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AN EXPLICIT FORMULA FOR THE UNITS OF
AN ALGEBRAIC NUMBER FIELD
OF DEGREE 7 = 2

LEON BERNSTEIN AND (IN PARTIAL COOPERATION WITH) HELMUT HASSE

An infinite set of algebraic number fields is constructed ;
they are generated by a real algebraic irrational w, which
is the root of an equation f(w) =0 with integer rational
coefficients of degree n = 2. In such fields polynomials P,(w) =
aow® + a;w*t + -+ + as—w + a; and

Qs(w) = bow® + byw! + -+ + by—yw + bs

(s=1,---,n —1; a, b, rational integers) are selected so that
the Jacobi-Perron algorithm of the » — 1 numbers

Pn-—l(w), P s(w), - -+, Pi(w)

carried out in this decreasing order of the polynomials, and
of the » — 1 numbers

Q:1(w), Qx(w), -+, Qu—r(w)

carried out in this increasing order of the polynomials both
become periodic.

It is further shown that » — 1 different Modified Algorithms
of Jacobi-Perron, each carried out with n» —1 polynomials
P, y(w)y Ppy(w), + -+, Pi(w) yield periodicity., From each of
these algorithms a unit of the field K(w) is obtained by means
of a formula proved by the authors is a previous paper.

It is proved that the equation f(x) =0 has n real roots
when certain restrictions are put on its coefficients and that,
under further restrictions, the polynomial f(x) is irreducible
in the field of rational numbers, In the field K(w) n —1
different units are constructed in a most simple form as
polynomials in w; it is proved in the Appendix that they are
independent; the authors conjecture that these n — 1 in-
dependent units are basic units in K(w).

1. Algorithm of # — 1 numbers. An ordered (n — 1)-tuple
(1) (a{O)y agO)’ "'7“5?)—1 ) (ngz)

of given numbers, real or complex, among whom there is at least
one irrational, will be called a basic sequence; the infinitely many
(n — 1)-tuples

(2) (biv)y bév)’ Yy bgzv—)-l) ’ (U = 0! 1’ "')

will be called supporting sequences. We shall denote by
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(3) A(a®, @i, - -+, a;2))

the following algorithm connecting the components of the basic
sequence with those of the supporting sequences:

a;,v) _b;cv)
afpth = L 2 k=1, e, m—2:0=0,1, %)
a® — p® ’
(4) 1 1
(v+1) — 1 . (v) b(v). _0 1
anﬂl*myalilv v=0,1,--).
1 1

The (n — 1)-tuples (a{®,al®, ---,al,.), (v=20,1, -.-+) will be called
generating sequences of the algorithm. A(a!”,a, ---,al?)) is called
periodic, if there exist nonnegative integers s and natural numbers ¢
such that

(5) a™M =a», ¢=1,--,m—1;v=8s8+1---).
Let be

(6) mins = S ; mint = T;

then the S supporting sequences

(7) M, b, o0, b)), v=0,1,.--,8§—-1)

are called the primitive preperiod of the algorithm and S is called
the length of the preperiod ; the T supporting sequences

(8) (bi”),bév), ...,bfrbvil), (’U:S,S-I-L ...,S_|_ T.._l)

are called the primitive period of the algorithm, 7T is called the
length of the period; S + T is called the length of the algorithm.
If S =0, the algorithm is called purely periodic.

Two crucial questions emerge from a first look at such an
algorithm :

(a) can a formation law be defined by whose help the support-
ing sequences could be obtained from the basic sequences and the
generating sequences ?

(b) under what condition is A(a!”, ai”, ---, a{)) periodic; what
is then the nature of the basic sequence and what is the correspond-
ing formation law for the supporting sequences ?

For n = 3 an algorithm A(a®, a{”) was first introduced by Jacobi
[17] and a profound theory of an algorithm of n — 1 numbers for
n =2 was later developed by Oskar Perron [18]; in honor of
these great mathematicians the first author of this paper called
A(a®, a®, ---,al’)) the algorithm of Jacobi-Perron; they both used
the following formation law for the supporting sequences: let a{” be
the components of the generating sequences; then
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(9) by):[afiv)]y (i=1,---,n—1;v=0,1,---)

where [x] denotes, as customary, the greatest integer not exceeding
¢. For m» =2 the algorithm of Jacobi-Perron becomes the usual
Euclidean algorithm.

One of Perron’s [18] most significant results is the following

THEOREM. Let the supporting sequences b (1 =1,.--,m —1;
v=20,1, --.) be obtained from the basic sequence a” (1 =1, .-, n—1)
of real mumbers by the formation law (9). If the nonnegative
wntegers A are formed by the recursion formula

AP =1; A" =0; @#v; ,v=0—--,n—-1)

(10) L
AP = AP+ SEbRAR =0, n =10 =0,1,--0)

then A(al, al”, «--, al’,) converges in the sense that

(11) a® = lim A5 (G=1,e00,m—1).

Moreover, this theorem can be generalized, as was done by the
First author ([8], [10], [11], [12]) in the following way :

Let the supporting sequences be obtained from the basic sequence
by any formation law ; if the a{”, b are real numbers such that

ai'v)>0; (?::1,"',1’1/——1)
12) b =0; (1=1,---,n—2) 0<b?, <C;
b b, < C; C a positive constant, (v=20,1,--%)

and the numbers A{” (here not necessary integers) are formed as in
(10), then A(a!”, a, ---, al?)) converges in the sense of (11).

2. Previous results of the first author. Perron [18] has
proved that if A(a®,a!”, ---,al,) becomes periodic then the a”
(t=1,.--,n — 1) belong to an algebraic number field of degree < n.
However, he did not succeed to construct, in a general way, algebraic
fields K and to select out of K such » — 1 numbers whose algorithm
would become periodic. This was achieved by the first author for
an infinite set of algebraic number fields K(w), w being a real
irrational root of an algebraic equation f(w) = 0 with rational coef-
ficients. In his papers ([1]-][7]) he used (9) for the formation law
of the supporting sequences, thus operating with the algorithm of
Jacobi-Perron, though heavy restrictions had to be imposed on the
coefficients of f(w) in order to achieve periodicity. The first author
succeeded to remove these restrictions by introducing a new formation
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law that generalizes (9) and is defined in the following way :
The a{” and, subsequently, the ¢!, (=1, -+, —1; v=0,1,.--)
being numbers of the field K(w) have, generally, he form

(13) a” =a"(w), (=1,-+-,m—-1;2=0,1,-..)
as long as the b{" are rationals. Let be
(14) [w]=D;

then the formation law of the supporting sequences is given by the
formula

(15) b = a{™(D) , (¢, v as in (14)) .
In previous papers of the authors the a!® had the form
(16) a?):Pi(w)y (?:21,"',7?/—1),

thus being polynomials in w with rational coefficients; now the
second author of this paper asked the question, whether the algorithm
of Jacobi-Perron or any other algorithm

A(Pn—l(w)! Pn—-Z(w)y tt Pl(w))

of polynomials of decreasing order would yield periodicity, too. This
challenging problem could not be solved at first, with the exception
of a very few numerical examples, w being a rather simple cubic
irrational. Only recently the first author ([13], [14]) could give an
affirmative answer. He achieved this by means of a highly com-
plicated formation law for the supporting sequences. But while the
new model works well for an infinite set of algebraic number fields
K(w); and though in certain cases it is identical with the Jacobi-
Perron algorithm—its application does not, at least in this initial
stage, seem to go beyond narrow limitations.

In this paper an algebraic number field K(w) is constructed where
w is a real algebraic irrational of highly complex nature; but just
here it is possible to select polynomials in w such that the algorithms
of Jacobi-Perron, viz. for the given (n — 1)-tuples

(Pres(w), Po(w), - -+, P(w)) ,
(Qn—l(w), Qn—z(w)y %y Ql(w))

both become periodic.

3. The generating polynomial. We shall call the polynomial
of degree n = 2, viz.
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fl@) = (@ —- D)z —D)ax —D,) -+ (@ —D,.,) —d;
(17) D, D;, d rational integers; d = 1;
D>Dz; d|(D~_Dz)7 (i:l,---,n—l),

a Generating Polynomial, to be denoted by GP.
In what follows we shall need two theorems regarding the roots
of the GP.

THEOREM 1. The GP has one and only one real root w in the
open interval (D, + o). This root lies in the open interval (D,
D +1).

Proof. The two assertions are immediate consequences of the
following three inequalities which follow from the conditions in (17):

o 1 1 1
f<x)—(f(w>+d>(x_D+x_Dl+ +x_Dn_I)>0
for > D,
fDO+1)Y=D+1—-D)YD+1—-D)+-(D+1—-D,_)—d
>@d+1)~—d=2d+1)—d=1>0.

THEOREM 2. Let the integers D, D, occuring in the GP satisfy,
i addition to (17), the conditions

(18) D:D0>D1>"'>Dn_1,
and in the spectal case d = 1 moreover

D, —D,=2o0r Dy— D, =4, for n =3;
(19) D —D,=20r Dy— D, =3 or D,— D, =3 or
D,— D,D, — D, =2, for n =4.

Then the GP has exactly n different real roots. Of these lie

1 in the open interval (D,, + ), more exactly in the open
interval (D, D, + 1),

2 in each of the open intervals (D, D,;_,), more exactly 1 in
the open left half, 1 in the open right half of these intervals with
2<2t<n—1,1 in the open interval (—o, D, ) if n is even.

Proof. Since the total number of roots asserted in the latter
three statements is exactly equal to the degree n of the GP, it
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suffices to prove the existence of at least 1,2,1 roots respectively
within the indicated open intervals. For the first interval this has
been done in Theorem 1. For the other intervals it suffices, besides
the obvious facts

fD)=—-d<0 (G=01,+0,0—1)
and

lim f(x) = + if = is even,

to verify the inequalities
Sfle) >0 2=s2r=n-1),
i.e.,
fle) +d=(c; — D)e;— D)+ (¢, — D,,) >d,
with 2<2i <% — 1 and ¢; = (D,_, + Dy)/2. Now according to (18)

¢—D; <0 for =0,1,.--,20 — 1,
¢;—D; >0 for 7=2¢,2¢4+1,---,n—1,

and as the 7 in the first line are in even number, certain at least
fle)) +d>0.

According to (17) and the obvious consequence d |(D; — D;) one has
more precisely

4

e~ Dyl zd + 2 =%d for j-2 —1,2i,

lci—D,-lg%d for j=2i—1,2i,

and hence
n—2
fle) + d = Baj2r-dj2y = 22y .
Observing that 2 <2 <n — 1 implies » = 3, one obtains thus for
d = 2 the desired inequalities
fle) +d=38d/)2>d.

In the special case d =1 still more precise lower estimates are
required, viz.,
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lci—DjIg(2i—1—j)d+%=2i—1—j+—;— for j=0,1,+++,20—1,

lci—D,-lg(j—2i)d+%=j—2i+—%- for j=2i, .-, m—1.

The lower bounds have values from the sequence 1/2,3/2,5/2, ---
For each relevant 1 two values 1/2 and, if » = 5, at least two values
3/2 and one value 5/2 occur. For n = 5 therefore certainly

o+ 12 (3Y(2)(5) 1.

In the remaining cases d = 1 with » = 3,4 there is only one relevant
1, viz., ¢ = 1. One verifies easily that the desired inequality

fle) +1>1

is true under the conditions (19).
We shall now rearrange f(x) in powers of x — D. We shall
first prove the formula

SO @)=kl 3(® —D;)---(x—D;,_,),
(20) 0=, <4, <+ <ty =n—1,
k:l,...,n_l_
We shall denote

9(@) = (@ — D)@ — D) -+ (x — D,_); fl®) = glx) — d .
(21) f(®) = g'(x) = g(x) 3 1/(x — D))
=13 — Dil)(x — D) ---(x—D;, )
0, << oo <tpy=n—1.

Thus formula (20) is correct for £k = 1. Let it be correct for k¥ = m,
namely

fm@ =m! 3 (@ — D)@ —Dy) -+ (x— D,;,_,),
0§i1<i2<i3<"'<in—m§n_1

or, in virtue of (21)

(m) — ! 1
@2) fm(@) = m!g(z) 3 G- D)D) @D

0§j1<j2<j3<"‘<jm§%—1.

Differentiating (22) we obtain
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1 . m
_,”Ef( +1)(CL’)
1
(@ — D;)@ — D;) -+ (x— D)
0<7,<5<JiH< -+ <jn=n-1

= g'(x) 3.

1 ’
+ g(a’?)(z (@ — Dj1)<50 _ sz) oo (@ — D]m)>
0<57,<5:<f< <jo<n-—-1
— 9@ S L 1

s=0 I —Ds (w - D]-I)(x — Djz) L (96 - D]m)
0§.71<j2<.73< e <.7m§n_1
1
¢—D;)+--(@—D; )z—D,)@—D; )---(@—D; )"

Ip—1 Ir+1

— 9@ 55

But it is easily seen that

1
=x— D, (x — Dj,)(x —Dj) - (x — D,-m)
057, <5:<5h< +<j.=n-1

S 1
=x— D, (@ — D;)x — D) -+ (x— Dj,)
S#E Ty i 025, <5< o+ <jun=n-—1
1
(@~ Dj) -+ (x — Djr_l)(x - Djr)z(x - Dj,ﬂ) cee (@ — Dy)
O§]1<.72<.73< '-'<j,,,§n—1.

+ 2

Therefore
_l__f(m-kl)(x)
m!
B n—1 1 1
- g(x)sgo xr — Ds Z (x - Djl)(w - Djz) cc (x - Djm)

SFEJy i 025, <5 <f< - <Jps=n—1
1
= (m + 1)g(x) 3}
(@ —D)@—D,)---(x—D,,,)
0§t1<tz<t3< M <tm+1§n_1
1
T — Dtl)(x"‘ Dzz) °t (x_Dtmﬂ)
O§t1<t2<t3<"' <tm+1§n—‘1
=m+ N3 @—D;)x— D)+ (@ —Ds;,_,.,)
0§i1<i2<i3< et <in—(m+1)§n_1

b

fr@) = (m + D g(x) Z(
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which proves formula (20).

From (20) we obtain for z = D, = D, taking into account that
D—-D;;=0for i =0

f*(D) = k! 3(D — D;)(D — D;)---(D—D;,_)),
(23) 1= <i< <ty =n—1,
k=1.-c,m—1.

From (17) we obtain

(23. a) D)= —d; f(D)=mn!,

and, combining (23), (23. a) and using Taylor’s formula for develop-
ing f(x) in powers of z — D,

f@) = @ — D)* + <§:‘,lc(x — D)n—s) —d,

(24) k.,=> @O - D)D~-D,;)---(D~- D),
1<, <iy< oo <i,<n—1.

4. Inequalities. In this chapter we shall prove the inequalities
needed for carrying out the Algorithm of Jacobi-Perron with a basic
sequence a!” (¢t =1, ---,n — 1) chosen from the field K(w).

We obtain from Theorem 1 and D < w < D + 1

(25) [w]=D.

In the sequel we shall find the following notations useful

(26) P,=P=w-D,, (i=1--,n—1)
| {Pi,k:PiPi+1'°'Pk; 1=isksn—-1.

One of the basic inequalities needed in the following

@) L Dl 2
1S, <, < oo <= — 2.,
To prove (27) we have to verify
(28) 0<(w—D)P,P,--- P, <1.
From (25), (26) we obtain
P=w—-D;>D—-D;>0.
Thus the left-hand inequality of (28) is proved. From (17) we obtain

d
P,

(29) w—D =
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Therefore

(W = D)P,P,, -+ P, = dP,P, - P, /P,
= d/Pik+1P‘5k+2 cee b, < ai(D — Dik+1)(D - Dik+z) 2o (D — Din—x) ;
but, as was proved before, D — D;. = d; (j =1, ---,n — 1) therefore
d
dn—k—-l

(w — D)P,P;, -+ P, < §%=1,

which proves the right-hand inequality of (28).
From (27) we obtain easily, since d =1

<3°> NN
We further obtain, in virtue of (25)

(31) [P]=D — D, t=1,--,m—1).
From (31) we obtain, since d|D — D;,

(32) [Pi/d] = (D — D))/d G=1-,n-1).

5. Jacobi-perron algorithm for polynomials of decreasing
order.

DEFINITION. An (» — 1) by (» — 1) matrix of the form

0 0-.--0 A

0 0:--0 A4,
(33)

0 0-.--0 A4,

will be called a fugue; the last column vector
A,
A,
An-—l

will be called the generator of the fugue.

THEOREM 3. Let f(x) be the GP from (17) and w its only real
root in the open interval (D, D + 1). The Jacobi Perron Algorithm
of the decreasing order polymomials
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a/go) = é‘(w - D)P1,1P2+s,n—1 ’ (3 = 1: e, M — 3)

o) a®, = 7}7‘“’ — D)P,,,

‘a;o)ﬂ = Px,l )
18 purely periodic and its primitive length is T = n(n — 1 for d # 1,

and T=n —1 for d =1. The period of length n(n — 1) consist of
n fugues. The generator of the first fugue has the form

D — D,

D — D,
(35) .

D-D,.,.

The generator of the r + 1 -th fugue (r =1, ---, n — 1) has the form
D — D,
D — D,

(36) 1D _ D,
d

D - Dn—l

The period of length n — 1 consists of one fugue whose generator
has the form (35).

Proof. In the sequel we shall use the notation

w;v=un—-1+)v; w=01-.-;v=01,.-- n—2)
u;n—-1=u+1;0.

(37)
Because of (26) the formula holds
(38) P, /P, =1/P. . ,;; 1=iss<k=n-1.
Since, from (17),
(w— D)w — D)w —Dy)---(w—D,)—d=0,

we obtain
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1 .
P2,1+s ’

%(w - D)P1,1P2+s,n-1 =

(39) 1

2,m—1

%‘(w - D)P1,1 =

We shall substitute these values for ¢! in (34), so that

(s=1,--

‘,77/—3)

a® = 1 . (s=1,--,n — 2)
(40) P, .,
a?, =P, .
We obtain from (34), in virtue of (30), (31)
(41) b =0; (s=1,+-,m — 2) b, =D -~ D,.
We obtain from (31)
P, —[P,;]=w—-D,;
42) Pi,i_[Pi,i]:w—D =1, cee.m — 1
d d d (’L b b n ) .
From (40)—(42) we obtain
(0) (0) 1 —
(L _bs — (8—1) "’n—'2)
2,1+s
al, — b, =w—D;
a® — p = 1 :
PZ,Z
a?, — bi%, = 1 ; (s=1,+-+,m —3)
P2,2+s
al, — b, =w—D,
so that, in virtue of (4)
P
all = =22 (s=1,:,n—3)
P2,2+s
a;}lz = (w - D)Pz,z )
al, =P,,.
From these formulas we obtain, in virtue of (40)
al’ = 1 , (s=1,:-+,n—3)

3,2+s
al, = (w — D)P,,,
a;:)—L = P2,2

(43)

Since
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1
/P, = E‘(w — D)PP,,

we obtain, from (43) and in virtue of (30), (27), (31)
bgl):O; (S:]-!°"yn’—2) bgpl)—1=-D_D2y
and from (43), (44), in virtue of (42)

1
g — b = — |
1 1 P3’3
(45) atd = b2 = ——, (s =1 0,0 — 4)
3,3+s

aglz - bsml)—z = (w - D)Pz,z ’
al, — by, =w—-D.

Frow (45) we obtain, in virtue of (4) and (38)
P3,3

3,3+s
.4(1,,(,,2)_3 = ('w - D)Pz,2P3,3 ’
aif)_z = (’w - D)Ps,a ’

a;z): y (S:].,°'°,'ﬂ/—4)

il = Pyy
an =L, (s=1,---,m — 4)
4,3+s
(46) {1y = (w — D)P,, ,

a;flz = (w - D)Ps,s ’

2)
Ay = P3,3 .

We shall now prove the formula

B —
ag)_l/Pk+2,k+1+s’ (3—1,"',’”/—](5—'2)
k _
s = (W — D)Pyy; 44y
B
a, = Py,

k=2---,mn—3.

(47)

Formula (47) is valid for £ = 2 in virtue of (46). We shall prove its
validity for £ + 1. Since

/Py iiries = -Ell_(w — D)P,is,

we obtain from (47), in virtue of (30), (27), (31)
(48) b =0; (j=1,---,n—2) b, =D — D,.,,
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and from (47), (48), in virtue of (42)

k B _
) — b = 1/Py iy e (s=1,+,m—k—2)
@ ori — 0o = (W — D)P i,y (t=1,---,k)
aP, — bk, =w— D,

a® — bP = 1/Ppisi4s

k B _
a{+)s - bi-i-)s = l/Pk+2,k+2+s ’ (S = 1, e, N — k — 3)
k _ -
A ygri — b gri = (W — D)Py iy (1=1,--,k)
al?, — bR, =w— D,

so that, in virtue of (4)

Y = Py o/ Prsoirots » (s=1,---,n—k —3)
aftl e = (W — D)Py i1 Prisirs (1=1,---k)
aft = (w — D)Ppispse

alP = Pyt

and, in virtue of (42),

al ™ = 1/Pyysu124s » (s=1,¢-e,m—k—3)
(49) af e = (w — D)Pyyj s @=1,+,k+1)
aft = Pyigrs -

With (49) formula (47) is proved.
We now obtain from (47) for k =n — 3

a" = 1/P,—yns

(50) a;t7” = (w — D)Pysipns (t=1+-+,m—3)
a7 = Pygns «

From (50) we obtain, in virtue of (30), (27), (31)

B1)  bpo=0; (s=1,--,n—2) b5 =D~ D,,,

and from (50), (561), in virtue of (42)
ar= — b = 1Pyt

(52) a7 — bi17¥ = (w — D)Ppsipns =1 ---,m—3)
a3 — b =w-—-D.

From (52) we obtain, in virtue of (4),
a*™ = (w - D)Pl+i,n——2P'n-—1,'n-1 ) (’b =1,.--,n—3)
5" = (W — D)Ppynmr s

n—2

(n—2) — .
an—l - Pn—l,n—l ’
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or

B = — D)Pyipns L =1,0,m —

a? =Py g .
From (53) we obtain, in virtue of (27), (31),
(54) b =0; (s=1,.-+,m —2) bp»»=D-D,_,,
and from (53), (54), in virtue of (42),

a® — b*? = (w — D)Pyiyny (s=1,++,n—2)
as? — b = w — D

a"™ = b" = (w — D)P,,,_, ,

ag‘:z) — bf:‘j) = (w - D)P2+s,n—1 ’ (S = 11 e, M — 3)
ar? —br=w-—-D,

so that, in virtue of (4),

a:’n—l) = P2+s,n-—1/P2,n—1 ’ (S = 1’ tee, M — 3)
a3 = 1/Py, s,
a5 =1/(w — D)P,,, s ;

but, from (39) we obtain
1/(w - D)Pz,n—l = 1,1/d;
therefore,

{ain——l) :1/132’1+a , (s:]_, ...’n_z)
a;Ln——IU = Pl,l/d )

thus, with the notation of (37),

a®® = 1/P, ., , s=1,-+,n—2
(55) { [P+ )

al) = P,,/d .

From (55) we obtain, in virtue of (30), (32), and since
1
1/P2,1+s = E(w - D)P2+s,n—1

D — D,

(56) b =0; (s=1,+--,m—2) b= B

and from (55), (56), in virtue of (42)
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A — b = 1P, (=1,
alty — puo — w—D,
n— n—. - ’
d

or

af® = b = 1P, ,

ayy — by = 1/Py,y, , (s=1,--
@i _ pus0) — w—D
n—1 n—1 d ’

thus, in virtue of (4),

',’ﬂ/—'2)

')n_3)

alt = Pz,z/P2,2+s y (s=1,-ce,m— 3)
ay) = (w — D)P,,/d ,
al = Pz,z";
or
a(“” = 1/P3,2+s y (S = 17 e, M — 3)
(57) a} = (w — D)P,,/d ,
at) = P, .
From (57) we obtain, as before,
(58) b =0; (s=1,---,mn—2) b =D — D,,
and from (57), (568), in virtue of (42),
altt — b = 1/P, ..., (s=1,--+,mn—3)
aly — by = (w — D)P.Jd
alt) — bt = w — D ;
or
a(l:l) _ b;l‘.l) — 1/P3,3 ,
ath) — ptY = 1/Py ..., (s=1,.--,n—4)
(59) 1+ Hi / 3,3
ai,‘_lg — b’(,il___lg) = ('w - D)Pzz/d y
alt) — b =w — D .
From (59) we obtain, in virtue of (4),
a%® = P, /P,sis s (s=1,--,m — 4)

al® = (w — D)Pzzpsa/d
a"(nl—zz = (w - D)P3,3 ’
alt) = Py,

or
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al® =1/P, ., , (s=1,++,n—4)
a® = (w — D)P, /d ,

a5 = (W—D)P,, ,

all® = Py .

(60)

We shall now prove the:formula

ait = l/Pk+2,k+1+s ’ s=1,-,n—k—-2)
alk = (w — D)Pz,k+1/d ’
(61) i i = (W — D)Pyiiry (t=1,.--,k—1)

(13k) —
a,y = Pk+1,k+1 ’

k=2,-+,m—3.

Formula (61) is correct for k = 2, in virtue of (60). We shall prove
by induction that it is correct for k£ + 1.
We obtain from (61), as before,

(62) b =0; (s=1,---,m—2) b2 =D — Dy,
and from (61), (62), in virtue of (42)

al® — b = 1/Pyyopires =1+ ,n—k—2)
allt)_ — bR _ = (w — D)P,,../d ,

Ay =0 = (w = D)Pyyypy, (1=1,-+,k—1)
al® — b = w — D ;

or

a'iuk) - bfllk) = l/Pk+2,k+2 ’

ai® — bNY = 1/Ppyisprors (s=1,---,n—k—3)
(63) aytl, — b = (w — D)Pyy/d

alt =0k = (w— D)Pyy s s t=1,--+k-1)

alit — i = w — D,

From (63) we obtain, in virtue of (4),

al Y = Py o pro/ Priairats » (s=1,+,n—k—3)
ali) = (w—D)Py 11 Prioira/@

ayi = (W — D)Pyri i Prrsire G=1---k—-1)
a5 = (w — D)Ppisss

(Lik+1) — .
APk = Pyigprs s

or
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a’:x“k“) = l/Pk+3,k+2+s ’ (S = 1, e, M — k — 3)
(64) jaifikkﬂz) = (w — D)Pys+

aizl—:-lictlz)w = (W — D)Pyyipes » (t=1,---,k)

Ay = Pris s -

With (64) formula (61) is proved.
We now obtain from (61) for k = n — 3

ai“"“” = l/Pn—-l,n—-l ’
aél:'n—-3) — (w — D)Pz,n—-z/d ’
aéi‘i-“a’ = (w — D)Pz+i,n—2 y (1/ =1,

(1;52—3)
a’n—l - Pn—2 .

(65)

From (65) we obtain, as before,

(66) bm ™ =0; (s=1,.++,m —2)

From (65), (66) we obtain as before

= 1/Pn—1,n—~1 ’
b= = (w — D)P,,,—5/d ,
air — pirH = (w — D)P;iins s

sn—3) .
by =w — D ;

a{l:n—a) . b{l:n—-ﬁ)

a;l;n—:{) _

(67)
alin=® —
and from (67), in virtue of (4),

ai'™™ = (w — D)PypoPusn/@

ayi ™ = (w — D)P,. ;2P ines s i=1,--

a‘n“_’;“z’ = (’w — D)Pn—l,n—l y

(1in—2) — .
\an——l - Pn—l,n—l ’

or

af"= = (w — D)P,,,-/d ,

(68) alfit™ = (w — D)Pyii,n (t=1,-

aifi’i"“ = Pn—1,n—1 .
From (68) we obtain, as before,
(69) BunD = 0; (s=1,+--,m — 2)

and from (68), (69), in virtue of (42)
a;l;n—Z) _

(70) air= —

(1im—2) __
An’y

by = (w — D)P,,,_,/d ,
bﬂf?—z) = (’W - D)P2+i,n—1 ’
bilin=t — g — D,

1in—3)
biz——:’; D = D—' Dn—-2°

t=1,-

...’/n*4)

,’ﬂ—4)
',7&-4)
',/n_?’)

bt = D= Dy

)
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From (70) we obtain, in virtue of (4) and (39)

2;0) __
a(s ) - dP2+s,n—»1/P2,n—1 y
agiﬂz) = d/Pz,n—l ’
@ =P ;

or

gz;O) =d P2,l sy
(11) {a [ Pa,i+

aB) =P, .
From (71) we obtain, as before,
(72) b =0; (s=1,---,m — 2)
and from (71), (72), in virtue of (42)

af — BE0 = d[Pyr,

{aifi"{ - b =w—D;
or

a” — bE" = d/P,, ,
(73) affy — biFY = d/Psps,

al®) —bEY)=w—D.

From (73) we obtain, in virtue of (4)
a;zzl) = P2,2/P2,2+s ]

a) = (w — D)P,,/d
aZ) = Pz,z/d ’

or

alt = 1/Pyss

(74) ay) = (w — D)P,,/d ,
ai = Py,ld ;

and from (74), as before,

(75) by =0; (s=1,+-+,m—2)

(S:l’ ..,n_3)
(s=1,--,m —2)
#=D-D,,
(s=1,.--,n—2)
(s=1,---,m—3)
(s=1,+-+,m—3)
(321’ ",%-3)

b = (D — Dy)/d .

From (74), (75) we obtain, in virtue of (42)

a(szn) _

b(sz;l) = 1/P3,2+s ’

(2:1)
Apls —

or

..,n_—3)

b = (w — D)P,/d
@y — b = (w — D)jd ;
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a®h — hEy = 1/P3,3 ,

(231 31) —
ay) — b)) = 1/Pa,3+s ) (s = 1, -

(76) @) p@h — d
Anly wy = (w D)Pm/ ’

a — bE) = (w — D)/d .

From (76) we obtain, in virtue of (4),

aLZ;Z) = P3,3/P3,3+s ’ (3 = 1) o

a3 = (w — D)P,,Pyq/d ,
aly = (w — D)P,,/d ,

(2:2) .
a”—l - P3,3 ’

or
@ = 1/P,31s (s=1,--
) a3 = (w — D)Pyy/d

al = (w — D)Ps,s/d )

(2:2)
al® = Pyg .

From (77) we obtain, as before,

(8) b = 0; (s=1,---,m—2) bZ =D~ D,

and from (77), (78) and in virtue of (42),

0 — b = 1Py, (=1,

a®? — by = (w — D)P,,/d ,
a®% — b%Y = (w — D)P,,/d ,

(252 2}) —
e — b, =w— D,

or

af® — b = 1/P,,

a? — bF) = 1/P, ., (s=1,--
(79) a2 — bz = (0 — D)Puyfd

@y — by = (w — D)Pyy/d ,
a¥y — by =w —D.

'!n—4)

wn — 4)
on — 4)
ce,m — 4)
',771“5)

From (79) we obtain, in virtue of (4), and carrying out cancellation

and multiplication as before,

af® = 1/Pyis (s=1,-

al® = (w — D)P,,/d ,
(80) a = (w — D)P,Jd ,
afE = (w — D)P,,,

(238)
a®) =P,,.

)
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We shall now prove the formula

aF® = 1/Pyiopines (s=1,--,n—k—2)
aif_, = (w — D)P,,../d ,

(81) ai = (w — D)Py./d
iy = (W — D)Psyipys (t=1,.-,k—2)
al® = Pyiyii s k=3,.-+,mn—3.

The proof of (81) is by induction like that of formula (61) or (47).
First we see that (81) is correct for & = 3; then we show that it is
correct for k& + 1.

We now obtain from (81) for k =n — 3

aiZ;n—3) = I/Pn_l,n—a ’
aéz;n—?») — (w — D)Pz,n—z/d ’

(82) a " = (w — D)P;,,5/d ,
@i = (w — D)Psrins (t=1,-+-,mn —5)
aibz-;—?_a) = P'n-z,n—-z ;

and from (82), as before,
@83 b =0; (s=1,---,m—2) bitv® =D —D,_,.
From (82), (83) we obtain, in virtue of (42),

aEF=9 — pEn=n = 1/P,
aEnd — b9 = (w — D)P,,fd,

(83) @ — b = ( = D)Pufd
aZr™ — b = (w — D)Psriyns
aFn= — pEn = w — D .

From (83) we obtain, in virtue of (4) and carrying out multiplication
as before,

a*" ™ = (w — D)P,,,_,/d ,
a;2;n—2) = (w - D)PS,n—l/d )
a8 = (0 — D)Pyyis (=1, — 4)

(2im—2)
an—-l - P'Ib‘—ly'lL—l .

(84)

From (84) we obtain, as before,
@®) b =0; (s=1,--,n—2 ¥ *=D-D,,,
and from (84), (85), in virtue of (42),
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@ — bEr = (w — D)P,,_/d ,

a(?;n—Z) . b(2m—2) — (w . D)P e /d ,

(85a) ot _ s " :
iy - bz-}:? ) = (w - D)P3+i,n—1 ’ ('L = 1: e, — 4)
aFn® — pEn- = — D,

From (85a) we obtain, in virtue of (4),
a’ = Py, [Py,
P = dPsyins/Pions » (=1 --,m—4)
ay) = d/Py,_, ,
a3 = d/(w — D)P,,,_, ;

or, after carrying out the necessary cancellation and multiplication

o™ = 1/P,, ,

(86) a? = d/Pyyy; (t=1,-.--,m—3)
a) = Py, .

From (86) we obtain, as before,

87) b =0; (s=1,---,n —2) &Y =D-—D,,

and from (86), (87), in virtue of (42)
al®® — bE» = 1/P,, ,

(88) ai? — b = d/Pyyys (t=1,.--,m—3
al? — b =w— D,

From (88) we obtain, in virtue of (4), and carrying out the necessary
cancellation

at = d/P3,2+i ’
4 = w — D)., ,

n—2

3:1) .
all = P2,2 ’

(7' 1,"',%—3)

(89)

and from (89), as before,

(90) ¥ =0; (s=1,---,m—2) by =D — D,.
From (89), (90) we obtain, in virtue of (42),

ai3;1) — bi3;1) — d/Pg,g ,

a®d — %Y = d[P; sy, G=1,---,n—4)
(91) 1JT (;l / 3,3+

a) — b = (w — D)Py,

aly — b =w—D.
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From (91) we obtain, in virtue of (4), and carrying out the necessary
cancellation and multiplication

af = 1/Pysu @=1-mn=—9
ai® = (w — D)P,/d ,

a$% = (w — D)P,y/d ,

al? = P,,Jd;

(92)

and from (92), as before,

D — D,

©3) b =0; (s=1,-m—2) b= 2

.

From (92), (93) we obtain, in virtue of (42)

a{3:2) _ bis;z) — ]_/1)4’4 s
af? — b =1/P,,, (t=1,---,m —5)

(93a) al? — bW = (w — D)P,./d , aFy —b&Y = (w — D)P;,
n—3 n—. 2, 9 n—2 n—2 d ’

a2 — b = (w — D)/d .

From (93a) we obtain, in virtue of (4),
a';ls;a) = 1/P5,4+i s (7’ = 17 e, M — 5)
ars = (w — D)Pz,4/d ’

(94) a2y = (w — D)P,,/d ,
af®) = (w — D)P, Jd ,
s = P4,4 .

From (94) we obtain, as before,

(95) ¥ =0; (s=1,.-+,n—2) b =D — D,,

and from (94), (95), in virtue of (42),

al®® — b = 1/P;; ,

af? — 0P = 1/P; 4y (t=1,--+,m—6)
al®® — &) = (w — D)P,,/d ,

alf — b = (w — D)P,,/d

a®) — b¥% = (w — D)P, Jd ,

af®) — b3 =w—D.

(96)

From (96) we obtain, in virtue of (4), and carrying out the necessary
cancellation and multiplication
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a® = 1/Pq;; , (1=1,--+,m — 6)
e = (w — D)P,/d ,

_40;334) = (w — D)P;,/d ,

a2 = (w — D)P,,/d .

a3 = (w — D)P;,; ,

3:4)
Wyl = L5 .

(97

We shall now prove the formula

aF® = 1/Py s piri (=1 n—-k—2)
al¥k_ = (w — D)P,,../d ,

a) = (w — D)Py,./d

(98) <a¥k, = (w — D)P,,../d,

¥Ry = (W — D)Pysy s (s=1,--+,k—3)

(3:k) _
Ap’y = Pk+1,k+1 ’

k=4,---,n—3.

Formula (98) is correct for k¥ = 4 because of (97). We then prove
as before, that it is correet for k + 1, so that (98) is verified. We
obtain from (98), as before,

99)  bFP=0; (s=1,--,n—2) b =D — Dy,
and again from (98), for k=n — 3,

ai3'-'n—3) = I/Pn—l,n—l ’

a9 — (w — DYPyys o o/d , =1,2,3

(100) 1: ) ( ) 1+, 2/ (/l’ )
s = (w — D)Pyigns (s=1,--+,m —6)
ai?—;-,,;—‘a) = P'n-—2 n—2 °

From (100) we obtain, as before,
(101) b =0; (s=1,.+-+,n — 2) b¢n =D — D,_,,
and from (100), (101), in virtue of (42)

ai3;n—-3) — biS;n—I‘}) — l/P el s
Q™ = b = w = D)Prsuafd,  (1=1,2,3)
QI = b = W = D)Prrpps, (5=1,+++,m —6)

aFn — pEFn = — D .

(102)

From (102) we obtain in virtue of (4), and carrying out the necessary
cancellation and multiplication
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a;i?"* ™ = (w — D)P,y;,n/d (t=1,2,3)
(103) ai™ = (W — D)Pyigny (s=1,+--,m—5)
a(na-j{—z) = Pn-—l,n-—l ’
and from (103), as before,
(104) BE*P =0; (s=1,+--,m—2) b =D~ D,,.
From (103), (104) we obtain, in virtue of (42),

ais:n—d) _ b§3?"“2) = (w — D)Pz,n—l/d ’
a;s:n—Z) _ bés:”_z) = (w — D)Ps,n—l/d ’

(105) @ — b = (w — D)Pyufd
agr> — b = (W = DPprs,  (8=1,--,n—5)

agin® — b3 =w — D,

and from (105), in virtue of (4),

ot = 1/Py, ,
w0 — 1/P, .,
(106) = 1P
;Y = d/Posss (s=1,+ee,m — 4)

aifi‘]f - P1,1 .
The reader will easily verify, on ground of previous formulas, that
the 4(n — 1) supporting sequences

bii;k)y bég:k), Sy bif—]i) (k = O: cee, M — 25 1= 0,1,2, 3)

generate the first four fugues whose form is that as demanded by
Theorem 3.

The complete proof of Theorem 3 is based on the following
LEMMA 1. Let the generating sequence
a0 (s=1,--e,n—1;k=38,.--+,n—2)
have the form
aﬂ/ik;O) = 1/P2,1+i ) (’L = 1’ ct Y k— 2)
(107) il = APy s s (s=1,.---,m — k)
aly =P, ;
then the n —1 supporting sequences
bﬁk:my bék;O)’ ct Y bfnk—q) ’ (7/ = Oy e, — 2)

generate a fugue which has the form of the k + 1 -th fugue as demanded
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by Theorem 3, and the generating sequence al*+i® (s =1, .., n — 1)
has the form of (107), where k is to be substituted by k + 1.

Proof. In virtue of formula (86), the generating sequence

(k;0) (k30 (k30)
@, Ay )7"°yan—-1

has the form as in (107) for k¥ = 3. The n — 1 supporting sequences
b.(3; 0), b,(3; 0), ---, b(3; 0) form the fourth fugue of the period as
demanded by Theorem 3. The generating sequence

(k+1:0) (k+4130) .. (k+150)
a; y Qg y 2ty Qny

too, has the form as in (107) for k = 8, in virtue of formula (106).
Thus the lemma is correct for k¥ = 3. Let it be correct for k = m.
That means that the n — 1 supporting sequences

B, B, e B, (=0, m = 2)

form the m + 1 -th fugue as demanded by Theorem 3, and that the
generating sequence

aim+1;0), a;m+1;0)’ cen, a(m-{l;O)
(m-
has the form
a£m+1;0) = 1/P2,1+i ’ (?’ = 17 e, M — 1)
(108) an Y = APy s (s=1,---,m—m—1)

a0 =P, .
From (108) we obtain, as before,
(109) bimtt =0; (s=1,---,m—2) bi»iv =D — D,
and from (108), (109), in virtue of (42),

a§m+1;0) — b§m+1;0) — 1/P2’2 R

@t — b = 1/ Py (t=1,---,m—2)
a%’”_ﬁlﬂ) - binm—ﬁ:fg) = d/Pz,m+s y (S = 17 ce, W — M — 1)
Qs — b0 = — D,

(110)

From (110) we obtain, in virtue of (4)

a™ N = Pyo/Pysyi (t=1---,m—2)
B = APy Pomss » s=1---,m—m— 1)
al™it = (w — D)P,, ,

at it = Py, ;

or
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;" =1/Py,.; (t=1,-+-,m —2)
aiﬂmjl;;):dpms s=1, 0. —m—1
(111) 24j / 3,m+s 9 ( ’ ’ )
a;"i" = (w — D)P,, ,
Tty = Pz,z .
We shall now prove the formula
a;™ " = 1/Py g iisi (t=1,--,m—1t—1)
ainm—-‘zl—ii?ks = d/Pt+2,m+s ’ (S = 1, e, — M — 1)
(112) a5 = (W — D)Pyiji (G=1,---0
ittt = Pz+1,¢+1 ’

t:l,...’m_z.

Formula (112) is correct for ¢ =1, in virtue of formula (111). We
shall prove that, being correct for ¢, it is correct for ¢ + 1. From
(112) we obtain, as before,

113) bt =0; (s=1,.+,n — 2) by =D — D,., ,
and from (112), (113), in virtue of (42)

@, Y — p Y = 1Py sis
aﬁﬁ”?““ - bii"?““ = l/Pt+2,t+2+i ’ (7/ =1,---,m—t— 2)
(114) a’;rbm—~tl~§)+s - b;r':n*‘tii)—\ = d/Pt+2:m+s ’ (3 = 17 ey, —Mm — 1)

(m+1:t (mer1,t) .
a’(%"it—%)—j - bn”i;izirj - (w - D)P1+j,t+1 ’ (.7 - 17 Tty t)
amitt — bt = — D,

From (114) we obtain, in virtue of (4)

o - N .

a," Y = Pt-}»z,t+2/Pt+2,t+2+i y (1 = 1 .. am —t— 2)
(m-+15t — —

a5 = APyysof/Prismes , (8 =1,++,m —m — 1)

(115) a5 = (w — D)Pyy i Prisirs (J=1,---,10)
a ;" = (w — D)Ppioyss
A = Py,

and from (115), carrying out the necessary cancellation and multi-
plication

a;" Y = 1/Pyigiioni (t=1,---,m—1t—2)

alm it = AP,y s (s=1,---,m—m — 1)
(116) S e .

an—%—’.’iv+j = (w - D)P1+j,t+2 (.7 = 19 D) t + 1)

(m+158+1) —
Oy =Piioia -

With (116) formula (112) is proved. We now obtain from (112), for
t=m — 2,

31¢
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a/mtim=y = 1/P,

a{m;-nm—z)_—:dpmms, 3:1,...’n_m_1

(117) o [P (6 =1 )
aimtimt = (w — DYPyijmey (=1, -v,m—2)
@t = P

and from (117), as before,
(118) o™ =0; (s=1,-+,m—2) b =D~ D, .
From (117), (118) we obtain, in view of (42)

(a{m+1:m—2) — b§m+l;m—2) — 1/Pm,m y

(119) a{z;—lzm—% - bi?:—“m—m = d/Pm,m+s ’ (S = 17 e, — M — 1)
ayin T = b = (w — D)Piijmey, (=100, m — 2)
a;;ﬂj:;—l;m—?) — b(ﬂ:’ri—i—l;’lﬂ—?) = W — D;

and from (119), in virtue of (4), and after carrying out the necessary
cancellation and multiplication

agm+1:m—1) — d/Pm+1,m+s , (S = 1, e, M — M — 1)
(120) {aimiimed = (w — DYPisym (G=1--,m—1)
a;”:;l;m_l) - Pm m .

From (120) we obtain, as before,
21y bpmttm=b =0; (s=1,-++,m — 2) bimitm=b = D — D,, ,
and from (120), (121), in virtue of (42)

a(gm+1;m—-1) - bém—i—l;m—l) = d/Pm+1ym+S y (S = 17 e, — M — 1)
a/;@tnl——'lf-:al) - b(n":tnl—”f;;) =(w— D)P1+j,m ’ JG=1--,m—1)

ai{:ﬁ-{-l;m—l) . b(nwi—LH:m—lJ = w — D ;
or
a;m%—l:m—i) - b(\m+1:m-—l) — d/Pm+1,m+1 ,
afpHm T — b = APy miies s (S=1,000,m —m — 2)
a’frzn—tnljf;;) - bib"::nl:?:}) = (w - D)Pl+jym ’ (.7 = 1) e, M — 1)

a?(%'ri-{-l;m—-lj . biﬁj—l;m—-l) = W — D .

(122)

From (122) we obtain, in virtue of (4) and after carrying out the
necessary cancellation and multiplication

T V) (s=1,--m—m—2)
(123) an(/pﬁi—nl;?i)-y = (w - D)P1+j,m+1/d ’ (‘7 = 1’ Tt m)

it = Pm+1,m+1/d .
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From (123) we obtain, as before,

124) »bHmtv™m =0; (s=1,-+-,n— 2) pimiiim) — D—-D,.,

d b
and from (123), (124), in virtue of (42),
a/im+1;m) - b{m-}-l;m) = l/Pm+2,m+2 y
(125) a{?_:-si-l;m) - bi’f:“m) = l/Pm+2,m+2+s ’ (3 = ls e, — M — 3)
A — b = (w — D)Prajmid/d (G=1,--,m)

aimi® — bt = (w — D)/d .

From (125) we obtain, in virtue of (4) and after carrying out the
necessary cancellation and multiplication,

aim+1;m+1) = 1/P7n+3,m+2+s ’ (S = 1, ce, M — M — 3)
(126) amiimel = (w — DYPyj mis/d G=1¢c,m+1)
a(m+1:m+1) — P
n—1 m+2,m+2 ¢

From (126) we obtain, as before,
(127) pimrimt — () ; (8 = 1’ R 2) bl(n‘iib_-!i.-l;m+1) =D — Dm+2 ,
and from (126), (127), in virtue of (42)

a§m+1;m+1) . b£m+1;m+1) — l/Pm+3,m+3 ,

H ( 5 — —
afi‘é“ Y — bx?:l m = l/Pm+3,m+3+s ’ (s = 1’ e, N — M — 4)
atnisl) — O = (W — D)Piyjmea/d, (G=1,---,m + 1)

13 1 13 1)
gimtimyd . plmitimtl — 9 — D,

(128)

From (128) we obtain, in virtue of (4), and after carrying out the
necessary cancellation and multiplication

@M = 1P, (s=1,--,n—m — 4)
A" = (w — D)Pyyjmes/d (G=1---,m+1)

129
B2 Naimgsnes = @ — D)Psincs,

(m+1;m-+2)
(¢ 2%

= Pm+3,m+3 .

We shall now prove the formula

@R = 1/ P ivemt kit s s=1,+,m—m—Fk—2)
a5y = (W — D)Pyjmrin/@ (3=1-:--,m+1)

(130) a5 = (W — D)Prisriymirts (t=1,.--,k—-1)
AT = P m ket

\k.:z’...’n_m_g.
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Formula (130) is correct for k& = 2, in virtue of (129). Presuming it
is correct for &k, we shall prove its correctness for & + 1.
From (130) we obtain, as before,

(ABL) b = 05 (s =1, m—2)  bENME =D = Dy,
and from (130), (131), in virtue of (42)

QiR pmimth) — 1/PM+k+2,m+k+2 )

a7yt — PR = 1P g miptats » (S=1, 000, n—m—k—38)
(132)  qamninii; — bt = (W — D)Piyjmagn/d, (J=1,-+-,m+1)

a MR — bt = (w — D)Puieremintss, (E=1,++,k—1)

ai:ﬂ—l;mﬂc) - b(n"ﬁl—l:m ey — o — D .

From (132) we obtain, in virtue of (4) and after carrying out the
necessary cancellation and multiplication

a T = 1P g metktets (s=1,-,n—m—Fk—3)
A Y = (W — D)Pyjmirie/@ (3=1,---,m+1)
i Er Y = (W — D)Poorymrite (t=1,---,k)
AT = P ima ke

which is formula (130) with & being replaced by k& + 1; this proves
formula (130).
We now obtain from (130) for k =n — m — 8

"t = 1P,

(134) a7t = (W — D)Pyyj,,/d (G=1,+-,m+1)
aimiiyd = (W — D)Pisityn—s t=1,.,n—m—4)
a i = Py s,

and from (134), as before,
(185) bimti =0; (s=1,+--,m—2) oMY =D-D,,,
From (134), (135) we obtain, in virtue of (42),

a/im%—l;n—-"i) _ b(1m+1;n—'3) — 1/Pn——1,n~1 s
aﬁn;}l;n—a) _ bm;rl;n—s) = (w — D)P1+j,n—2/d , (3 =1,.-,m + 1)
a;ﬁgi’?—z) - b(w:n:zi?_a) = (w - D)Pm+2+t,n—2 ’ (t = 1, e, —m — 4)

(m+1;n—3) (m+1in—3)
amyieT® — bt =w-D,

(136)

and from (136), in virtue of (4), and after carrying out the necessary
cancellation and multiplication
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a" " = (w — D)Pyyj/d (J=1,---,m +1)
(137)  Jani T = (w — D)Ppisitn (t=1,---,m —m —3)
a;fﬂ—lm_z) = Pn—l n—1 »

From (137) we obtain, as before,
(188) bdm+timd =0; (s=1,-++,m — 2) bimitin= — D — D, .,
and from (137), (138), in virtue of (4),

@ — bt = (w — D)Py,fd
Qe — b = (w = D)Pojnfd, (G =1, m)
QAT — B = (W — D)Pyisis, (E=1,0+,m—m—3)

+1,m—2 {m+1in—2) __
@Y i =g — D

(139)

From (139) we obtain, in virtue of (4), and after carrying out the
necessary cancellation and multiplication

a™E = 1/P, ., , G=1,---,m)
(140)  JauiE = d/Ppmsise t=1,--,m—m—2)

(m+250)
a/n—-l - Pl,l .

According to formula (109) (one line of the period), formula (113)
(m — 2 lines of the period), formula (121) (one line of the period),
formula (124) (one line of the period), formula (127) (one line of the
period), (131), (r — m — 4 lines of the period) and formula (138) (one
line of the period-totally 1 +m —2+1+1+1+n—m—4+1=
n — 1) the m — 2 -th fugue has the form as demanded by Theorem
3. Since (140) is formula (107) for k¥ = m + 2, the Lemma 1 is
completely proved.

In view of the Lemma 1 we obtain that the (» — 5)(n — 1) lines

bk bl L. Pk k=4,---,n — 2)

form n — 5 fugues, beginning with the fifth fugue, as demanded by
Theorem 3; we further obtain, applying the lemma for k = n — 2,
k + 1 =mn — 1, that the generating sequence a{**", (¢t =1, -+, n — 1)
has the form, following (108)

aé”—“‘” — 1/P2,1+i , (@ = 1, e, M — 3)
(141) ai{‘_}““) = d/Pz,n—l ’

(n—130)
ar s =P, .

From (141) we obtain, as before,
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(142) b0 =0; (s=1,---,m—2) b =D —D,,

and from (141), (142), in virtue of (42)
a0 =10 — ]_/PZ’2 ,
aff7 " — b = 1/Pyay (t=1-m—4
a5 " — ot = dfP,y,

alPov 0 — Bt = w — D,

(143)

From (143) we obtain, in virtue of (4), and after carrying out the
necessary cancellation and multiplication

" =1/Py,;
@' = dfPs,, ., ,
ag3 = (0 — D)P,, ,
a5t = Py, .

(144)

We shall now prove the formula

a8 = 1Py s (=1, n—k—3)
alrshk) = A/ Prisyni »

(145) a7 R, = (w — D)P,..y 11 (s=1,:--,k)
aP T = Py

k=1,-e,m — 4.

In virtue of (144) formula (145) is correct for £ = 1. We prove, by
completely analogous methods used to prove previous, similar formulae
that it is correct for k£ + 1, thus verifying its correctness. We now
obtain from (145), as before,

(146) b9 =0; (s=1,-+-,m—2) b =D — Dy,

and again from (145)', for k = n — 4,

a;ﬂ—l:’lb—‘“ = d/Pn——2,n—-1 ’
a7 = (w — D)Piy s, C=bon=d

(n—1in—4) __
\a’n—l - Pn—S,n—-!‘) .

r%mw=u&%w’
(147)

From (147) and (146) (for k¥ = » — 4) we obtain, in virtue of (42),

ai"‘“""“ _ bi”‘“”—'” = 1/Pn—2,n-——2 ’
a;n—l:n~4) _ bz(z”‘“""”'—“) = d/Pn—2,n——1 ’
gt prtined — (3 DP._,, ., (s=1,.-+,m —4)

(m—1in—4) (n—1in—4) __ N
a,_y - bn—l =w—D ’

(148)
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and from (148), in virtue of (4), and carrying out the necessary
cancellation and multiplication,

a" i = d/Pn—-l,n—-l ’
(149) at75 ™ = (w — D)Pyyyns s (s=1,--,m—3)

a3t = Py s
From (149) we obtain, as before,
(150) bt =0; (s=1,.-o,m — 2) brtm =D —D,_,,
and from (149), (150), in virtue of (42)

ain—l;n—:ﬁ) . bin—l;n—-:&) — d/P L .
n—1l,n—1 9
(181) @l — b = (W — D)Pris,ps s (s=1,:+,m—3)
afn'r:l;n—%}) _ b‘(n’r:-l-lzn-—ii) = w — D .

From (151) we obtain, in virtue of (4), and carrying out the necessary
cancellation and multiplication

(152) {a(;umm = (w — D)P1+s,n—1/d , (S = 1’ e, M — 2)

a i = P, ../d,
and from (152), as before,

D - Dn—l

(153) b(sn——l.n~2) =0; (s= 1, -, n — 2) hiroln-n — y

From (152), (153) we obtain, in virtue of (42),

artin—n b{n—lm—z’ = (w — D)P2,'n——1/d ’
(154) Jaz = — b7 = (w — D)Pysufd,  (s=1,++0,m — 3)
afﬂfrf——ll;n—z) _ b(n"i__llmﬁz) = (’u) — D)/d ’

and from (154), in virtue of (4),

agn;O) = Pﬂ,s,nwl/Pg,n_L = 1/P2,1+s ) (S = 19 (A 3)
aiﬁig) = 1/P2,'n——1 )
a = df(w — D)P,,,_, = (w — D)P, ,_/(w — D)P,,_, = P, .

Thus

("0 = 1/P, ., , =10, — 2
(155) {a [Py, s (s n )

(n30) —
an—-l - Pl;l .
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Comparing (40) with (155) we see that
al™?" = al” (s=1,---,m—1)
i.e.,
(156) al*»= = gl s=1,---,mn—1)

which proves that, in case d = 1, the Jacobi-Perron Algorithm of the
basic sequence a!” (s =1,---,n — 1) from (34) is purely periodic and
its length T = (n — 1)n. Since, in virtue of (142), (146), (150), (153)
the n — 1 supporting sequences

blm_l;k)y b;n—l:k), ) b;:i—llzk) (k = Oy ly e, — 2)

form a fugue which is the n -th fugue of the period, we see that

this last fugue, together with the 4 + (w — 5) = n — 1 preceding

ones form the n fugues of the period, as demanded by Theorem 3.
In case d = 1, we obtain from (55)

(157) a'.(sl:O) = 1/P2,1+s ) (S = 11 e, M — 2) ’ aEnl:—OB - P1,1 )
so that, comparing (157) with (40), we obtain
(158) al»™" = al?, (s=1,.-+,m—1)

so that the length of the period is here T =n — 1; from (41), (44),
(48) (54) we obtain that in the case d = 1 the period has the form
as demanded by Theorem 3.

The reader should note that proving case d % 1 we presumed
n = 6. The special cases n = 2, 3,4, 5 are proved analogously.

We shall now give a few numeric examples. Let the generating
polynomial be

fw) = a® — 15" 4 54a® — 3 = 0,
which can be easily rearranged into

fle)=(@ —9)(x —6)x’ -3 =0
and has the form (17) with

D=9, D =6,D,=D,=D,=0; d=3;
I<w<10; (w— 99w —6)w*—3=0.

The Jabobi-Perron Algorithm of the basic sequence
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(w—Nw —6)w (w—99)(w—6w (w— 9d)(w — 6)
3 ’ 3 ’ 3 ’

w—6

or

w* — 16w’ + 54w® w’® — 15w® + 54w  w® — 15w + 54 w—6

3 ’ 3 ’ 3

is purely periodic with period length 7 = 20. The period has the
form

o OO O o o o <o S O O O oS O O O o © O O
oS O O O o © © O S O © O o O O O o O O O
o O O O O o o <o S O o O o O O O S O O©o O
O WO YW W W W O W O W W W WO O+ O W O W

Let the generating polynomial be

flx) = «® — 32® — ba* + 162° + 42* — 120 — 1 =0,
which is easily rearranged into

f@ =@ -3 —-2)@ D@+ D+2) -1=0
and has the form (17) with
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D=3 D, =2 D,=1, D,=0, D,= -1, Dy= —-2; d=1;

3 <w < 4 ’

(w—3)(w —2)(w — )(w+ 1)(w+2)w—-1=0,
The Jacobi-Perron algorithm of the basic sequence
a” = (w — 3)(w — 2yw(w + V)(w + 2) = w° — 2w* — Tw® + 8w* + 12w ,
a® = (w — 3)(w — 2)(w + (w + 2) = w'— 2w — Tw* + 8w + 12,

@ = (w — Bw — D(w + 2) = w' — 3w — dw + 12,
al® = (w — 3)(w — 2) =w — 5w+ 6,
a = w — 2 =w—2,

is purely periodic and the period length is T = 5. The period has
the form

S O ©O O o
S O O o o
S ©O ©O o o
S O O o o
Ol = W N =

Let the generating polynomial be
fley=2*— 160 —2=0,
which is easily rearranged into
fley=(x —Dax(x+4) —2=0

and has the form (17) with

D=4, D =0, D,= —4; d=2;

4<w<bh,

(w—4H(w+Hw —2=0.
The Jacobi-Perron algorithm of the basic sequence

(w — Hw :w2—4w, w

2 2

is purely periodic and the period length 7T = 6; the period has the
form

S O OO O o
> = 00 DN 00
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6. The Jacobi-perron algorithm for polynomial of increasing
order. In this section we shall show that, by imposing further
conditions on the coefficients of the GP from (17), one can select
increasing order polynomials from the algebraic number field K(w)
generated by f(w) =0, D<w< D+ 1, such that their Jacobi-
Perron algorithm is purely periodic. This result is stated in

THEOREM 4. Let the coefficients of the GP in addition to (17)
Julfil the inequalities D — D, = 2d(n — 1), t.e., altogether
D, D;, d rational integers; d =1; n=2;

(159) .
d|{(D—-D); D—D; =2d(n—1); (t=12,+:--,m—1);

Let w be the only real root in the open interval (D; D + 1). Then
the Jacobi-Perron algorithm of the basic sequence
a™(w) = Dioge, (w — D)=, (s=1,-ve,m—1); k,=1;
(160) k,=>OD—-D;)D—-D;)---(D~-D;), (s=1,---,n—-1),
125, <<+ <j,=n—1

is purely periodic and its length T =mn for d >1, and T =1 for
d =1. The period has the form

b =k, (t=1,---,m—1);
{b?’:ki t=1,+--,m—1—35),
(161) b = k;/d t=nmn—s8,--,m—1;8=1,---,m — 2);
bi" v = k;/d (t=1,--+-,m—1);
d>1.
(161a) b =k, (t=1,---,m—1); d=1.

Proof. This is essentially based on the simple formula
(162) [a®(w)] = k; t=1---,m—1).

Since, as will be proved later, w is irrational under the conditions
(159), we have to verify the two inequalities

(163) k; <a™(w) <k; +1 (t=1,.-+,m — 1),
or, in virtue of (160)
164) O0< (w—Dy +k(w— D)+ -« +k,_(w—D)<1.

The left-hand inequality of (164) follows from w > D and k; > 0.
We shall prove the right-hand inequality

(165) (w—D) + k(w—D)yr*+ «oo + k(w—D)<1.
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Since 0 < w — D <1, we obtain (w — D)) < w — D, and we shall
prove, since

(w— Dy + k(w— D)y* + «++ + k,_(w— D)
s=(w-—-D)+k(w—D)+ -+ + k_(w— D),
(166) (w—DYL+k, +hy+ oo +E)<1.
From w > D, (w — D)}w — D) --- (w — D,_) — d = 0, we obtain

(167) w—D=d/(w— D)w—D,)---(w— D,.))
<d/(D—-D(D - D, ---(D—D,.)) .

We shall now prove the inequality

(168) k(w — D) < 2-n=1=2 | (s=1,+++,m —2).

Let the D; be arranged in nondecreasing order, so that

(169) D-D=D-D,=z---=2D-1D,_,.

In virtue of (169), and taking into account the values of k, from
(160) we obtain

k(w— D)< (@~ D) (D~ D)D =Dy (D~ D)
= ("5 )w - DD - D)D - D) -+ (D - D)

("5 )@= D)@ - Dy (D~ D
D= D)D - D)+ (D— D,

("5 )

(D — D,.,)(D — D,:5) +++ (D —D,_,)

<

b

in virtue of (17). Therefore

170)  k(w — D) <

But D — D, = 2d(n — 1) ; therefore we obtain from (170)

oy
S
k(0 = D) < G =

n—1 n—1 " n—1

— < S ) < ( S > — (n — 8 — 1>
2n—s-—1(,n _ 1)n—s—ldn—2—s = 2n—s—l(n _ 1)n—s~1 2n—s-l(n _ 1)n—~s—l

=1 =1 2-2 s+1 < 1
2=l g —1 2(n—1) (m—s—1)(n—1)~ 20—’

which proves formula (168).
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We further obtain from (167)

d _ 1 < 1
(2d(,n _ 1))n—1 2n—-1(,n _ l)n—ldn—-2 = 9gn—1 °

w—D <

In virtue of this result and of (1€8), we now obtain from (166)

1 1 1
— D)1 )< = e :
(w— D)1 + Kk, + + ki) < o= + i + + 5
1 1 1 1
< + 4+ oeee =1 - —— 1
—ort 0 g 2 ot

Thus (162) is proved.
In virtue of (163), we obtain the inequalities

ki _ a®(w) ki +1 _ k; 1
d d < d ~ d L
so that
171 |2 ] &
(171) 7 7

(162) and (171) provide the key to our proof of Theorem 4. The
further course of the proof is similar to methods used in previous
papers ([10], [12]) and we shall, therefore, give here only a very
general outline of same. Denoting in the sequel

(173) a”(w) = a® , t=1:--,m—1)
we obtain from (160), (162)
al = (w — D)al® + ki, , (t=0,--+,m—2)a” =1,
ai, — b = alt, — ki
(174) al®, — b = (w — D)a® (t=0,---,m—2).

We further obtain from (24), for f(w) = 0,

(w— D) + k(w — D)"* + k(w—D)y"*+ - +k,_(w—D)—d =0,
1 — (w _ ‘D)n_1 + kl(w _ D)n_z 4 e kn—1 — aE/LO)—1 .

w—D d d

since, from (174), a!® — b = w — D, we obtain

1 av,
(175) T g

We shall now carry out the Jacobi-Perron algorithm of the basic
sequence (160) and obtain from (162)



332 LEON BERNSTEIN AND HELMUT HASSE
(176) b =k, , (s=1,.--,n—1)
and from (174), (175), in virtue of (4)

{aﬁ“—bi") =w-—-D,

a?, — b, = (w — D)a,” (t=1,+-,m—2)
177 aﬁil):aﬂ(lmy (?:21,"',/)’1/—2)
a7 all, =a,/d .

From (177) we obtain, in virtue of (162), (171)
(178) b =k,; (s=1,---,m—2) bl =k, /d,
and from (177), (178), in virtue of (174), (175)

a® = b =w— D,

1aids — by = (w — D)a” , (t=1,+--,m—3)

alll, — by, = (w — D)al,/d ,

a® = a®, t=1,+.--,m—3)
(178a) {1ai2, = al,/d ,

al, =ad,/d.
It will now be easy to prove formula

a® = a, t=1,+--,m—s—1)
(179) aifls_1+,- = a,(,fls_l_”/d y G=1,-.--,9)
S = 1, s, n — 2 .

Formula (179) is correct for s = 1,2 in virtue of formulas (177), and
(178a). It is then presumed that it is correct for s = m and proved
that it is correct for s = m + 1.

We now obtain from (179), in virtue of (162), (171)

b =k, ; (G=1,--e,m—s—1)
(180) B, s = ﬁ;d:_t ; G=1,---,5)

We further obtain from (179), (180) for s = n — 2

o™ =a”; a3 =ald; (G=1,-,m—2)
b =ky; bV =kyyld,  (G=1,:,m—2)

so that, in virtue of (174), (175), (4)
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a"® —-b"P=w-—-D,
{aiﬁf’ = bi13" = (w — D)ay’/d , (G=1,---,m—2)
(181) ai" ™" = a”/d (t=1,+--,mn—1).

From (181) we obtain, in virtue of (171)
(182) b = ky/d , (t=1,---,n—1)

and from (181), (182), in virtue of (174)

ai") — b= = (w — D)Jd.,
At — b = (w — D)aPld,  (i=1,-,n —2)

so that, in virtue of (4) and (175)
(183) a” =a”, (t=1,--+,m—1)

which proves that the Jacobi-Perron algorithm of the basic sequence
a (t=1,---,m — 1) is purely periodic and its length T = for
d > 1. We further obtain from (177), for d =1,

al = al” (t=1.--,m—1)

so that in this case the Jacobi-Perron algorithm is purely periodic

and its length T = 1.
From (176), (180), (182) we conclude that the period of the

algorithm has the form as demanded by Theorem 4, for d = 1.

We shall take up the numeric examples of §5 to illustrate
Theorem 4.

1. S@)y=2a"— 152" + 540  — 3 =(x — 9)(x —6)x* —3=0.
Developing f(x) in powers of * — 9 we obtain
f®) = (¢ — 9)° + 30(x — 9)* + 324(x — 9)°
+ 1458(x — 9)* + 2187(x — 9) — 3 =10,
‘The basic sequence has the form
a” =(w—9)+30 =w+ 21;
a” = (w — 9+ 30(w — 9) + 324 = w® + 12w + 135 ;
a® = (w — 9)° + 30(w — 9)* + 324(w — 9) + 1458

= w* 4+ 3w® + 2Tw + 243 ;
a” = (w — 9)* + 30(w — 9)® + 324(w — 9)* + 1458(w — 9) + 2187

= w*— 6w’.
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The period of the Jacobi-Perron algorithm of these numbers has the
form

30 324 1458 2187

30 324 1458 729

30 324 486 729

30 108 486 729

10 108 486 729 .

2. flo) = o° — 30° — ba* + 152° + 4a® — 120 — 1
=@—3)(c —2) - D@+ )@+2 —1=0.
Developing f(x) in powers of © — 3 we obtain
fx) = (x — 3)° + 15(x — 3)°+85(x — 3)* + 225(x — 3)°
+ 274(x — 3)* +120(x — 3) — 1 =0.
The basic sequence has the form
a” =(w—38)+15=w + 12,
a® = (w — 3)* + 15(w — 3) + 85 = w* + 9w + 49 ;
a” = (w — 3)° + 15(w — 3)* + 85(w — 3) + 225
= w® + 6w® + 22w + 78;
al” = (w — 3)* + 15(w — 3)° + 85(w — 3)* + 225(w — 3) + 274
= w* + 3w’ + 94w* — 258w + 40 ;
al” = (w — 3)° + 15(w — 3)* + 85(w — 3)* + 225(w — 3)*
+ 274(w — 3) + 120 = w* — 5w® + 4w .

The period of the Jacobi-Perron algorithm of these numbers has the
form

15 85 225 274 120 .
3. f@y=a"—16c —2=(x —dax+4) —2=0.
Developing f(x) in powers of @ — 4 we obtain
fl@y=(x — 4>+ 12(x — 4)* + 32(x —4) —2=0.
The basic sequence has the form

a” =(w—4) +12=w+ 8;
a? = (w — 4 + 12(w — 4) + 32 = w’ + 4w .

The period of the Jacobi-Perron algorithm of these numbers has the
form
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12 32
12 16
6 16 .

We shall now return to formula (11) in order to calculate w and
obtain for Theorem 3 :

a?, = w — D, = lim (A,/A) ,

V-0

for Theorem 4 :
a® = w — D + k, = lim (A"/A) ,

P00

where the A", AY, from Theorem 3 are not the same as A{", A"
from Theorem 4. Yet, as the first author has proved, there are
always indices v, for the A{” from Theorem 3 and indices v, for the
A" from Theorem 4 such that

( — {
Ai”S) == A,;v4) -

7. Units of the field K(w). Let the coefficients of the GP
fle) =@ — D)z —D)---(x—D,,) —d

now fulfil the conditions (17), (18), (19) from Theorems 1, 2 and the
supplementary inequalities from Theorem 3, i.e., altogether

D,, d rational integers; d =1; n=2;
D,>D, > :-->D,,; dJ(DO_Dl)’
D,—-D;z2d(n—1), 1=1,---n—1);

(184) and in the special case d = 1 moreover

D, —D,=2o0r D,— D, =4 for n =3,
D, —D,=2o0r D,— D, =3 or D, — D, %23 or
D,— D, D,— D, > 2 for n =4,

and let be

(185)  f(w) = (w — DYw — D) -+ (w — D) —d = 0;
D, <w<D,+1.

Perron [18] has proved the following important theorem :

If the supporting sequences of the Jacobi-Perron algorithm fulfil
the conditions

(186) BY, = m 4 b 4 B 4 e D, (=01,
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then f(w) is irreducible in the rational number field.

We shall apply Theorem 3. Here
b® = b = ++r = by, = 0; by, = D, — D, or Lo=Ds

In order to verify (186), we thus have to prove D, — D, = nd. But
in virtue of (184) we have, indeed,

Dy,— D;=2d(n —-1)=nd, since n=2, (t=1,.---,n—1).

Thus f(w) is irreducible in the field of rational numbers, which is
true already under the conditions (159), and w, as well as the other
roots of f(x) are algebraic irrationals of degree m. Thus, in virtue
of Theorem 2 and the conditions (184), f(x) has n different real roots
which are all algebraic irrationals of degree m. According to the
famous Dirichlet theorem, the exact number of (independent) basic
units of the field K(w) is N = », + 7, — 1, where

r, is the number of real roots of f(x),
7, is the number of pairs of conjugate complex roots of f(z) .

In our case r, =n; r, =0, so that N=n — 1. We shall now prove
THEOREM 5. Under the conditions (184) the n algebraic irrationals

(188) ek:w, (k=0,1,---,m —1)

are n different units of the field K(w).

That the numbers (188) are all different follows from D, =+ D;,
(t#3;1,7=0,1,---,m—1). We further note that one of the

numbers (188), for instance
e,, = (w—D,_)"/d
can be expressed by the other » — 1 numbers. We obtain from (185)

df(w—D,_)=(w—D)w—D)---(w—D,,),
d"/(w - Dn—1)+n = (w - Do)n(w - Dt)n s (1/() - Dn—z)n y
and from this

d _(w—-Dy)" (w—D) (w—D,,)
(w - Dn—l)n d d d

so that

’
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(189) €l =68 €, ,.

There is a simple algebraic method to prove that the ¢, are all
units (see the Appendix by H. Hasse); for this purpose, in view of
(189), it suffices to show that the e, are algebraic integers. This,
however, does not disclose the more organic connection between a
unit of a field and the periodic algorithm of a basis of the field;
after a unit of a field has been found by some device, it is easy to
verify that it is one, indeed. The problem of calculating a unit in
a quadratic field K(y/m) is entirely solved by developing 1/m in a
periodic continuous fraction by Euclid’s algorithm.

In a joint paper with Helmut Hasse [16] it was proved that in
the case of a periodic Jacobi-Perron algorithm carried out on a basis
w, w?, --+, w"' of an algebraic field K(w), w = (D" + d)'"; d, D
natural numbers, d| D, a unit of the field is given by the formula
(190) et = a®alst .. @S
where S and T (see (6)) denote the length of the preperiod and the
period of the algorithm respectively.

Turning to Theorem 3, we obtain S =0, T = n(n — 1) for d # 1,
and formula (190) takes the form

(191) e—-l — n(n—1)—1 a(vll — ;nz—-ol Hz;g aif.(_"i—l)+k) .

=0 n

Following up the various stages of the proof of Theorem 3, one can
easily varify the relations

(192) 11:23 a;k—)l = P1,1P2,2 e Pn—l,n—l ’
(193) ﬁ;g aiﬂ'ﬁ"“‘" = d_l-Psz,z s Pn-—l.,n—l! (7/ = 1’ e M — 1) .

In virtue of (192), (193) we obtain from (191)
(194) et = d—(n—l)(Psz,z e Pn—l,n—t)n .
From (39) we obtain

(195) PPy, Py, = O
w—D

’

and from (194), (195)

(196) =9 -(w-Dr
(w — D)" d

! Formula (190) holds for any algebraic irrational w.
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which proves Theorem 5 for k = 0, since D = D,. Yet it is rather
complicated to prove the remaining statement of Theorem 5, namely
that the other ¢, (k =1, ---,n — 2) are units of K(w) which can be
derived from a periodic algorithm like e¢,, We say deliberately
periodic algorithm and not periodic Jacobi-Perron algorithm, which
has its good reasons in the following observation : if one reads the
author’s joint paper with Professor Helmut Hasse carefully enough,
he will soon realize that in order to prove formula (190) two pre-
sumptions are necessary—first that the numbers b®, b, ---, b,
(v=20,1, ..-) be all integers; second that the algorithm be periodic,
while the formation law by which the b are derived from the a.”
is altogether not essential. In this chapter we shall define a new
formation law for the b and obtain, on ground of it, a periodic
algorithm for % — 1 polynomials chosen from the field K(w). In this
algorithm the b will all be rational integers so that formula (190)
can be applied. These results are laid down in Theorem 6. Before
we state this theorem, we shall explain the new formation law for
the b and introduce, to this end, a few more notations.

DEFINITION. Let w be the only real root in the open interval
(D, D, + 1) of equation (185), so that

(w—D)(w —D)) - (w—D,,) —d=0.

Let the elements of the basic sequence of an algorithm G be poly-
nomials in w with rational coefficients, i.e.,

(197) a? = aP(w) = 33, Cw™ (s=1,---,mn —1);
if the o (s=1,.--,n —1; v=20,1,-..) are rationals, then, in
virtue of (4), the a!”, too, are polynomials in w with rational
coefficients for all s, v, i.e.,

(198) a” = a(w) = S ,Chwt (s=1,.--e,m—1; v=0,1,-...)

G is called the Modified Algorithm of Jacobi-Perron, if the b{" are
obtained from the «a{” by the formation law

(199) b = al*(Dy) (s, v as in (198)) .

Here D, is one of the numbers D, D,, ---,D,_,; D, remains the
same during the process of G.

We shall now introduce the following notations
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R,;=w— D,;; D,; any of the numbers D,, ---,D,_, ;
(200) Ri,,; >~ Rj,j for ’b #*= j H
R,;=R;;R;. 1, -+ R;;, 01350 —1).

From (185) and (200) we obtain

Ry, =d;

(201) 1/R;; = Ry ; \Rjy,,./d O<r=s<n—-1)
1/R,; = R\ ./d, O=j<n—-1)
1/R;,,_, = R,,;_,/d , O<i=E=n-1).

We are now able to state

THEOREM 6. Under the conditions (186) let
(202) R Ry« Ry s
be any n — 2 of the n — 1 polynomials
(203) Pooy ooy Pty Proviiony *r Py (K=1,-4-,0n —2)
then the Modified Algorithm of Jacobi-Perron of the basis
(204) o =R iPrr; G=1,---,m—2) e, =R,

1s purely periodic; the length of the period is T = n(n — 1) for
d>1 and T=n—1 for d =1. The period of length T =n —1
consists of one fugue; its generator has the form

D, — D1,1

Dk - Dn—l,n—-l
(205) -Dk - Dn-—Z,n—z

Dk - D22

The period of length n(n — 1) consists of n fugues; the generator
of the first fugue has the form

Dk - D1,1
(Dk - Dn—-l,n—l)d_l
Dk - Dn——z,n-—2
206a) <
( Dk - Dn—3,n—3
D, - D,,

The generator of the i1 -th fugue (1 =2, ---,n — 3) has the form
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Dk - DI,L

Dk - Dn-—l,n——l

Dk - -Dn-—z,n—Z
(206b) D, — D, i vu-ii-n

(D, — D,_;,,)d™*
Dk - Dn—(H—l),n——(’H—l)

-----------------

The gemnerator of the n — 2 -th fugue has the form

Dk - Dl,l

Dk - Dn—-l,n-—l

D,— D, ;..
(206¢) Ik o

Dk - D3,3

The generator of the n — 1 -th fugue has the form (205); the genera-
tor of the m -th fugue has the form

(Dk - Dl,l)d—1
Dk - Dn—l,n—l

(206d) Dk - Dn—Z,n—Z
Dk - D2 2

The reader should note that the generators (205) and (206a)-
(206d) consist of rational integers only. The differences D, — D, ;
(t=1,--.,n — 1) are algebraic sums of natural numbers; and since
d|D,, d|D,; so is d|D,— D;;. One further notes that these
generators contain no zeros, since P, , # R, and therefore D, # D, ;,
(t=1,---,m —1).

Proof of Theorem 6. We first make the following observation :
since, in virtue of (202), (203), we can have either
Pk,k = Ro,o or Pk,k = Rn—l,n—l

we shall choose

(207) P.,.=Ry,.
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We shall now carry out the Modified Algorithm of Jacobi-Perron for
the basic sequence (204). We obtain from (204), since every factor
a (i =1,.--,n — 2) contains the factor P,,, and in virtue of (199),

(208) b =0;(t=1,---,mn — 2) b, =D, — D, .
From (204), (208) we obtain, since R,, — (D, — D,,) = w — D, = P,

a” —b” =R, Py,
(209) ol — bis = RiuoiPr (t=1,:-+,m—3)

0 0 _
af, — b, = Pk,k ’

and from (209), in virtue of (4) and (201), (207)

aiil) = Rl,n—-z—iRn—l,n—lPk,k/d ’ (i = 1y e, M — 3)
(210) aicl)—z = Rn—l,n—lpk,k/d ’
afnl)—1 = Rn—l,'n—l/d .

From (210) we obtain, since every a{ (¢ =1, ---, n — 2) contains the
factor P, ., and in virtue of (199)

211) b =0;(i=1,---,m—2) b, =D, — Dy_y,n)d,
and from (210), (211), since
(Buiyn/@) — (D — Dyyp)d™ = (w — Dp)d™' = Py id™
ail) - bil) = Rl,n—3Rn—1,n—1Plc,kd_1 ’
ai:}i - b{ﬂ,), = Rl,n—3—iRn—1,n—1Pk,kd_l y ('L = 17 e, M — 4)

al, — b, = R, .. P..d",
al, — b, = P, d" .

(211)

From (211) we obtain, in virtue of (4) and (201), (207),

a® = Ry s iRy g sPrild (t=1+,m—4)
aif’_s = Rn_z,n_ppk,k/d ’
a‘,flz = Rn_z,n_zpk,k/d ’

(€ R—
an—-l - Rn—2,n——2 .

(212)

From (212) we obtain, since every a* (1 =1, ---, n — 2) contains the
factor P,,,, and in virtue of (199)

(213) b =0(t=1,---,m—2) b2 =D, — Dpsnz,

and from (212), (213), since R, s, — (D, — D,_3,,s) = w — D, = P,
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a? = b =R, , Ry s, Pri/d,

ai; =02 = Ryt iR s, naPip/d, (1 =1,+++,m —5)
(214) ey — b2, = R, s, Pri/d ,

al, — b7, =R, 5.,.P../d,

(2) ( _
al, — by, =P,

From (214) we obtain, in virtue of (4) and (201), (207)

a = Rl,n——4——iRn—3,n—-1Pk,k/d ’ (?’ =1,--,n— 5)
a’ﬁba-)—‘i - ﬂ—S,n—lPk,k/d ’
(215) af)—s = Rn-s,n~2pk,k/d ’

3)
Oy = Rn-«3,n-—3Pk,k y

al, =R, 5, 5.
We shall now prove the formula

) = Rl,n-—l——-t—iRn~t,n~1Pk,k/d ’ (t=1,---,mn—2—1)
ay =R, ., Pii/d,

aif_)_t = Rn_t,n_sz,k/d ’

@i = Ry t,n o iPr (1=1,---,t—2)
aif’_l = Rn——t,n—t ’

t=3,.--,mn—t.

(216)

Formula (216) is correct for ¢t = 3, in virtue of formula (215). Let
it be correct for t =m (m =3, ---,n — 4). From (216) we obtain,
for ¢t = m, since every a/™ (1 =1,---,n — 2) contains the factor
P, ., and in virtue of (199),

@mn b =00e=1---,n—-2) b =D, — D, o,
and from (216) (for ¢ = m) and (217), since

Ry wnm — Dy — Dyypom) = W — Dy = Py,
a™ —b"™ =R, o mBy i Prald
a}”fz) - byﬁ; = Rl,n—~2—m—iRn——m,n~1Pk,k/d ’ (7’ = 1! cee, M — 3 — m)
G/;ﬁ)l—m - bfn:”i)l——m = Rn——m,n~lPk,k/d ’
a™, — b, = Ry asPri/d,
iy = 0 s = R pns P s (J=1,--+,m—2)

a™, — b, = Py, .

(218) A

From (218) we obtain, in virtue of (4) and (201), (207)
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ai"™ =R g il i Pra/d (t=1,+:--,mn—3—m)
a5 = Ry s yniPri/d
(219) Aaiit, = R,y noPri/d
at s =Ry inesiPrr s (3=1,---,m—1)
™t = Ry timeme
But (219) is formula (216) for ¢ = m + 1, which completes the proof
of this formula. We now obtain from (216) for t = n — 3
a* = R, \R; , P, ./d,
;" = Ry, Py /d ,
(220) a" = Ry, oPru/d
a1 = Ry o iPry (3=1,---,m—5)
ar® =Ry,

From (220) we obtain, since every a{"® (¢t =1, .--,n — 2) contains
the factor P,,,, and in virtue of (199)

(221) b= = 0;(i=1,--+,m —2) b = D, — Dy,

and from (220), (221), since P;;, — (D, — D;,) = w — D, = Py,

a"® — b =R, R,, P,./d,
"™ — b = Ry, Py../d

(222) @ = b = R Puifd
627 — b7 = Ryns ;Prs (G=1 -y m=5)
a5 — bt = P,

From (222) we obtain, in virtue of (4) and (201), (207),

a" = Ry Pri/d; @™ = By 2Py ufd

223 .
( ) {aéi;Z) = R2,n—2—ij,ky (j = 1y cee, M — 4)y a*(nn—_lm = Rz,z ’

and from (223), since every a!® (¢=1,.--,n — 2) contains the
factor P,,, and in virtue of (199);

(224) b =0;,0=1, -+, m — 2) b =D, — D,,.

From (223), (224) we obtain, since R,, — (D, — D,,) = w — D, = P, ,

a"™ = b = Ry Pryfd
@™ = b = Ry, o Pry/d
aﬁ?) — bé?.?z’ = Rz,n-—z-—ij,k ’ (G=L.n—4

(n—2 —2) __
ann—l) - bg’il) - Pk,k ’

(225)

and from (225), in virtue of (4) and (201), (207)
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' = Rl,n—ZPk,k/d ,
(226) aliy = Ry iPris (J=1,+,m—3)
al) =R, .
Here we are making use of the notation (37) u;v = w(n — 1) + ».
In virtue of formulae (208), (211), (213), (217), (224) the first n — 1
supporting sequences of the algorithm form a fugue which has the
form of the first fugue as demanded by Theorem 6.
From (226) we obtain, since every a{*” (¢ =1,---,7 — 2) has
the factor P, ,, and in virtue of (199)

(227) b =0;(2=1,:--,m — 2) b, = D, — D,,,
and from (226), (227), since R,, — (D, — D,,) = w — D, = P, ,

a" — b = R, , .Pi/d ,
(228) 0l — b = Ry o Py (G=1-n=3

a;“_"f — b;l_'_ol) = Pk,k B
From (228) we obtain, in virtue of (4) and (201), (207),

(131) Y
ajl 0= Rl,n—z—jRn—l,n—IPk,k ’ (.7 - 1; e, M — 3)
(229) a;lilz) = Rn—l,n—-lpk,k ’
a,) = Rn—l,n—l ,

and from (229), since every a{*” (¢ =1, ---,n — 2) contains the
factor P, ,, and in virtue of (199),

(230) b =05 (=1, o, m—2) by =Dy = Dy

From (229), (230) we obtain, since R,_, ,_, — (D, — D,_,,...)=w— D, =
Py

o' =o' =Ry, 3Ry Pl s

ai;;’ — b&_;) = Rl,n_g—jRn—1,n—1Pk,k ’ (.7. = 1: e, M — 4)
a2y — 0% = Ry niPre

Qi = B = Py,

(231)

and from (231), in virtue of (4) and (201), (207)

a?m = R1,n—3—1Rn—-2,n—1Pk,k/d ’ (G=1,--,n—4
al® =R, 5, P./d,

i = R, 5, Pi/d ,

ol = Ry s nsld

(232)

From (232) we obtain, since every a(® (¢ =1, ..., — 2) contains



UNITS OF AN ALGEBRAIC NUMBER FIELD OF DEGREE 7 = 2 345

the factor P,,, and in virtue of (199),
@233) P =0@t=1---,m—2) b =(D,— D,.)d,
and from (232), (233), since

(Ru2,n—/d) — (D — Dys,n5)/d) = (w — Dy)/d = Py i/d
a"® — b"® = R, , R, 5. Pis/d,
oy — bii) = Ripy iRy s Prs/d, (j=1,-+,m—5)
(234) a5 — 08 = R, o iPrsl/d
a3 — 028 = R, s Puu/d
al — by = P, /d .

From (234) we obtain, in virtue of (4) and (201), (207) ,

a;_l:fi) = Rl,n—é—jRn—-:i,n—lPk,k/d ’ (j = 1’ T n — 5)
(235) a2y = Ry guiPri/d (s=1,---,3)
\a;lzjl) = Rn—s,n—-3 .

From (235) we obtain, since every a!® (1 =1, .-+, — 2) contains
the factor P, ,, and in virtue of (199),

(236) bW =0;(=1,---,m—2) b =Dy~ Dy g,
and from (235), (236), since R, 3, — (D, — D,_3,5) = w — D, = Py,

a™ — b = R, , R, 4, P.i/d,

ally — by = Rus iRy 50 iPip/d, (7=1,+-+,m—6)
e — 008 = Ry s Pri/d (s=1,2,3)
ay®) — b8 = Py, .

(237)

From (237) we obtain, in virtue of (4) and (201), (207),

a;j? = Ry s iR sniPraifd , (G3=1,-+-,n—6)
a/;Lli‘G)+s = Rn—4,n—st,k/d ’ (-S' = 17 2) 3)
a) = R, 4. Py,

(1:4) —
an—-l - Rn—4,n—4 .

(238)

We shall now prove the formula

a;}‘t) - Rl,n—-l—t—jR'n—t,'n—lpk,k/d ’ (j = 1y *t Y n—1t— 2)
aEnl;—tz)—2+s = Rn—t,n—-st,k/d ’ (S = 1! 2, 3)

(239) al(n.l—:-tt)+1+u = Rn—t,n——a—qu,k ’ (u = 1! ] t— 3)
a/'(nl:—tl) = Rn-—t n—t 9

t=4,---,mn—3.
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Formula (239) is correct for ¢ = 4, in virtue of (238). We presume
(239) is correct for m = 4, i.e.,

ai"™ = Rini iR mniPrai/d (=1 —m—2)
a;li?n)-— s — Rn—m n—sP d ’ § = 1’ 2’ 3
(240) S R Y ( )
A = Rn—m,n—3—qu,k ’ (w=1,--+,m —3)

(Lim)
a, ;" = Rn——m,n——m .

From (240) we obtain, since every a{*™ contains the factor P,,
(t=1,---,m — 2), and in virtue of (199)
(241) b =0;(1=1,---,m—2) bW =Dy — Dy pynm
and from (240), (241), since
Rn—m,n—m - (Dk - Dn—m,n-—m) =W — Dk = Pk,k ’
a'fl;"” - bgl;m) - Rl,n—m—ZRn—m,n—lpk,k/d y
a{}'_;n) - bﬂi—;n, = Rl,n—m-—-Z—jRn—m,n—i-Pk,k/d ’ (.7 - ly cre, W —M — 3)
(242) a’(rblirgn)~2+s - b'(nlizbn)—2+s = Rn—m,n—st,k/d (3 = 17 2) 3)
a;n—";n)JrHu — b;lim+1+u = Rn—m,n—3—qu,k ’ (u = 1: e, M — 3)
g — b = Py .
From (242) we obtain, in virtue of (4) and (201), (207),
a;};m—}-l) = Rl,n—m—-z—jRn—m,n—lpk,k/d ’ (-7 = 1’ Sty n—m— 3)

(243) aizlizbnﬂs)+s = Rn—m—-l,n—-st,k/d 9 (S = 17 2y 3)
a*ﬁnl—;—":nil; = Rn—m—l,n—S—-qu,k ’ (% = 1y e, M — 2)
a’;m“—’;””” = Rn—m—l,n-—m—l .

Substituting m + 1 for ¢ in formula (239) we obtain formula (243)
which completes the proof of (239).
From (239) we now obtain for t =n — 3,

a;l;n——s) = R1,1R3,'n—1Pk,k/d ’
a;]ﬂi?_m = R?mb—st,k/d ’ (S = 1, 29 3)
ail{i:bqg) = R3,fn—-3—-qu,k ’ (u = 1y e, M — 6)

(Lim—3)
an—l - R3,3 y

(244)

and from (244), since every a{" (1 =1,---,n — 2) contains the
factor P, ., and in virtue of (199)

aﬁlm_:‘) - bix;n—-m = R1,1R3,n—1Rk,k/d ’

at = B3 = Ry Prafd (s=1,2,3)
ai:‘iz—s) - biiz—& = R3,n——3—qu,k ’ (u’ = 1) trey M — 6)

@ — b = Py,

(246)
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From (246) we obtain, in virtue of (4) and (201), (207)

a§1;n—2) — Rz’n__IPk,k/d ’
aln=d = Rz’n_ZPk,k/d ’

(247) @& = RynsPrild
At = Ry s uPos b
™ = R, .

From (247) we obtain, since every a2 (1 =1, ..., — 2) contains
the factor P, ., and in virtue of (199)

(248)  bITO =0 =1,--,n—2) b1 = D, — Dy,
and from (247), (248), since

R, — (Dy — Dyy) = w — D, = Py,
a"™® — b = R, Pri/d
ait" P — b = R, o P/d
(249) atm® — pin? = R, . .P../d
a7 — b = Ry s P
aynm? — BT = Py
From (249) we obtain, in virtue of (4) and (201), (207) ,
a®” = R, .Pr./d,
@ = Ry, sPra/d ,
alf? =R, s P, , t=1,--,m—4)

(2;0)
Apl; = R1,1 .

(250)

In virtue of formulae (227), (230), (233), (236), (241), (248), the n — 1
supporting sequences, starting with the =» -th sequence of the
algorithm, form a fugue which has the form of the second fugue as
demanded by Theorem 6.

The proof of Theorem 6 is essentially based on the following

LEMMA 2. If the generating sequence
=1 ,n—-1;t=1,:--,m —4)
has the form

af” =R, ,_,_P../d, (t=1,:-4,10)
(251) @i} = RinioemiPrs (=1 - n—-1t-2)

(2:0)
a/‘n—l _Rl,l ’

then the m — 1 supporting sequences
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bit;”y bét;s)y Tty b;:—-sl) (8 = Oy 1y e, M — 2)

form a fugue which has the form of the t + 1 -th fugue as demanded
by Theorem 6, and the generating sequence

a§t+1;0), a;t+1;0), cee, a;t;t—ll;o)
has the form (251) where t is to be replaced by ¢t + 1.

Proof. The Lemma 2 is correct for ¢t =1, as can be easily
verified by the formulae (226), (250) and the remark following formula
(250). We shall presume that the Lemma 2 is correct for t = m — 1
(m = 2) and shall prove its correctness for ¢ + 1 = m. We obtain
from (251), on ground of the second statement of the Lemma 2 (viz.
for ¢t + 1 = m)

aém;O) = Rl,n—l—iPk,k/d ’ (/I’ - 1’ ct m)
(252) afmm—}-;g') :Rl,n—l—m—ij,k ’ (.7 = 1: e, — M — 2)
a™P =R, .

From (252) we obtain, since every a{™® (1 =1, ..., n — 2) contains
the factor P, ,, and in virtue of (199)

(253) b0 =0;(i=1,-+-,m—2) bIP =D, — D,
and from (252), (2563), since R,, — (D, — D,,) = w — D, = P,,,

a{™” — bi™ = Rl,n-—2Pk,k/d y
a? — b = Ry s iPru/d (t=1,+--,m—1)
a(mm;(}) - b§nm+3) = Rl,n—l—m—ij,k ’ (.7 = 1y e, —M — 2)

a(,fﬁ;f) — bf,:ilm - Pk,k .

(254)

From (254) we obtain, in virtue of (4) and (201), (207),
o™ =Ry, iRy 0 Pri/d (t=1,---,m—1)
a'(mm—ﬂ-J = Rl,n—l—m—jRn-l,n—lpk,k ’ (j = 19 e, — M — 2)
agL"i;ZU - Rn—l,n—lpk,k ’

(m31)
Ap—y’ = Rn—-—l,n—l .

(255)

From (255) we obtain, since every a{™" (¢ =1, --.,n — 2) contains
the factor P,,, and in virtue of (199),

(256)  bi"v =0;(t=1,---,m—2) 0" =Dy —Dyy0,
and from (255), (256), since
Ry ini— Dy —Dyyypy) =w— D, =Py



UNITS OF AN ALGEBRAIC NUMBER FIELD OF DEGREE n = 2 349

ai"“” — bﬁmu) = Rl,n—aRn-——l,n—IPk,k/d ’

a{fi? — b’ = Rins iRy i0iPri/d (t=1,.-+,m —2)
(257) agmid; — b =Ry iR iPry (J=1,00,m—m—2)

a™y — b =R, Py,

@ — b = Py

From (257) we obtain, in virtue of (4) and (201), (207),

a;:m;2) = Rl,n—s—iRn—Z,n—l-Pk,k/d ) (i = 1’ *t m — 2)
a’inwi—g-)(-] = Rl,n—l—-m—-jRn—2,n—-1Pk,k ’ (.7 = 1: e, — M — 2)
{(258) a”y = R, 5,0 Pr ,

(m33) —
a/nwiz) - Rn—z,n—ZPk,k ’

\a';bm—;ls) = Rn—Z,n-—z .
We shall now prove the formula

a™ =Ry iRyt Prafd (t=1,:--,m—1)

anith; = Riwim iR tpu Py, (G=1,+,m—m—2)
(259) s = Ryt uPr (w=1,---,1)

@ =R yni s

t=1,---,m—1.

Formula (259) is correct for ¢ =1,2, in virtue of formulae (255),
(258). Let it be correct for ¢t = s = 2, i.e.,

a1(lm;3) = Rl,n—-l—-s—iRn—s,n—x-Pk,k/d ’ (/i = 1’ M} m — S)
(260) ainm——;;)-)—j = Rl,n—l—m—jRn—s,n—lpk,k ) (j = 1’ e, — M — 2)
a;:ﬁ::lﬂ—u = Rn—s,n-—qu,k ) (u = 17 °tty S)

(m3;s) —
an—-l - Rn-—s,n—s .

From (260) we obtain, since every a{™® (¢ =1, ..., — 2) contains

the factor P,,,, and in virtue of (199),

(261) om0 =0;(i=1,+--,m—2) b =D, — Dy 0,

and from (260)7 (261)7 since Rn—s,n—s - (-Dk - Dn-——s,n—s) =w — Dk = Pk,ky
a£m;8) - bim;S) - Rl,n—z—sRn—s,n—lpk,k/d ’
aﬁrfgs) - biﬁ;” == Rl,n—2—s—iRn—s,n——1Pk,k/d ’ (i = 1! e ym —8§— 1)

(262) ainm-—;-:zkj - bin”i::zl—j = Rl,n—l—m—jRn—-s,n—IPk,k ’ (j = 1’ e, — M — 2)
Ay — 00 = Ry onuPr (w=1,+-+,8)
S — b(n"fls) = Pk,k .

From (262) we obtain, in virtue of (4) and (201), (207)
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ame = R Ry .. PuJd, (t=1+c,m—s—1)

(263) Witnls = B BoicsniPrns @=Ly m—m = 2)
amt = Ry Pk bt
a;’i‘f“’ = Rn—l—s,n-—l-—s .

But (263) is formula (260) where s is to be replaced by s + 1; this
completes the proof of formula (259),
We now obtain from (259), for t = m — 1,

aim;m—l) = Rl,n~m——1Rn—m+1,n—1Pk,k/d ’

(264) am;m—n = Rl,n—l—m—-jRn—m+1,n—1Pk,k ’ (.7 = 1’ e, — M — 2)
la;"{bj;"__lllu = Rn—-m+1,n——upk,k y (u = 1, e, M — 1)
ayﬁ:lm—l) = Rn—m+1,n—m+1 .

From (264) we obtain, since every a{™™ " (1 =1, --., n — 2) contains
the factor P, and in virtue of (199),

(265) bgm:m—l) = 0; (?: = 1’ Yy n — 2) bgv:”:‘lmml) = ch - Dn—m+1,n—m+1 y
and from (264), (265), since

R, witnmir — Dy — Du_miiynemis) = W — Dy = Py,
a{™mTY — pmm = Rl,n—m—-1Rn~m+1,n—1Pk,k/d ,
aiﬁ;’MA” - b&n;'m_l) = Rl,n—l—m—jRn—m-H,n—lPk,k ’
(266) (G=1,--,m—m—2)
a;ﬁ:;nn:lli)-u - b/(/ﬁ:',;n:llq?—u = R'/L—m+1,n—qu,k ) (7,(/ = ly e, M — 1)

almn ) — b = Py

From (266) we obtain, in virtue of (4) and (201), (207),

a;'mm” = Rl.n—l—m—jRn—m,n—~1Pk,k ’ (.7 = 17 s, —m — 2)
(267) a(nyi::nn)—z-l—u = Rn—m,n—qu,k ’ (u = 1) Tty m)
aizni:Lm) = Rn—m,n—m .

From (267) we obtain, since every a{™™ (i =1, ..., — 2) contains
the factor P, ,, and in virtue of (199),

(268) bim;m) = 0; (Ii = 19 e, M — 2) bfnm—lm) = Dk - Dn—m,n-—m ’

and from (267), (268), since R, _n,um — Dy — Dppnem) = W — D, =
Pk,ky
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aﬁm;m) - bim;m) = Rl,n—-2——mRn——m,n—1Pk,k 9
(m; 5 _ .

a’lﬁjm) - bizjﬂn - Rl,n—z—m—jRn—m,n—IPk,k ’ (.7 - 1’ e, —M — 3)
(m; B . o

anﬂi;;nlz-(-u - ;;ﬁyznlz_gu — Rn—m,n—qu,k ) (u = 1, ey, m)

am™ — b = Py .

(269)

From (269) we obtain, in virtue of (4) and (201), (207),
afim”’”—l) = Rl,n—-z-—m-—jRn—m—l,n——lpk,k/d ’ (j = 1’ ) n—m — 3)
(270)  Hamirtd, = Ry posueiPiild (w=1,---,m+1)
ai,:”i;lmi-l) - Rn—-m—l,n—m—-l/d ’

and from (270), since every a{™™*" (1 =1,--.-,n — 2) contains the
factor P, ,, and in virtue of (199),

(271) bém;m+1) = 0; (1: = 17 e, M — 2) bxf—;lm*rl) = (ch - Dn-—m—-l,'n—m—l)/d .
From (270), (271) we obtain, since
(Rn~m—1,n—m—-1/d) - ((Dk - Dn—m—l,n—m—x)/d) = (w - Dk)/d = Pk,k/d ’

ai™ " — pimm ) = Ry B i Prgld
a&n;‘MH) - biﬁ}m+1) =R s m iR imaiPri/d

(272) =1 -,n—m—4)
Qe — Oy = R ik Pr/d (w=1,--+,m+1)

aiz"f‘:lm+l) - b;ﬁ;xmﬂ) = Pk k/d ’
and from (272), in virtue of (4) and (201), (207)

a/;_m;m+2) = Rl,'n—S—m—jRn—Z—m,n—lpk,k/d ’ (.7 = 1y e, — M — 4)
(273) a,;‘"i‘;”jf_?_u = Rn—m—z,n—qu,k/d ’ (u’ = 1, ctty m + 2)
@ = Ry gnemes -

From (273) we obtain, since every a{™™*? (4 =1, .--,n — 2) contains
the factor P,,, and in virtue of (199),

(274) b;;mnn+2) = 0; (?: = 1! e, — 2) b’(;i:lm+2) = Dk - Dn—m—z,n—m—-z ’
and from (273), (274), since
Rn—m—2,n—m—2 - (Dk - Dn—m—2,n—m—2) =w — Dk = Pk,k ’

(m3 2 H —
alm e — b;m e — Rl,n—m—-4Rn—m—2,n—1Pk,k/d ’
(m;m+2 H —
alﬁjm b — bﬁﬁjm+2) - Rl,n—m—4—jRn—m—2,n—1Pk,k/d )
(275) (J=1+:--,m —m—5)
@t — bl = Ry o Pri/d (w=1,---,m+ 2)

(mim+2) (mim+2) __
(4 2ty - bn—l - Pk,k .
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From (275) we obtain, in virtue of (4) and (201), (207),

a,(i'm;m+3) = Rl.n—m—-:i—jRn—-m—-fi,n—lPk,k/d ’ (j = 1’ Tty n—m — 5)

(276) a'(n,m—,;r.ni?-z—u = Rn—-m—:i,n—qu,k/d ] ('U/ = 1) ct Y m + 2)
aﬁ[’i‘{"H) = Rn—m——a,n—m—apk,k ’
afILWi:1M+3) = Rn—m—3,n—-m-8

We shall now prove the formula

aimmtt = R, it iRypsniPrip/d, (j=1,v+,m—m—2—t)

aipl,i;;’bn-j—zt—)t+u = Rn—m—t,’n—upk,k/d ’ (u = 1) cee, M + 2)
@217 qamY = Ry metynem—s—iPr (t=1,---,t—2)
a;’i‘ff"“) - Rn—m—t,'n—m—t ’

t=3,--e,m—m—3

Formula (277) is correct for ¢ =3, in virtue of (276). As before,
(277) is proved by induction.

We now obtain, from (277), since every a{™™*" (1t =1, --+,m — 2)
contains the factor P,,, and in virtue of (199),

278) bmmtd = 0; (5 =1, -+, —2) b =D, — Dy o irms -

>

We further obtain from (278), for t =n — m — 3

a/{mm—@) = Rl,lRa,n—XPk,k/d ’
airi—ir-b;.n—m = R3,n—qu,k/d ’ (’M/ = 1) cee, M+ 2)
i = RamziPri (t=1,+-+,m—m — b)

(min—3) __
a/n—l - R3,3 .

(279)

From (279) we obtain, since every a{™"® (¢t =1, ---,n — 2) contains
the factor P,,, and in virtue of (199),

(280) b = 05(i=1, -, m—2) b= D, — D,
and from (279), (280), since R,, — (D, — D,;) = w — D, = P, ,
e e S

(281) a0 — b = Ry, Pru/d w=1,---,m+ 2)
agid — b = Ry e iPri s (t=1,++,2—m—5)
aibwi:ln—s) _ b,(,;'i;ln_s) — Pk i
From (281) we obtain, in virtue of (4) and (201), (207) ,
a™ T = R, , Py a/d, (t=1,:--,m + 2)
(282) a;r’:n-!jg:y?) = Rz,n—-m—z—ij,Ic ’ (j - 17 cc ey n—m — 4)

(min—2) __
a’n—l - R2,2 .
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From (282) we obtain, since every a{™"® (: =1, ---,» — 2) contains
the factor P,,, and in virtue of (199),

(283) bmm P =0;(1=1,---,m—2) b =Dy — Dy,
and from (282), (283), since R,, — (D, — D,,) = w — D, = P, ,
am"m — o™ = R, Ppu/d

(284) aTin ™ — b = Ry, i Puld t=1-:,m+1)
la;m;? — bma? = RyumsiPir » (=1 ,m—m—4)
A — B = Py

From (284) we obtain, in virtue of (4) and (201), (207)

a£m+1;0) = Rl,n—1~iPk,k/d ’ (7/ = 1y e, M + 1)
(285) i = RipmsiPry =1+, —m—3)
aiﬁ_t”m = Rl,l .
We note that formula (285) is obtained from formula (252) replacing

in the latter m by m + 1.
We further note that the n — 1 supporting sequences

b, b, e bR (5= 0,1, 40, m — 2)

generate a fugue which has the form of the m + 1 -th fugue, as

demanded by Theorem 6. Thus the Lemma 2 is completely proved.
We now obtain, on ground of the lemma, and in virtue of formula

(251) for ¢t = n — 3, since (251) is correct for ¢ -+ 1, too,

Ja§n~3;0) = Rl,n—-l——iPk,k/d ’ (7’ = 1$ ree, M — 3)
;5" = R P

(n—3;0)
[/ 2% - Rl,l .

(286)

from (286) we obtain, since every a{**” (1 =1, .--,n — 2) contains
the factor P,,, and in virtue of (199)

(287) b =0; (¢t =1, -, m — 2) b ¥ =D, — D,,,
and from (286), (287), since R,, — (D, — D,,)) =w — D, = P, ,

QP — b = Ry, Pyd,

a7 = b7 = Ry piPru/d, (1=1,--0,m —4)
—3;0 —330)

a;n—zs b — bsnn—z V= R1,1Pk,k ’

(n—3:0) (n—3;0) __
(/2% - bn—l et Pk,k .

(288)

From (288) we obtain, in virtue of (4) and (201), (207),
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—31) _ ;o
atn = Rl,n—-z—iRn—-l,n——IPk,k/d ) t=1--,n—4)
a’f/ﬁ-_:;l) = Rllen-—l,n—lpk,k y
[a;n:zsu) - R"—lm—lPk,k ’

(n—331)
an—l - -Rn—-lm—l ’

(289)

and from (289), since every a{**" contains the factor P,,
(t=1,---,n — 2), and in virtue of (199)

(200) b =03 (i=1,--,m—2) b =Dy — Dy
From (289), (290) we obtain, sinceR,_,,,_, — (D,—D,_,,._.)=w—D, =P, ,

@ = b = Ry, R, . Pru/d,

alt7? — b7 = Ry iRy i Pr/d (¢t=1,+--,m —5)
(291) afsﬁ——sa;l) - ba(zn—-_:gsu) = Rl,an—ln—-IPk,k ’

a5 = b =R, Py,

QT — B = Py
and from (291), in virtue of (4) and (201), (207),

"™ = Ry s iRy sniPisld (t=1,:-+,m—5)
(292)  Jan = Ry Ry s Pry; 055 = Ry s Py

aiﬁ—za:z) = Rn—Z,n—ZPk,k; a;'n_-—IS:Z) - Rn—-2,n—2 .
It is now easy to prove the formula

a0 =Ry iRyt Pr/d, (=1, ,m—t—3)
(aiun—_zs—;tz) = Rl,an-—t,n—IPk,k ’
(293) Ja*(nn—_ts—:;zi'j =R, t,uiPis , g=1,---,%)
(a'ﬁ'f—_ls;t) - Rn—t n—t 9
t=1,---,mn— 4,
Formula (293) is true for t = 1,2, in virtue of (289), (292). It is
then presumed that (293) is true for m =1 and proved, as before,
that it is correct for m + 1, too, which completes the proof of (293).
From (293) we obtain, since every a{**? (¢ =1, ---,n — 2) contains
the factor P, ,, and in virtue of (199),

(294) b0 =0;(t=1,---,m—2) b =Dy — Dpyyus
and further for ¢t = n — 4,

" = Rl,zRA,n—l-Pk,k/d y
(295) aén—a,n_g = R1,1R4,n—1Pk,k ’
Lléﬁ-;gm_” = R4,n—.’iPk,k y (.7 = 1’ e, M — 4)

(n—3;n—4)
Any - R4,4 .
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From (295) we obtain, since every a{**** ({ =1, ..., n — 2) contains
the factor P,,, and in virtue of (199),
296) b PN =0;(1=1,+-+,m — 2) bip¥»4 = D, — D,,,
and from (295), (296), since R,, — (D, — D,,) =w — D, = P, ,
@it — priinmh) = R R, .P../d,

—3im—4 —3in— J—
a" = — b = R Ry Py
(n—3im—t (n—8im—t) _ s
[azij O — b7 = RywiPry, (G=1,-00,m—4)

(n—3in—4) __ H(n—8in—4) __
an——l bn—l - Pk,k .

(297)

From (297) we obtain, in virtue of (4) and (201), (207),

ain—3:n—-3) = Rl’le,n—l‘P’hk ’
- 4t = Ry P, (G=1,--,n—3)

(n—3;n—3)
a’n—-l - R3,3 .

From (298) we obtain, since every a{" %" (¢ =1, ..., — 2) contains
the factor P,,, and in virtue of (199),

(299) b9 = 0;(G=1,--,n —2) b = D, — D,
and from (298), (299), Since R3,3 - (Dk - D3’3) = w — Dk - Pk.k’

a5 — Y = B Ry Pas

(299a) a7 = b = Ry iPry,  (G=1,++4,m —3)
a(nn_—la;n——S) _ b;n_——ls;n-m — Pk b

From (299a) we obtain, in virtue of (4) and (201), (207),

(300) afin—3;n—2) - Rz,n—ij,k/d ’ (j = 17 e, M — 2)
a3 = Ryld

and from (300), since every a{* % (j =1,...,n — 2) contains the

factor P,,., and in virtue of (199),

(301) Br ¥ =0;(1=1, .-+, m — 2) birsEr= = (Dy — D,y)/d .

From (300), (301) we obtain, since (R,./d) — (D, — D.,)/d) = P,,./d,
a{n—-S;n—Z) . bin—3:n—2) — Rz,n-—lpk,k/d ,

(802) {alt5™? — b1 = R s sPusfd (=1 n—3

a Bt — pr N = Py d
and from (302), in virtue of (4) and (201), (207),

{a§n~220) = Rl,n—-l-—-ij,k/d ’ (J=1,--+,n—2)

(303) afn”—_xz;o) = R1 1
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Formulae (287), (290), (294), (299), (301) show that the » — 1 support-
ing sequences

B, B, e BT (k= 0,1, e, m — 2)

form a fugue which has the form of the n — 2 -th fugue as demanded
by Theorem 6.

From (303) we obtain, since every a{"*® (j =1, ---,7 — 2) con-
tains the factor P, ,, and in virtue of (199)

(304) b"F = 0; (1 =1, -+, m — 2) b 5% = D, — D, ,

and from (303), (304), since R,, — (D, — D,,) = w — D, = P, ,,
a"70 — pi* Y = R, oPii/d

(305) at7B” — 0B = R, o iPr/d Gg=1+-e,n—3)

a0 — bEY = Py
From (305) we obtain, in virtue of (4) and (107), (108) ,

a0 = R, oy iRu i Prild , (=1, —3)
(306) a5 = Ry ynaPryi

aizn—_lz;l) = Rn—lm—-l .
It is now easy to prove the formula
a0 = Ry iRt Pri/d =1 ,n—=2-=1%)
af,;’i_g%:i:.z - Rn-—t,n—iPk,k y (’i = 1, ey, t)
a(ﬂn_—;z:t) = Rn—t,n—t ]

t=1,++,m — 3.

(307)

Formula (307) is correct for ¢ =1, in virtue of formula (306), (307)
is then proved by induction.
From (307) we obtain, since every a{"*" (¢ =1, ---,n — 2) contains
the factor P, ,, and in virtue of (199),
(308) b’(in—2;t) = 0; (?; = 1) e, M — 2) b(nﬂ——lz;t) = Dk - Dn—t,n—t )
and further from (307), for t =n — 3,
/ainmz;nusy = R1,1R3,n—1P/c,k/d ’
(309) a{17¥" ™ = Ry iPi (t=1,--,m—3)
a;n_:z;n—&) — R3’3 .

From (809) we obtain, since every a{" %" (1 =1,++.,n —2) con-
tains the factor P, , and in virtue of (199),

(810) b = 0;(i=1, e, n—2) BV = D, — Dy,
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and from (309) (310), since R,; — (D, — D;;) = w — D, = P, ;. ,
ai’n—-mn——s) _ bi%—mfn—z) — Rx,le,n—xpk,k/d ,
(311) QY — B = Ry Pry,  (i=1,000,m— )

a;y;_—lz;n—a) . b;ﬂ_—-12:ﬂ—3) — Plc .
From (311) we obtain, in virtue of (4) and (201), (207),

agn—Z:w—Z) = RZ,n—-iPk,k ’ (?’ = 17 e, M —2)

(n—2im—2) __
{4 2% - Rz,z ’

(312)

and from (312), since every a{**"% (4 =1,..-,% — 2) contains the
factor P, ., and in virtue of (199),

(318) b»*m B =0;(1=1,+-+,m — 2) birztn= = D, — D,, .
From (312), (313) we obtain, since R,, — (D, — D,,) = w — D, = Py,

a[in——?:n—-Z) _— bin-—-2:n—2) — R2,n—-1Pk,k ,
(314) aii?m_z) - bi:z_?zm—Z) = R2,n—1-ipk.k ’ (?’ = 1’ e, M — 3)

(n—2;n—2) ___ (n—2;n—2) __
Ap—y bn——l - Pk,lc ’

and from (314), in virtue of (4) and (201), (207),

(315) {“ﬁ"““"’ = RyusiPuild G=1, e, m—2)

a7 = Ry,/d .
Formula (304), (308), (313) show that the n — 1 supporting sequences
bir—2 (4 =1,+ve,m—1; k=0,1, ---,n — 2) form a fugue which has
the form as demanded by Theorem 6.
From (315) we obtain, since every a{»*" (=1, -.-,n — 2) con-
tains the factor P,,, and in virtue of (199),

(316) b " =0,(t=1,:--,m — 2) bt = (D, — D,y)/d ,
and from (315), (316), since (R,,,/d) — (D — D, ))/d) = (w — D,)/d = P,,./d,

a0 — b = R, P d
(317) a7 — b0 = R0 iPri/d (t=1,.---,m—3)
a5 — bt = Py y/d

From (317) we obtain, in virtue of (4) and (201), (207),

arth = Rl,n—z—iR’n—l,’ﬂ—‘IPka/d , (t=1,.--,m — 3)
(318) a5 =R, P/d,

(n—131) __
a’n—l - Rn—l,n—l .

From (318) we obtain, since every a/**" (4 =1,...,n — 2) contains
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the factor P,,, and in virtue of (199),
(319) b:in—l;l) = 09 (" = 17 e, M — 2) bﬁzn—-—llu) - Dk - Dn-—l,n—l y
and from (318), (319), since R,_,,_, — (D, — D,_y,ns) = w — D, = Py,

aﬁ”‘”” _ bin—l:l) — Rl,’n——3Rn—-l,n-—1Pk,k/d ,
a'm-i_l;l) - bﬁ—:l) = Rl,n—B—iRn—-l,n—lpk,k/d ’ (’L = 1: e, N — 4)
a;n_—élzl) - bfnn—;l;l) = R’rL—l,n—IPlc,k/d ’

a(nn_—ll:l) _ bi:f_—ll;l) — Pk,k .

(320)

From (320) we obtain, in virtue of (4) and (201), (207),

a;n—l;z) = Rl,n—s—iRn—Z,n———l'Pk,k/d ’ (?: = 1’ Tt 4)
a:n,_—al;Z) - Rn—Z,n—LPk,k/d b}

la;":a“z’ = Rn—-z,n—ZPk,k y

(n—1:2)
an—l - Rn—2,n—2 ’

(321)

and jfrom (321), since every a{"*® (¢=1,-++,n — 2) contains the
factor P,,, and in virtue of (199),

(822) b =0;(i=1,---,m—2) 05 =Dy — Dy g
From (321), (322) we obtain, since R, _, ,_,— (D,— D, _s,,—) =w — D, =P, 4,
ai”‘”’ - bfn_lm = Rl,n—4Rn—2,n—1Pk,k/d ’
aiﬁ‘-?“” - bii—i-m) = R1,n—4—iRn—z,n—1Pk,k/d [} (@ = 1; e, — 5)
(323) alrgi® — bttt = R, o Pri/d
ag/i:;ﬂ) - b'(n”——21;2) = Rn—2,n—2Pk,k ’
QT — B = Py,
and from (323), in virtue of (4) and (201), (207),
a" ™ =Ry, iRy 50 Pri/d (1=1,--+,m—35)
a;::;l;ﬁ) = Rn—s,n—lpk,k/d ’
0/%{31;3) = Rn—-3,'n—2Pk,k; a£'L7L—_21:3) = Rn-—a,n—-SPk,k ;

(n—133) —
a'n—l - Rn——3,n—3 .

(324)

It is now easy to prove the formula

aq(:n_l;t) = Rl,n—t—iRn—t,n—lpk,k/d ’ (7’ = 17 AR (A 2 - t)
a;,n——l&:) = Rn—t,n—-lpk,k/d ’

(325) a;’:&;.,.j = Rn—t,’n—l-ij»k ) (J=1,0,t— 1)
a7 = Ry yne

t=3,.+,mn—3.
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Formula (325) is correct for ¢ = 3, in virtue of formula (324), (325)
is then proved by induction.

From (325) we obtain, since every a{**" (¢ =1,-.-,n — 2) con-
tains the factor P,,, and in virtue of (199),

(326) b» 0 =0;(t=1,---,m—2) b =Dy — Dy_ypuy,
and further from (325), for t = n — 3,

af" "t = R1,1R3,n—1Pk,k/d )
—lin—=3)
a* "t = Ry, P a/d
(n—1;n—3) .
la2?‘j1” ) _R3m_1_ij’k, (:] = 1’ ...’fn__4)

(n—1im—3) _
alr =R,,.

(326a)

From (326a) we obtain, since every a{"'"® (1 =1,...,n — 2) con-
tains the factor P,,, and in virtue of (199),

327) bt =0; (0 =1,--0,m —2)  bYTE = Dy — Dy,

and from (326), (327), since R,;, — (D, — D,,) = w — D, = D, ,

a* ' — S = Ry Ry, Pri/d

I N

laéﬁ-?un—m - béﬁ;lm—%) = R3,n—-1—jPIc,k ’ (j = 1) e, N — 4)

(n—1,n—3) (n—1,m—3) __
Ayt — by =P, .

(328)

From (328) we obtain, in virtue of (4) and (201), (207),

o = Ry, Pry/d
(329) a3 = Ry P s (G=1,---,m=3)
af it = Ry, .

From (329) we obtain, since every a{"'*2» (4 =1,..-,n — 2) con-
tains the factor P,,, and in virtue of (199),

(330) bPt = 0;(i=1, -+, m—2) by =D, — Dy,
and from (329), (330), since R,, — (D, — D,,) = w — D, = P, ,,

a;n—lm—-Z) — bf'lb—l:n—-Z) — R2,n—1Pk,k/d ,
(331) aﬁ;l;n—z) . bﬁ;x:n—z) — Rz,n-—l—-ij,k , (.7 —_ ]_’ e, M — 3)

a;n_—llzn—-Z) . blnn_—ll;n——z) — Plc .
From (331) we obtain, in virtue of (4) and (201), (207),

a;nzo) = Rl,n——l—ij,k y (.7 - 1: e, M — 2)

332
(332) ar? =R, .
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Comparing formula (332) with formula (204), we obtain
(333) 4P = o = afrr ), (=1, m - 1),

so that the Modified Algorithm of Jacobi-Perron for the basic sequence
(204) is indeed purely periodic with length of period T = n(n — 1)
for d > 1.

For d =1 we obtain, comparing formula (226) with (204),

(334) o = af" = a*™", (t=1---,m—1),

so that in this case the Algorithm is purely periodic with length of
period T'=n — 1.

Formulae (316), (319), (322), (326), (327), (330) show that the
n — 1 supporting sequences

b=, B, e B (e = 0,1, - m = 2)

form a fugue which has the form of the n -th fugue as demanded
by Theorem 6. Thus, for d > 1, and from what was proved before,
the n(n — 1) supporting sequences of the Modified Algorithm of
Jacobi-Perron form % fugues of the form (206a)—(206d). In cased =1,
they all have the form (205). By this Theorem 6 is completely proved.

The reader should note the necessity to presume n > n,, (%, a
constant) while carrying out the proof of Theorem 6. The cases
n=2,-.--,m, are easily proved separately by the same mothods used

for the proof of Theorem 6.

We shall now find units of the field K(w) by means of the
Modified Algorithm of Jacobi-Perron.

As Hasse and I have proved in our paper [16], a unit e of the
field K(w) is obtained from a periodic Jacobi-Perron Algorithm by
means of formula (190), viz.

1 S+T—1 0
e = J';Is Ay
where S and T denote, as before, the lengths of the pre-period and
period of the periodic Jacobi-Perron algorithm respectively.

It is one of the most striking and basic properties of any periodic

algorithm G with integral supporting sequences

b, t=1,--,n—1; v=0,1,...)

b\ rational integers, that formula (190) holds for this general case
of the G. The proof of this statement is not too complicated and
follows exactly the lines of the methods used in [16], though certain
additional results are necessary (see, for example, my paper [12]).
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We then obtain from (190), since in our case again S =0, T = n(n — 1)
for d > 1, as in (191),

e;l — n(nﬁ)_la(v) — ﬁl ﬁz a(i(n—1)+k) .
2=0 wt iz k=0
Now it is not difficult to verify, following up the various stages of
the proof of the Modified algorithm of Jacobi-Perron, that the relations
hold

ﬁzaimigi—l”—k) = Rl,n—l/d ’ (?’ = 07 1! e, — 37 n — 1)
k=0

(335)

n—2

((n—2)(n—1)+k) __
I::[I an—L - Rl,n—l .
=0

We thus obtain from (191), in virtue of (335),

(336) e’ = (R,,,_)"/d" .
From (201) we obtain 1/R,,_, = R,./d, and, since R,, = R, ,
(337) R, =d/P; .

From (336), (337) we now obtain
o' = d/(Pri)",
or

(338) e":(—w—_o#l k=1,---,m—1),

so that with (196), (338) Theorem 5. is now completely proved by
means of the Modified Algorithm of Jacobi-Perron, since (338) in-
cludes the case d =1, too.

The n — 1 units e, e, -+, e,_, are all different, since D, > D,
(k=0,1,---,n — 2). It is proved below that they are independent
(see the Appendix by Hasse) in the sense that there cannot exist an
equation of the form

e30eM <o glnge =1
where the a,, a,, --+, a,_, are rational integers not all equal zero.

Concluding we shall illustrate (338) by a numeric example. Let
the GP be a fourth degree polynomial

fl@) = (x — 10) @z — 6)(x — 2)(x + 4) —2=10;
flw)=0; 10 < w<11;

D,=10; D,=6; D,=2; D, = —4;: d =2
w is a fourth degree irrational.
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We obtain from f(w) = 0:

w* — 14w® 4+ 20w? + 248w — 482 = 0,
w' = 14w® — 20w — 248w + 482 .

Thus

(w — 6)* = —10w® + 196w* — 1112w + 1778 ;
(w — 2)* = 6w® + 4w® — 280w + 498 ;
(w + 4)* = 30w® + T6w* + 8w + 738 .

Substituting these values in (338) we obtain the independent units

e, = bw® — 98w* 4+ 556w — 889 ;
e, = 3w® + 2w* — 140w + 249 ;
e, = 15w® + 38w* + 4w + 369 .

Appendix. (By Helmut HAssg, at present Honolulu (Hawaii)).
In §7 of this paper L. Bernstein, by applying a modified Jacobi-
Perron algorithm to suitable bases of a certain type of totally real
algebraic number-fields K of degree n = 2, obtained a system of =
algebraic units in K with product 1. I shall prove here under slightly
stronger conditions that every n — 1 of these units are independent.

The fields K in question are generated by a root w of a poly-
nomial of type

(1) f@) =T @~ D) —d,

where the D, and d are rational integers, d =1, satisfying the con-
ditions (184), viz.

(2) D,>D,>--->D,,,
(3) D, = Dymod. d ,
(4) D,— D, =2dn—1), w=1l,.--,n—1),

and in the special case d = 1 moreover the inequalities (19), viz.

D, —D,=z2o0r D,— D, =4 for n =3,
(5) D —D,z20r D,— D, =zZ30r D,— D, =3 or
D,— D,D,—D,=2 for n =4.

\

In addition to these conditions I shall have to presuppose the in-
equalities

(6) Dyy — Dy = 2 2=2k=n-1)
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to be satisfied in the special case d = 1.
I shall prove

THEOREM. Let w be a root of a polynomial of type (1) whose
coefficients satisfy the conditions (2), (3), (4), (6), (6). Then the m
algebraic numbers

em:(w—_dDM)n (m=0!19"'yn~1)

are algebraic units with product

and every n — 1 of them are independent.
Proof. (a) By (3)
(w = D" =TI (w — D)mod. d,
and by (1)
T w-D)=sw)+d=d.
Hence
(w— D,)"=0mod. d ,
so that the e, are algebraic integers.

(b) By (1) their product

Il e = [T d"w — D) = (f(wzij dy _ g; ~1.

m

Hence the ¢, are algebraic units.
(¢) According to Theorem 2, the generating polynomial f(x) has
n different real roots

w(o) > w > e > wr—1

(each of which may take the place of the above w), and the relative
position of these roots between and outside of the sequence (2) is
such that, for every fixed », in virtue of the congruences (3)

d for all m # v except possibly one

(v) __
| w Do |> %d for the possible exception m = v .

The possible exception occurs for one of the two D, which
include w™ (so far » > 0 and for even n also v < n — 1), and hence
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only for » = 3 (since for n = 2 both roots w, w® are excluded by
D,, D). From these inequalities it follows that the units

(w(v) _ Dm)n
d

el)) =

for every fixed v satisfy the inequalities

d"'/d = d"* for all m # v except possibly one ’
(v)
e’ | > -;—d""l/d = %d”” for the possible exception m vJ :

Since the exception does not occur for n = 2, and since in virtue of
the presupposition (6) the factor 1/2 may be dropped in the special
case d = 1, these inequalities imply throughout

e | >1 for m = wv.
On the strength of the product relation then necessarily
e | < 1.

Now the polynomial f(x) is irreducible, as Bernstein derived at the
beginning of §7 from Theorem 3. under the conditions (4). Hence
for each fixed m the e{ are the algebraic conjugates of e¢,. Hence
by a well-known theorem of Minkowski' the latter inequalities imply
that for any fixed pair m,, v, the determinant

’ IOg [ e;z:) i {m#mo,vsévo + O .

From this it follows that every n — 1 of the n units e, are in-
dependent.

Note. In spite of this very simple theory of the unit system
¢, Bernstein’s more lengthly subordination of these units under a
modified Jacobi-Perron algorithm by means of Theorem 6. seems to
me still to be of importance. “The more organic connection between
a unit in a field K and a periodic algorithm of a basis of K, as
Bernstein put it after Theorem 5, may be essential for attacking the
important question whether those units are fundamental units of a
ring (Dedekind order) in K. An answer to this question may lead
to lower estimates of the class number % of K.*

2 See H. Hasse, Zahlentheorie, 2. Aufl., Berlin 1963; 28, 2, Hilfsatz.
3 Compare for this: H. Hasse, Uber mehrklassige, aber eingeschlechtige reel-
quadratische Zahlkoerper, Elem. d. Math. 20 (1965), 49-59.
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