K); o' (C) = a’(©) .
From (15) we have

P" & K[a"P" + (2 X'(C + CP", L + CQ", CR")] + P

QI/ << K[aI/QII + C-—l YI(C + CP’,’ C + CQN, CRII)] + Q\II

R" K K[|N7'|B'R" + a"R" + (T'Z'(C + CP", £ + LQ", LR")]
a” La"P" + X(C+ P+ LQ", LR .

(16)

Define formal power series P* = P*({), P*(0) = 0, etc., by the func-
tional equations

P* = K[a*P* + (" X'(C + LP*, { + LQ*, (R*)] + P

Q* = K[a*Q* + {'Y'(C + (P*, L + CQ*, LRM] + @

R* = K[|\ BIR* + a*R* + ('Z'(C + CP*, ¢ + CQ*, LRY)]
a* = a*P* 4+ (' X'(C + CP*, C + CQ*, LR*) .

Comparing (17) with (16) it follows that

an
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P"< P*; Q"< Q*; "< ER*;a" < a*.
But the convergence of P*, Q* R*,a* in (17) follows from the
implicit function theorem provided ¢ in B' is chosen sufficiently
small to insure that
K|N'B'|<1.
Thus from
P*, Q*, R*,a*eI'({)
we conclude that
P,Q,R,acp,q).
To show that
P,Q,Rel*p,q,r)
write equation (5) as
P=—iap+ NP+ X(»+ P,q+ Q,r + R)
—P,(ix1 + a)p + P} — P{—iM1 + a)g + Q)
Q=1iag — M@ + Y(p + P,¢g+ @Q,r+R)
—Q,(M1 + a)p + P} — Q{~iM1 + a)g + Q)
R=BR+ Z(p+ P,q+ Q,r + R)
—R,{in1 + a)p + P} — R{—iM1 + a)qg + Q} .

18)

Since P, Q, R,a are known analytic functions of (p,q), we can
regard (18) as an equation in the variables p,q,r, P, @, B and use
the implicit function Theorem to solve for P = P(p, q, r), ete. Clearly

P,Q,R=0 when r=0.
This completes the proof of Theorem 1.

4. Real analytic invariant manifolds. For real analytic systems
of equations with an integral, we want to show the existence of
real analytic invariant manifolds. Theorem 1 will be the prime tool
for this program.

Consider the 7real analytic system of ordinary differential equa-
tions with an integral H

H@, y,2) = %sz + ) + F@) + G@, v, 2)

T =Ny + Xz, ¥, ?)
g = —\T + Y(xy Y, Z)
2 = Bz + Z(x, vy, ?)

(19)
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where = and y are real scalar variables; z is a real m-vector variable;
A\ is a nonzero real number; B is a real, constant matrix with eigen-
values g, «++, ttn; X,Y,ZeI*(x,y,z) are real analytic; dim X =
dim 2, ete.; F' is a real quadratic form in the components of z;
Ge I, y,z) is real analytic; H is a real analytic integral for (1).

THEOREM 2. If iN~'p; + integer (j =1, ---,m), then for system
(19) there exists a wunique, local, real analytic, two-dimensional,
wnvariant manifold

M= {@,y,2) |||+ |y]| <,z = wx,y)}

where w € I'*(x, y) s real analytic and is directly computable (thus
it s not mecessary to reduce the differential equations to a mormal
form such as (38) below in order to compute M?); moreover, the
mantfold M* is composed of a mnested, one-parameter (0 = 0) family
of periodic orbits, and as p— 0 the corresponding periodic orbit
goes to the origin and its period goes to 2w |N7'|.

Proof. The second part of this theorem is relatively easy to
prove. Suppose the real analytic function w which defines M? is
known. Then

m%w:§M¢+w+ﬁwmm»+w%%m%w

is a real analytic integral for (1) restricted to M*. Introduce

& = p(1 + b)cos @
y=p1 + b)sin @

into the equation

3 1
H(x, y) = =\0*
(%, v) o M
to obtain
(20) b+ %bz + o\ F 4 G) =0
where

F = F(y, p,b) = F(w(p(l + b) cos 6, o(1 + b) sin 6))
G =G(8,0,b) = Go(L + b)cos 0, -+-) .
We observe that p—\~'(F + G) is well defined for p = 0. From (20)

by means of the implicit function theorem we can solve for b = b(4, p)
with b having period 27 in 6 and (4, 0) = 0, so that
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x = o1 + b, p)) cos 0
y = p(L + b(6, p)) sin 0
z = w(o(l + b4, p)) cos 4, p(1 + b(4, p)) sin 4)

is a representation of the one-parameter (0 = 0) family of nested
periodic orbits which comprise M*.

Continuing in this manner, it is not difficult to prove the asser-
tion concerning the periods of these periodic orbits. See [3] for the
details.

For a more complete analysis of the differential equations (19)
restricted to M*, one can show the existence of a real analytic change
of variables

x=p+ P(p,q)
¥Yy=q+ Q{9
z =7+ R(p, q)

such that on M* (given by z = R(p, q))

» =ML + a(p* + ¢°)q
Gg=—M1+ a(® + ¢))p

where P, Q, R, ac I*(p,q) are real analytic; a is a real power series
in the quadratic form p* + ¢*>. In this formulation the periodicity of
the solutions of (21) is obvious (the circles »* + ¢* = 0* in the
(p, 9)-plane are orbits) and the assertion concerning the periods of
these solutions is immediate. The details of this analysis are given
in §5 below.

(1)

We now prove the first part of Theorem 2. Primes for the rest
of this section will denote variables and functions in a complex
setting as opposed to unprimed variables and functions in a real
setting. Introduce the change of variables

1

x = 1/f(ix' + )
J— 1 — ’ _ N4
(22) y—ﬁ( &' — 1y’)
z = Bz

so that system (19) transforms to
H'(@,y,2) =iy + F'(2) + G, ¢, 2)
=i + X', v, ?)
¥y =—y + Y@, 9y, 2)
z" — B’z’ + Z,(x’, yl, z’)

(23)
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where
1 L
vV'2 V2
B’ = B~BB is in Jordan canonical form; X', Y’, Z' are related to
X,Y,Z in the usual way. Theorem 1 asserts the existence of an
invariant manifold

M= A{@,y,2) |2 =p" + P, q),

v =q¢ + Q0,492 =FR(®,q))

where P’, Q', R’ e I'*(p’, ¢'). But the change of variables

H'@, o, ) = H( =i’ + ¥), Z=(~o = i), B¥);

(24

o =p" + P(p,q)
¥Y=¢+QW,q)
can be inverted to give
p=p@,y)=a + -
¢ =¢@,y)=y + -
so that
(25) M*={@,y,2) |||+ ]y <d,2 =w(,y)}
where
w' @, y) = R, v), @, y)),

which implies @’ e I™(z’,y’). With the representation given by (24)
it is not clear that M'* is unique, but with the representation (25)
we can easily show uniqueness for M’. Since the manifold is
invariant,

,u')l —_ BIwI + Zl(xl’ yl, wl) y
equivalently

(26) nx'w,, — iny'w,, — B'w’
=Z'@,y,w) —w, X', y,w) - w, Y, ¢, w).
Expanding w’ as a power series and equating coefficients in (26), we

have
@0 (iMa — B — BYw:,s
=[Z", ¢y, w) — w. X', Y, w) — w, Y@, Y, W)las

where I is the identity matrix. Since by hypothesis iA~'p; + integer
(=1, .-+, m) where p,, ---, 11, are the eigenvalues of B’, it follows
that
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det (iMa — B)I — B') # 0.

Since the right side of (27) depends only on the coefficients of w’
having order less than a + 8, we conclude that w’ is uniquely
determined by (27) and that the manifold M'* is unique. Define

(28) wie, ) = Bu( s~ iz — 1), =@ + i)
Then

(29) W = Bw + Z(x, y, w) ,
equivalently

Nyw, — Aew, — Bw

(30)
= Z(x’ Y, w) - wa:X(x? Y, w) - wa(xr Y, w) .

The function w given by (28) satisfies (30). Suppose w* € I'(x, y) is
another solution to (30). Then w* determines a function w*' e I'*(«', ¥’)

given by

GL  w@,y) = Brwr(li + ), (- — ).

But since w* satisfies (30), it also satisfies (29). Then from (31) we
conclude that w*’ satisfies (26), hence w* = w’ and because (28) and
(31) are inverse relations to each other, w* = w. Therefore we con-
clude that (80) has a unique solution belonging to the class I'(x, y).

It remains to be shown that w is a real analytic function. If
we expand the left side of (30) in a power series, we obtain

AMyw, — AMew, — Bw
(32) = SNaW, 2 7Y — SINBW, s T Yy — 3 Bw,, say°
= Z{)\;(C{ + l)wa+1,ﬁ—-1 - )"(:8 + l)wa—l,ﬁ+1 - Bwa,,&}xayﬁ .

For any power series

f = fmy’
define
fo =1l = [ZSfasy’la = (Far) Famis =005 fon)
for all nonnegative integers n. Thus if f is a vector, then dimf, =
(m + 1)dim f. If f and f’ are two power series related by
£, 1) = £, ) = F(SElin’ + ), (= — i)

f@,y) = f'@,y) = f,<]_/——2= —1i% — ¥), ]/—-(x + zy))
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then for each nonnegative integer = there exists a matrix L,,
det L, = 0, such that

Jo=Lufne

Clearly the matrix L, depends only on dim f; other than this L, is
independent of f.
Now, from (32) we obtain

(33) ww, — Mew, — Bw], = B,w, (n=23,+-+)
where
B, = super-diag (—\I, — 2\, - -+, —n\])
+ diag (—B, —B, --+, —B)

+ sub-diag (wAI, (n — VNI, -+, N]) .

with I = identity matrix, dimI = dim B. In a similar fashion we
obtain

[ina'w,, — ay'w,, — B'w'], = B,w, n=23, ")
where
B, =diag (¢nA\I —B',i(n — 2\ —B',t«(n — 4N —B', ---, —in\I—B') .
Since det (4kMI — B’) = 0 for any integer k, it follows that
det B], = 0 n=2,3,--+).
A straight forward calculation shows that

P o . .8 .. ,8
AY— — Ar— = N — — Ny’ ,
Yoz ™ "oy o Yoy

and from this fact along with (28) we conclude

Myw, — Aew, — Bw = B{iax'w;,, — ivy'w,, — B'w}
(34) \yw, — Aaw, — Bw], = L;'[B{izne'w,, — ivy'w!, — B'w'}].
B.w, = L;'B,B,w, = L;'B,B,L,w, ,
where
B, = diag (B, B, ---, B) .
Since (34) can be shown valid for all w, € R"+v¥m» it follows that

B, = L;'B,B,L,

35 ~
(35) det B, =det B, - det B, = 0.
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From (30) and (33) we obtain

(36) B,w, = [Z(x, y, w) — w.X(%, y, w) — w,Y(z, y, w)],
(m=238, ).

Finally, from (35) and (36) we conclude the coefficients of w are
determined recursively from (30), or equivalently (36), and since
B, (n=2,8,..-) is a real matrix, B;' is also real and w e I'*(z, y) is
real analytic. Thus we have shown that the function w which
defines the manifold

M= {(x,y,2) | |2] + |y| <9, 2= w(, y)}

is uniquely and recursively determined from (30), (35), (36) as a real
power series. The fact that wel™(x,y) is guaranteed by the
existence of the real analytic integral H. This completes the proof
of Theorem 2.

5. Real analytic changes of variables. In this section for a
real analytic system of equations we construct a real analytic change
of variables.

THEOREM 3. If iN~'p; = integer (j =1, ---,m) then for system
(19) there exists a real anmalytic change of variables (not umique)

x=p+ P(p,q)
(37) ¥y=4q+ QP Q)
z =1+ R(p,q)

such that
p =ML+ a(p® + ¢))g + P(p, q,7)
¢g=—ML+ a(®®+ ¢*)p + Qp, q,7)

# = Br + R(p, q, 7)
P,Q,R=0 when r =0,

(39

where a = a(p* + ¢*) s a real analytic function of the quadratic
form p* + @ with mo comstant term in its expamsion about the
origin; P,Q,ReI(p,q) are real analytic; P,Q, ReI*(p,q,r) are
real analytic.

Proof. By means of the change of variables (22) we obtain
system (23). From Theorem 1 we can find a change of variables
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o =9 + P'(0, )
(39) y=q + QW,q)
Z=r+R®,q)

such that

P =M1+ o) + P, q,7)
¢ =—iMl+a@)Nd +QW,q, 1)
7 = B'r' + El(pl’ ql’ ’I")

~

P,Q',R" =0 when " =0

(40)

where o' = a’(p'q’) is a convergent power series in the product p'q’
with no constant term; P’,Q, R eIy, q); P,Q,Ber @y, q,).
In the construction of the change of variables (39) one must restrict
the choice of power series P’, Q' (see (8) and (9)) to be transforma-
tions via (22) of real power series. We will make this condition
explicit in (43) below. Define

_ 1 .,
p'VE(W +4')

1 .
41 =——-—_——"— !
(41) q 1/2( P —1q’)
r = Br .

Then from (22), (39), (41) we obtain the change of variables (37)
where

o’ + ¢) = ¢(—20" + ¢)

P(p, ) = =P/l ~ip — 0, =0 + i0))
- + 1/11——-Q ( ]/—(—%p 9), V—(p + zq))
Qp, ) = 7 (7? —1ip — q), 1/—(10 + W))
——17}-5— Q' (1/—2 —1ip — q), 1/—(10 + zq))

E(p,q) = BR(—F(~ip — 0, =0 + i0)) .

In particular we require P, Q given by
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S 1
v <17?("7«p Q)yv?‘(p-l-W))

1 (1 1
+ =@ Fs—ip = 0, (0 + i)
(43) A a1, _
Q(p, q) = 17?13 (W(*@p - q), 17?(10 + ’LCI))
1 .Aaf 1 . 1 .
_V—?ZQ ( Ve AR Ve zq))

to be real analytic functions of (p,q). The functions P,Q, R are
given by formulas similar to those for P, Q, R in (42).

It remains to show that a, P,Q, R, P,Q, B are real analytic
functions. From (19), (37), (38) we obtain

qu'—qu—Q = —aq —a{qu_qu} +>"h1X(p+ qu -I—Q,R)
(44) qQ, — PQ, + P = ap — a{qQ, — pQ,} + V'Y(p + P,q + Q, R)
qR, — pR, — \'BR = —a{qR, — pR,} + N Z(p + P,q + Q, R) .

Following a procedure analogous to the computation of w in (30) we
can compute the coefficients of a, P, @, R recursively from (44). Since
X, Y, Z are real analytic and A is a real, nonzero scalar, it follows
that a, P,Q, R are real analytic. This completes the proof of
Theorem 3.
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