POWER SERIES RINGS OVER A KRULL DOMAIN

ROBERT GILMER

Let D be a Krull domain and let $\{X_{\lambda}\}_{\lambda \in A}$ be a set of indeterminates over D. This paper shows that each of three "rings of formal power series in $\{X_{\lambda}\}$ over D" are also Krull domains; also, some relations between the structure of the set of minimal prime ideals of D and the set of minimal prime ideals of these rings of formal power series are established.

In considering formal power series in the X_{λ} 's over D, there are three rings which arise in the literature and which are of importance. We denote these here by $D[[\{x_{\lambda}\}]]_{1}$, $D[[\{X_{\lambda}\}]]_{2}$, and $D[[\{X_{\lambda}\}]]_{3}$. $D[[\{X_{\lambda}\}]]_{1}$ arises in a way analogous to that of $D[\{X_{\lambda}\}]$ —namely, $D[[\{X_{\lambda}\}]]$ is defined to be $\bigcup_{F \in \mathscr{F}} D[[F]]$, where \mathscr{F} is the family of all finite nonempty subsets of Λ . $D[[\{X_{\lambda}\}]]_{2}$ is defined to be

$$\left\{\sum\limits_{i=0}^{\infty}f_i \ | \ f_i \in D[\{X_{\lambda}\}], \ f_i=0 \ ext{or a form of degree} \ i
ight\}$$
 ,

where equality, addition, and multiplication are defined on $D[[\{x_{\lambda}\}]_2]$ in the obvious ways. $D[[{X_{\lambda}}]]_2$ arises as the completion of $D[{X_{\lambda}}]$ under the $({X_{\lambda}})$ -adic topology; the topology on $D[[{X_{\lambda}}]]_2$ is induced by the decreasing sequence $\{A_i\}_0^{\infty}$ of ideals, where A_i consists of those formal power series of order $\geq i$ —that is, those of the form $\sum_{j=i}^{\infty} f_j$. If Λ is infinite, A_1 properly contains the ideal of $D[[{X_{\lambda}}]]_2$ generated by $\{X_{\lambda}\}$. Finally, $D[[\{X_{\lambda}\}]]_{\beta}$ is the *full* ring of formal power series over D, and is defined as follows (cf. [1, p. 66]): Let N be the set of nonnegative integers, considered as an additive abelian semigroup, and let S be the weak direct sum of N with itself |A| times. S is an additive abelian semigroup with the property that for any $s \in S$, there are only finitely many pairs (t, u) of elements of S whose sum is s. $D[[{X_{i}}]]_{3}$ is defined to be the set of all functions $f: S \rightarrow J$ D, where (f + g)(s) = f(s) + g(s) and where $(fg)(s) = \sum_{t+u=s} f(t)g(u)$ for any $s \in S$, the notation $\sum_{t+u=s}$ indicating that the sum is taken over all ordered pairs (t, u) of elements of S with sum s. To within isomorphism we have $D[[\{X_{\lambda}\}]]_1 \subseteq D[[\{X_{\lambda}\}]]_2 \subseteq D[[\{X_{\lambda}\}]]_3$, and each of these containments is proper if and only if Λ is infinite. Our method of attack in showing that $D[[{X_i}]]_i$, i = 1, 2, 3, is a Krull domain if D is consists in showing that $D[[{X_{\lambda}}]]_{3}$ is a Krull domain and that $D[[\{X_{\lambda}\}]]_{\mathfrak{z}} \cap K_{i} = D[[\{X_{\lambda}\}]]_{i}$ for i = 1, 2, where K_{i} denotes the quotient field of $D[[\{X_{\lambda}\}]]_i$.

1. The proof that $D[[{X_{\lambda}}]]_{3}$ is a Krull domain. Using the

notation of the previous section, we introduce some terminology which will be helpful in showing that $D[[{X_{\lambda}}]]_{s}$ is a Krull domain. We think of the elements of S as $|\Lambda|$ -tuples $\{n_{\lambda}\}_{\lambda \in \Lambda}$ which are finitely nonzero. For $s = \{n_{\lambda}\} \in S$, we define $\pi(s)$ to be $\sum_{\lambda \in \Lambda} n_{\lambda}$ and we denote by S_{i} the set of elements s of S such that $\pi(s) = i$; clearly π is a homomorphism from S onto N. Given a well-ordering on the set Λ , we well-order the set S as follows: if $s = \{m_{\lambda}\}$ and $t = \{n_{\lambda}\}$ are distinct elements of S, then s < t if $\pi(s) < \pi(t)$ or if $\pi(s) = \pi(t)$ and $m_{\lambda} < n_{\lambda}$ for the first λ in Λ such that m_{λ} and n_{λ} are unequal. It is clear that this ordering on S is compatible with the semigroup operation—that is, $s_1 < s_2$ implies that $s_1 + t < s_2 + t$ for any t in S. Also, S is cancellative and $s_1 + t < s_2 + t$ implies that $s_1 < s_2$.

If $f \in D[[\{X_{\lambda}\}]]_{3} - \{0\}$, we say that f is a form of degree i, where $i \in N$, provided f vanishes on $S - S_{i}$; the order of f, denoted by $\mathcal{O}(f)$, is defined to be the smallest nonnegative integer t such that f does not vanish on S_{i} . If $\mathcal{O}(f) = k$, then the *initial form of* f is defined to be that element f_{k} of $D[[\{X_{\lambda}\}]]_{3}$ which agrees with f on S_{k} and which vanishes on $S - S_{k}$.

LEMMA 1.1. If $f, g \in D[[\{X_{\lambda}\}]]_{3} - \{0\}$, then

(1) If $f + g \neq 0$, $\mathcal{O}(f + g) \ge \min \{\mathcal{O}(f), \mathcal{O}(g)\}$.

(2) $\mathcal{O}(fg) = \mathcal{O}(f) + \mathcal{O}(g).$

(3) If f and g are forms of degree m and n, respectively, then fg is a form of degree m + n.

(4) The initial form of fg is the product of the initial forms of f and of g.

Proof. In a less general context, Lemma 1.1 is a well known result; we prove only (2) and (3) here.

(2): We let s be the smallest element of S on which f does not vanish and we let t be the corresponding element for g. By definition of π and $\mathcal{O}, \pi(s) = \mathcal{O}(f) = i$ and $\pi(t) = \mathcal{O}(g) = j$. To show that $\mathcal{O}(fg) = i + j$, we prove that $(fg)(s + t) \neq 0$ and that (fg)(u) = 0 for u < s + t. The second statement is clear, for if s' + t' = u, then either s' < sor t' < t so that f(s') = 0 or g(t') = 0 and f(s')g(t') = 0 in either case. By similar reasoning, we see that $(fg)(s + t) = f(s)g(t) \neq 0$. Hence $\mathcal{O}(fg) = i + j$.

(3): By (2), $\mathcal{O}(fg) = m + n$. To see that fg is a form, we need only observe that fg vanishes on S_k for any k > m + n. Thus if $w \in S_k$, then $(fg)(w) = \sum_{u+v=w} f(u)g(v)$ and for each such pair (u, v) either $\pi(u) > m$ or $\pi(v) > n$ so that f(u) = 0 or g(v) = 0 so that $(fg)(w) = \sum_{u+v=w} f(u)g(v) = 0$.

LEMMA 1.2. Let K be a field and let $\{D_{\alpha}\}$ be a family of sub-

domains of K such that each D_{α} is a Krull domain. Let $D = \bigcap_{\alpha} D_{\alpha}$ and suppose that each nonzero element of D is a nonunit in only finitely many $D'_{\alpha}s$. Then D is a Krull domain.

Proof. For each α we consider a defining family $\{V_{\beta}^{(\alpha)}\}$ of rank one discrete valuation rings for D_{α} . If L is the quotient field of Dand $\mathscr{S} = \{V_{\beta}^{(\alpha)} \cap L\}_{\alpha,\beta}, \mathscr{S}$ is a family of discrete valuation rings of rank ≤ 1 , and the intersection of the members of the collections \mathscr{S} is D. If d is a nonzero element of D, then d is a nonunit in only finitely many D'_{α} s, say $D_{\alpha_1}, \dots, D_{\alpha_n}$. Because D_{α_i} is a Krull domain and $\{V_{\beta}^{(\alpha_i)}\}$ is a defining family for D_{α_i}, d is a nonunit in only finitely many of the $V_{\beta}^{(\alpha_i)}$'s. Therefore D is a Krull domain and the family of essential valuations for D is a subfamily of $\{V_{\beta}^{(\alpha)} \cap L\}_{\alpha,\beta}$ [6, p. 116].

We now give an outline of our proof that $D[[[{X_{\lambda}}]]]_{3}$ is a Krull domain when D is a Krull domain. Let K be the quotient field of D and let $\{V_{\alpha}\}$ be the family of essential valuation rings for D [7, p. 82]. By a result due to Cashwell and Everett [3] (see also [4]), $J[[[{X_{\lambda}}]]_{3}$ is a unique factorization domain (UFD), where J is an integral domain with identity, if and only if $J[[Y_{1}, \dots, Y_{n}]]$ is a UFD for any positive integer n. If J is a principal ideal domain, then $J[[Y_{1}, \dots, Y_{n}]]$ is a UFD for any n [2, pp. 42, 100]; in particular, $K[[\{X_{\lambda}\}]]_{3}$ and $V_{\alpha}[[\{x_{\lambda}\}]]_{3}$ are then UFD's for each α . Consequently, $(V_{\alpha}[[\{X_{\lambda}\}]]_{3})_{N_{\alpha}}$ is a UFD for any multiplicative system N_{α} in $V_{\alpha}[[\{X_{\lambda}\}]]_{3}$. To show that $D[[\{X_{\lambda}\}]]_{3}$ is a Krull domain, it will be sufficient, in view of Lemma 1.2, to show that by appropriate choices of the multiplicative systems N_{α} , we can express $D[[[\{X_{\lambda}\}]]_{3}$ as

$K[[\{X_{\lambda}\}]]_{\mathfrak{z}} \cap (\bigcap_{\alpha} (V_{\alpha}[[\{X_{\lambda}\}]]_{\mathfrak{z}})_{N_{\alpha}}),$

where each nonzero element of $D[[{X_{\lambda}}]]_{s}$ is a nonunit in only finitely many $(V_{\alpha}[[{X_{\lambda}}]]_{s})_{N_{\alpha}}$'s. We define N_{α} as follows: $N_{\alpha} = \{f \in V_{\alpha}[[{X_{\lambda}}]]_{s} - \{0\} \mid \mathscr{O}(f) = i \text{ and there exists } s \in S_{i} \text{ such that } f(s) \text{ is a unit of } V_{\alpha}\}$, and we prove

PROPOSITION 1.3. N_{α} is a multiplicative system in $V_{\alpha}[[\{X_{\lambda}\}]]_{3}$.

$$(V_{lpha}[[\{X_{\lambda}\}]]_{\mathfrak{z}})_{N_{lpha}}\cap K[[\{X_{\lambda}\}]]_{\mathfrak{z}}=V_{lpha}[[\{X_{\lambda}\}]]_{\mathfrak{z}}\;,$$

so that

$$D[[\{X_{\lambda}\}]]_{\mathfrak{z}} = K[[\{X_{\lambda}\}]]_{\mathfrak{z}} \cap (\bigcap_{\alpha} (V_{\alpha}[[\{X_{\lambda}\}]]_{\mathfrak{z}})_{N_{\alpha}}) \;.$$

Each nonzero element of $D[[{X_{\lambda}}]]_{3}$ is in all but a finite number of the N_{α} 's.

Before giving the proof of Proposition 1.2, we recall a result concerning the content of the product of two polynomials. Let J be an integral domain with identity having quotient field F and for $f \in F[\{X_{\lambda}\}]$, let A_f denote the fractional ideal of J generated by the set of coefficients of f. In order that $A_{fg} = A_f A_g$ for each pair f, g of elements of $F[\{X_{\lambda}\}]$, it is necessary and sufficient that J be a Prüfer domain¹ [5, Th. 1]. In particular $A_{fg} = A_f A_g$ for each $f, g \in F[\{X_{\lambda}\}]$ if J is a valuation ring.

Proof of Proposition 1.3. To show that N_{α} is a multiplicative system, let $f, g \in N_{\alpha}$. Then the initial forms f_i, g_j of f and g are in N_{α} . f_ig_j is the initial form of fg and $\mathcal{O}(fg) = i + j = \mathcal{O}(f) + \mathcal{O}(g)$. Therefore we need only show that (fg)(s) is a unit of V_{α} for some $s \in S_{i+j}$. The smallest element u of S for which f(u) is a unit in V_{α} is an element of S_i and the smallest element v of S for which g(v)is a unit of V_{α} is an element of S_j . $u + v \in S_{i+j}$ and $(fg)(u + v) = \sum_{u'+v'=u+v} f(u')g(v')$ is a unit of V_{α} . For if u' + v' = u + v and if $\{u', v'\} \neq \{u, v\}$, then either u' < u or v' < v so that f(u') or g(v'), and hence f(u')g(v'), is a nonunit of V_{α} . It follows that (fg)(u + v) is the unit f(u)g(v) plus a nonunit of V_{α} . Therefore (fg)(u + v) is a unit of V_{α} , $fg \in N_{\alpha}$, and N_{α} is a multiplicative system.

To prove that $K[[\{x_{\lambda}\}]]_{\mathfrak{z}} \cap (V_{\alpha}[[\{x_{\lambda}\}]]_{\mathfrak{z}})_{N\alpha} \subseteq V_{\alpha}[[\{X_{\lambda}\}]]_{\mathfrak{z}}$, (the opposite containment is clear), we must show that if $f \in K[[\{X_i\}]]_3 - \{0\}$ and if there is an element g of N_{α} such that $fg \in V_{\alpha}[[\{X_{\lambda}\}]]_{3}$, then $f \in V_{\alpha}[[\{X_{\lambda}\}]]_{\beta}$. By induction, it suffices to show that the initial form f_i of f is in $V_{\alpha}[[\{X_{\lambda}\}]]_3$. If g_j is the initial form of g, then $g_j \in N_{\lambda}$ and $f_i g_j$, the initial form of fg, is in $V_{\alpha}[[\{X_{\lambda}\}]]_{\beta}$. We can therefore assume without loss of generality that f and g are forms of degree *i* and *j*, respectively. Let $s \in S_i$. We must show that $f(s) \in V_{\alpha}$. Let t be an element of S_j such that g(t) is a unit of V_{α} . If $s = \{m_i\}$ and if $t = \{n_{\lambda}\}$ there are only finitely many elements τ of Λ such that $m_{\tau} \neq 0$ or $n_{\tau} \neq 0$; let $\lambda_1, \lambda_2, \dots, \lambda_u$ be this finite set of elements of Λ . There are only finitely many elements $\{k_i\}$ of S_i such that $k_z = 0$ for each $z \notin [\lambda_1, \dots, \lambda_u]$; let these elements be s_1, s_2, \dots, s_p . Also, there are only finitely many elements $\{k_{\lambda}\}$ of S_{j} such that $k_{z} = 0$ for each $z \notin \{\lambda_1, \dots, \lambda_u\}$, and we let these elements be t_1, t_2, \dots, t_r . If f^* is the polynomial $\sum_{n=1}^{p} f(s_q) X_{\lambda_1}^{n_{\lambda_1}^{(q)}} \cdots X_{\lambda_u}^{n_{\lambda_u}^{(q)}}$, where $s_q = \{n_{\lambda}^{(q)}\}$ and if $g^* =$ $\sum_{q=1}^r g(t_q) X_{\lambda_1}^{m_{\lambda_1}^{(q)}} \cdots X_{\lambda_u}^{m_{\lambda_u}^{(q)}}$, where $t_q = \{m_{\lambda}^{(q)}\}$, then by definition of addition in S, it is true that $(fg)(\{k_{\lambda}\})$ is equal to the coefficient of $X_{\lambda_{1}^{k_{1}}}^{k_{\lambda_{1}}} \cdots X_{\lambda_{u}}^{k_{\lambda_{u}}}$ in $f^{*}g^{*}$ for any $\{k_{\lambda}\}$ in S_{i+j} such that $k_{\lambda} = 0$ for $\lambda \notin \{\lambda_{1}, \dots, \lambda_{u}\}$.

 $^{^{1}}$ A *Prüfer domain* is an integral domain with identity in which each nonzero finitely generated ideal is invertible.

Therefore, $f^*g^* \in V_{\alpha}[X_{\lambda_1}, \dots, X_{\lambda_u}]$ since $fg \in V_{\alpha}[[\{X_{\lambda}\}]]_s$. Further, $A_{g^*} = V_{\alpha}$ since $t \in \{t_1, \dots, t_r\}$ and since g(t) is a unit of V_{α} . Therefore $A_{f^*}A_{g^*} = A_{f^*} = A_{f^*g^*} \subseteq V_{\alpha}$. But $f(s) \in A_{f^*}$ since $s \in \{s_1, s_2, \dots, s_p\}$. Hence $f(s) \in V_{\alpha}$ and our proof is complete.

Finally, if h is a nonzero element of $D[[X_{\lambda}]]_{3}$ of order *i*, then we choose $s \in S_{i}$ such that $h(s) \neq 0$. Since $\{V_{\alpha}\}$ is the family of essential valuation rings for the Krull domain D, h(s) is a unit in all but a finite set $\{V_{\alpha_{1}}, \dots, V_{\alpha_{w}}\}$ of the V'_{α} 's. Hence h is in each N_{α} save $N_{\alpha_{1}}, \dots, N_{\alpha_{w}}$.

THEOREM 1.4. If D is a Krull domain, then $D[[{X_{\lambda}}]]_{3}$ is also a Krull domain.

2. The proofs that $D[[{X_{\lambda}}]]_1$ and $D[[{X_{\lambda}}]]_2$ are Krull domains. In view of Theorem 1.4, in order to show that D Krull implies that $D[[{X_i}]]_i$, i = 1, 2, is Krull, it is sufficient to show that for any integral domain J with identity, $J[[{X_{\lambda}}]]_{\beta} \cap K_i = J[[{X_{\lambda}}]]_i$, where K_i denotes the quotient field of $J[[{X_{\lambda}}]]_i$. Thus we need to show that if $f \in J[[\{X_{\lambda}\}]]_{\mathfrak{s}} - \{0\}$ and if g is a nonzero element of $J[[\{X_{\lambda}\}]]_{\mathfrak{s}} - \{0\}$ such that $fg \in J[[\{X_{\lambda}\}]]_i$, then $f \in J[[\{X_{\lambda}\}]]_i$. We consider first the case when i = 2. By induction, it suffices to show that the initial form of f is in $J[[{X_{\lambda}}]]_2$, and since the product of the initial form of f and the initial form of g is the initial form of fg and is in $J[[{X_{\lambda}}]]_2$, we need consider only the case when f and g are forms of degrees i and j, respectively. Since fg and g are in $J[[\{x_{k}\}]]_{2}$, there is a finite subset $\{\lambda_1, \dots, \lambda_n\}$ of Λ such that g vanishes on each element $\{n_{\lambda}\}$ of S_{j} for which $n_{\lambda} \neq 0$ for some λ in $\Lambda - \{\lambda_{k}\}_{1}^{n}$ and such that fg vanishes on each element $\{m_{\lambda}\}$ of S_{i+j} for which $m_{\lambda} \neq 0$ for some λ in $\Lambda - \{\lambda_k\}_1^n$. We observe that this implies that f vanishes on each element $\{p_{\lambda}\}$ of S_i such that $p_{\lambda} \neq 0$ for some $\lambda \notin \{\lambda_1, \dots, \lambda_n\}$, for if this were not the case, then there would be a smallest element $p = \{p_{\lambda}\}$ of S_i with $p_{\mu} \neq 0$ for some $\mu \notin \{\lambda_1, \dots, \lambda_n\}$ for which $f(p) \neq 0$. Then if $s = \{s_{\lambda}\}$ is the smallest element of S_{j} for which $g(s) \neq 0$, we observe that $(fg)(p+s) = f(p)g(s) \neq 0$ and that $p+s = \{p_{\lambda} + s_{\lambda}\},\$ where $p_{\mu} + s_{\mu} \ge p_{\mu} > 0$, contrary to the hypothesis on fg. We see that (fg)(p+s) = f(p)g(s) as follows: If p' + s' = p + s where $p' \in S_i$ and $s' \in S_j$, then s' < s implies that g(s') = 0 so that f(p')g(s') = 0. On the other hand, if s' > s, then p' < p so that f(p') = 0 if $p' = \{p'_i\}$ and $p'_{\lambda} \neq 0$, while g(s') = 0 if $p'_{\mu} = 0$ since the μ -th coordinate of s' is then nonzero. Consequently, (fg)(p+s) = f(p)f(s), and the contradiction which this equality implies shows that it is indeed the case that $f(\{p_{\lambda}\}) = 0$ for each $\{p_{\lambda}\}$ in S_i such that $p_{\lambda} \neq 0$ for some $\lambda \notin \{\lambda_1, \dots, \lambda_n\}$. Hence $f \in J[[\{X_i\}]]_2$ as we wished to show.

Our proof for $J[[{X_{\lambda}}]]_2$ shows that if the set $\{\lambda_1, \dots, \lambda_n\}$ does

not depend on *i*, as is the case if *g* and *fg* are in $J[[{X_{\lambda}}]]_{i}$, then each form f_{i} associated with *f* (that is, $f \cdot \chi_{i}$, where χ_{i} is the characteristic function of S_{i}) will also have the property that it vanishes on each element $\{s_{\lambda}\}$ of S_{i} such that $s_{\lambda} \neq 0$ for some $\lambda \notin \{\lambda_{1}, \dots, \lambda_{n}\}$. Consequently, $f \in J[[{X_{\lambda}}]]_{i}$. We have proved

THEOREM 2.1. If D is a Krull domain, then $D[[{X_{\lambda}}]]_2$ and $D[[{X_{\lambda}}]]_1$ are also Krull domains.

3. Minimal primes of $D[[\{X_{\lambda}\}]]_{3}$. Our proofs of Lemma 1.2 and Proposition 1.3 show the following, in case D is a Krull domain with quotient field K. If L is the quotient field of $D[[\{X_{\lambda}\}]]_{3}$, then the set of essential valuation rings for $D[[\{X_{\lambda}\}]]_{3}$ is a subset of $\{W_{\sigma} \cap L\} \cup \{W_{\beta}^{(\alpha)} \cap L\}$, where $\{W_{\sigma}\}$ is the family of essential valuation rings for $K[[\{X_{\lambda}\}]]_{3}$ and where $[W_{\beta}^{(\alpha)}]$ is the family of essential valuation rings for $(V_{\alpha}[[\{X_{\lambda}\}]]_{3})_{N_{\alpha}}$; $\{V_{\alpha}\}$ the family of essential valuation rings for D. Let M_{σ} be the center of $W_{\sigma} \cap L$ on $D[[\{X_{\lambda}\}]]_{3}$ and let $M_{\beta}^{(\alpha)}$ be the center of $W_{\beta}^{(\alpha)} \cap L$ on $D[[\{X_{\lambda}\}]]_{3}$. Since $K \subset W_{\sigma}, M_{\sigma} \cap K =$ (0); in particular, $M_{\sigma} \cap D = (0)$. Further, V_{α} is clearly contained in $W_{\beta}^{(\alpha)} \cap L$ so that $W_{\beta}^{(\alpha)} \cap L = V_{\alpha}$ or $W_{\alpha}^{(\alpha)} \cap L = K$. In the first case $M_{\beta}^{(\alpha)} \cap D = P_{\alpha}$ where $V_{\alpha} = D_{P_{\alpha}}$, and in the second $M_{\beta}^{(\alpha)} \cap D = (0)$. Since $D[[\{X_{\lambda}\}]]_{3}$ is a Krull domain, the set of minimal primes of $D[[\{X_{\lambda}\}]]_{3}$ is a subset of $\{M_{\sigma}\} \cup \{M_{\beta}^{(\alpha)}\}$. Hence we have proved

LEMMA 3.1. Each minimal prime of $D[[X_{i}]]_{3}$ meets D either in zero or in minimal prime of D.

Our main purpose in this section is to prove:

THEOREM 3.2. If P_{α} is a minimal prime of D, there is a unique minimal prime of $D[[{X_{\lambda}}]]_{3}$ which meets D in P_{α} .

Our proof of Theorem 3.2 proceeds as follows. Let v_{α} be a valuation associated with the valuation ring $D_{P_{\alpha}}$. We observe that the function v_{α}^* defined on $D[[\{X_{\lambda}\}]]_s$ by $v_{\alpha}^*(f) = \min\{v_{\alpha}(f(s)) \mid s \in S\}$ induces a valuation on L, the quotient field of $D[[\{X_{\lambda}\}]]_s$. To prove this, let $f, g \in D[[\{X_{\lambda}\}]]_s$ and suppose that $v_{\alpha}((f + g)(t)) = v_{\alpha}^*(f + g)$. Since $v_{\alpha}(f(t) + g(t)) \ge \min\{v_{\alpha}(f(t)), v_{\alpha}(g(t))\} \ge \min\{v_{\alpha}^*(f), v_{\alpha}^*(g)\}, \text{ it follows}$ that $v_{\alpha}^*(f + g) \ge \min\{v_{\alpha}^*(f), v_{\alpha}^*(g)\}$. Also, if s is the smallest element of S such that $v_{\alpha}(f(s)) = v_{\alpha}^*(f)$ and if u is the smallest element of Ssuch that $v_{\alpha}(g(u)) = v_{\alpha}^*(g)$, then it is straightforward to show that

$$egin{aligned} &v_lpha((fg)(s+u)) = v_lpha(f(s)) + v_lpha(g(u)) = v^*_lpha(f) + v^*_lpha(g) \ &= \min\left\{v_lpha((fg)(t)) \mid t \in S
ight\} = v^*_lpha(fg) \;. \end{aligned}$$

548

We denote the extension of v_{α}^* to L by v_{α}^* also; it is clear that v_{α} and v_{α}^{*} have the same value group so that v_{α}^{*} is rank one discrete and is an extension of v_{α} to L. The center of v_{α}^* on $D[[\{X_{\lambda}\}]]_{\beta}$ is the prime ideal $Q_{\alpha} = \{f \mid f(s) \in P_{\alpha} \text{ for each } s \in S\};$ we next prove that $(D[[{X_{\lambda}}]]_{s})_{Q_{\alpha}}$ is the valuation ring of v_{α}^{*} . One containment is clear. To prove the reverse containment, we show that if $f, g \in D[[\{X_{\lambda}\}]]_{3}$ and if $v_{\alpha}^{*}(f) \geq v_{\alpha}^{*}(g)$, then for some ξ in K, $f/g = \xi f/\xi g$ where $\xi f \in D[[\{X_{\lambda}\}]]_{3}$ and $\xi g \in D[[\{X_{\lambda}\}]]_{3} - Q_{\alpha}$. This is immediate from the approximation theorem for Krull domains [2, P. 12], which shows that there is an element ξ of K such that $v_{\alpha}(\xi) = -v_{\alpha}^{*}(g)$ and such that $v_{\scriptscriptstyle\beta}(\xi) \ge 0$ for each essential valuation $v_{\scriptscriptstyle\beta}$ of D distinct from $v_{\scriptscriptstyle\alpha}$. Hence $(D[[{X_{\lambda}}]])_{q_{\alpha}}$ is the valuation ring of v_{α}^* . Before proving Theorem 3.2, we need to make one final observation: If P_{α} is finitely generated say $P_{\alpha} = (p_1, \dots, p_n)$ —then Q_{α} is the extension of P_{α} to $D[[\{X_{\lambda}\}]]_{3}$. For is $f \in Q_{\alpha}$, then f(s) can be written in the form $\sum_{i=1}^{n} a_i^{(s)} p_i$ for some $a_1^{(s)}, \dots, a_n^{(s)} \in D$. Hence if f_i is the element of $D[[\{X_{\lambda}\}]]_{s}$ such that $f_i(s) = a_i^{(s)}$ for each s in S, then $f = \sum_{i=1}^n f_i p_i$ and f is in the extension of P to $D[[\{X_{\lambda}\}]]_{3}$.

Proof of Theorem 3.2. That Q_{α} is a minimal prime of $D[[\{X_{\lambda}\}]]_{\mathfrak{s}}$ lying over P_{α} in D is clear. If M is any minimal prime of $D[[\{X_{\lambda}\}]]_{\mathfrak{s}}$ lying over P_{α} , then our previous observations show that M must be of the form $M_{\beta}^{(\alpha)}$, since only the $V_{\beta}^{(\alpha)}$'s meet K in V_{α} . Hence $V_{\beta}^{(\alpha)} \supseteq (D_{P_{\alpha}}[[\{X_{\lambda}\}]]_{\mathfrak{s}})_{N_{\alpha}}$ and $MV_{\beta}^{(\alpha)}$, the maximal ideal of $V_{\beta}^{(\alpha)}$, contains $P_{\alpha}(D_{P_{\alpha}}[[\{X_{\lambda}\}]]_{\mathfrak{s}})_{N_{\alpha}}$. Now $P_{\alpha}D_{P_{\alpha}}$ is principal so that $Q_{\alpha}(D_{P_{\alpha}}[[\{X_{\lambda}\}]]_{\mathfrak{s}})_{N_{\alpha}} = P_{\alpha}(D_{P_{\alpha}}[[\{X_{\lambda}\}]]_{\mathfrak{s}})_{N_{\alpha}}$. Consequently

$$Q_{\alpha} \subseteq Q_{\alpha}(D_{P_{\alpha}}[[\{X_{\lambda}\}]]_{\mathfrak{z}})_{N_{\alpha}} \cap D[[\{X_{\lambda}\}]]_{\mathfrak{z}} \subseteq MV_{\beta}^{(\alpha)} \cap D[[\{X_{\lambda}\}]]_{\mathfrak{z}} = M.$$

But since M is a minimal prime of $D[[{X_{\lambda}}]]_{3}$, this implies that $M = Q_{\alpha}$ and our proof is complete.

REFERENCES

- 1. N. Bourbaki, Algebre, Chap. IV, Paris, 1959.
- 2. ____, Algebre commutative, Chap. VII, Paris, 1965.

3. E. D. Cashwell and C. J. Evertt, Formal power series, Pacific J. Math. 13 (1963), 45-64.

4. Don Deckard and L. K. Durst, Unique factorization in power series rings and semigroups, Pacific J. Math. 16 (1966), 239-242.

5. Robert Gilmer, Some applications of the Hilfssatz von Dedekind-Mertens, Math. Scand. 20 (1967), 240-244.

6. M. Nagata, Local rings, (New York, 1962.)

7. O. Zariski and P. Samuel, *Commutative algebra*, Vol. II, (Princeton, New Jersey, 1960.)

Received March 27, 1968. FLORIDA STATE UNIVERSITY