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AN EXPLICIT FORMULA FOR THE UNITS OF
AN ALGEBRAIC NUMBER FIELD

OF DEGREE n ^ 2

LEON BERNSTEIN AND (IN PARTIAL COOPERATION WITH) HELMUT H A S S E

An infinite set of algebraic number fields is constructed
they are generated by a real algebraic irrational w, which
is the root of an equation f(w) = 0 with integer rational
coefficients of degree n ^ 2. In such fields polynomials Ps(w) =
aow

s + dιws~ι + + da-ίW + αs and

Qs(w) = bow
s + bιWs~ι + + bs-iW + bs

(s — 1, , n — 1 <ik9bk rational integers) are selected so that
the Jacobi-Perron algorithm of the n — 1 numbers

carried out in this decreasing order of the polynomials, and
of the n — 1 numbers

carried out in this increasing order of the polynomials both
become periodic.

It is further shown that n — 1 different Modified Algorithms
of Jacobi-Perron, each carried out with n — 1 polynomials
Pn-i(w), Pn-z(w), ••, Pί(w) yield periodicity. From each of
these algorithms a unit of the field K(w) is obtained by means
of a formula proved by the authors is a previous paper.

It is proved that the equation f(x) = 0 has n real roots
when certain restrictions are put on its coefficients and that,
under further restrictions, the polynomial fix) is irreducible
in the field of rational numbers. In the field K(w) n — 1
different units are constructed in a most simple form as
polynomials in w it is proved in the Appendix that they are
independent the authors conjecture that these n — 1 in-
dependent units are basic units in K(w).

I* Algorithm of n — 1 numbers* An ordered (n — l)-tuple

(1) «\αf, . .-,<!,), (n>2)

of given numbers, real or complex, among whom there is at least
one irrational, will be called a basic sequence the infinitely many
(n — l)-tuples

( 2 ) ( δ ί ϋ ) , ^ , •• ,6 i l 1 ) , (v = 0,l, •••)

will be called supporting sequences. We shall denote by
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( 3 ) A(αί0),αJ0), •• ,c4°!1)

the following algorithm connecting the components of the basic
sequence with those of the supporting sequences:

n(v) -L{v)

( 4 )
a d ι =5= 0i , ^y — u, ±, •; .

The (n - l)-tuples « \ a{

2

υ\ , αJί.n), (v = 0,1, •••) will be called
generating sequences of the algorithm. A(a[°\a{

2

0), •• ,αS,°i1) is called
periodic, if there exist nonnegative integers s and natural numbers t
such that

( 5 ) αί*+ί) - a[υ) , (ΐ = 1, . . . , t t - 1; Ϊ; = s,s + 1, .-.) .

Let be

( 6 ) min s = S min t = T

then the £ supporting sequences

( 7 ) (&{•>, δf>, ., δiϋj , (v = 0,1, , S - 1)

are called the primitive preperiod of the algorithm and S is called
the length of the preperiod the T supporting sequences

( 8 ) (&Γ\^\ •• , δ . ^ 1 ) , (v = S,S + l, •••,S+ T-l)

are called the primitive period of the algorithm, T is called the
length of the period S + T is called the length of the algorithm.
If S = 0, the algorithm is called purely periodic.

Two crucial questions emerge from a first look at such an
algorithm:

(a) can a formation law be defined by whose help the support-
ing sequences could be obtained from the basic sequences and the
generating sequences ?

(b) under what condition is A(a[0\a{

2°\ •• ,α4°i1) periodic; what
is then the nature of the basic sequence and what is the correspond-
ing formation law for the supporting sequences?

For n — 3 an algorithm A(a[°\ c40)) was first introduced by Jacobi
[17] and a profound theory of an algorithm of n — 1 numbers for
n ^ 2 was later developed by Oskar Perron [18] in honor of
these great mathematicians the first author of this paper called
A(αίO),c4O), •• ,αi°i1) the algorithm of Jacobi-Perron they both used
the following formation law for the supporting sequences: let a\υ) be
the components of the generating sequences then



UNITS OF AN ALGEBRAIC NUMBER FIELD OF DEGREE n ^ 2 295

( 9 ) bP = [an, (i = l, • • • , * * - 1 ; v = 0,1, ••.)

where [x] denotes, as customary, the greatest integer not exceeding
x. For n = 2 the algorithm of Jacobi-Perron becomes the usual
Euclidean algorithm.

One of Perron's [18] most significant results is the following

THEOREM. Let the supporting sequences bίΌ) (i = 1, , n — 1
v = 0,1, •) be obtained from the basic sequence af] (i = 1, , n — 1)
of real numbers by the formation law (9). // the nonnegative
integers A\v) are formed by the recursion formula

(10) \ A ? = 1 ; A^ = °; (i * t; i, i; = 0, , n - 1)

then A(a[0), a{

2°\ •• ,αl°i1) converges in the sense that

(11) a(^ = \ιmj±^. (i = l, . . . , * * - . 1 ) .

Moreover, this theorem can be generalized, as was done by the
First author ([8], [10], [11], [12[) in the following way :

Let the supporting sequences be obtained from the basic sequence
by any formation law if the αf \ b\v) are real numbers such that

(12)

^L, ^ C C a positive constant, (v = 0,1, •)

and the numbers A^v) (here not necessary integers) are formed as in
(10), then A(a[°\ a{

2°\ •• ,α^oi1) converges in the sense of (11).

2. Previous results of the first author* Perron [18] has
proved that if A(a[0), a{

2°\ , a^U) becomes periodic then the a\0)

(i = 1, . ., w — 1) belong to an algebraic number field of degree ^ n.
However, he did not succeed to construct, in a general way, algebraic
fields K and to select out of K such n — 1 numbers whose algorithm
would become periodic. This was achieved by the first author for
an infinite set of algebraic number fields K(w), w being a real
irrational root of an algebraic equation f(w) = 0 with rational coef-
ficients. In his papers ([l]-[7]) he used (9) for the formation law
of the supporting sequences, thus operating with the algorithm of
Jacobi-Perron, though heavy restrictions had to be imposed on the
coefficients of f(w) in order to achieve periodicity. The first author
succeeded to remove these restrictions by introducing a new formation
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law that generalizes (9) and is defined in the following way :
The α£0) and, subsequently, the αf\ (i = 1, , n — 1 v = 0,1, •)

being numbers of the field K(w) have, generally, he form

(13) a& = a?\w) , (i = 1, , n - 1 v = 0,1, ..)

as long as the bίv) are rationals. Let be

(14) [w] = D;

then the formation law of the supporting sequences is given by the
formula

(15) blv) = aiv)(D) , (i, v as in (14)) .

In previous papers of the authors the α[0) had the form

(16) af^

thus being polynomials in w with rational coefficients now the
second author of this paper asked the question, whether the algorithm
of Jacobi-Perron or any other algorithm

A(Pn^(w)f Pn-2(w), , P^w))

of polynomials of decreasing order would yield periodicity, too. This
challenging problem could not be solved at first, with the exception
of a very few numerical examples, w being a rather simple cubic
irrational. Only recently the first author ([13], [14]) could give an
affirmative answer. He achieved this by means of a highly com-
plicated formation law for the supporting sequences. But while the
new model works well for an infinite set of algebraic number fields
K(w) and though in certain cases it is identical with the Jacobi-
Perron algorithm — its application does not, at least in this initial
stage, seem to go beyond narrow limitations.

In this paper an algebraic number field K(w) is constructed where
w is a real algebraic irrational of highly complex nature but just
here it is possible to select polynomials in w such that the algorithms
of Jacobi-Perron, viz. for the given (n — l)-tuples

both become periodic.

3* The generating polynomial* We shall call the polynomial
of degree n ^ 2, viz.
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f{x) = (x - D)(x - D^x - A) (x - A*-i) - d
(17) A Dif d rational integers d ^ 1

D> D{; d\(D- A), (i - 1, , n - 1) ,

a Generating Polynomial, to be denoted by GP.
In what follows we shall need two theorems regarding the roots

of the GP.

THEOREM 1. The GP has one and only one real root w in the
open interval (A +00). This root lies in the open interval (A
D + 1).

Proof. The two assertions are immediate consequences of the
following three inequalities which follow from the conditions in (17):

f(D) = - d < 0 ,

fix) = (f(x) + d)(-^— + ~^— + + ί—) > 0
\% — D x - A a; — JO*-/

for x > D ,

/CD + 1) = (JD + 1 - A ) Φ + 1 - A) (D + 1 - A-i) - d

THEOREM 2. Le£ ίfee integers D, O{ occur ing in the GP satisfy,
in addition to (17), the conditions

(18) D = D0> A > > A.-1 ,

m £Λ>e special case d = 1 moreover

A - A ^ 2 or A - A ^ 4, /or π = 3

(19) j ί A - A ^ 2 or A - A ^ 3 or A - A ^ 3 or

( ( A - A , A - A ^ 2, for n = 4 .

feβ GP feαs exactly n different real roots. Of these lie
1 in the open interval (A>+°°), more exactly in the open

interval (A> A + 1)»
2 m βαcfe 0/ the open intervals (D2i, A*-i), more exactly 1 m

ίfcβ open left half, 1 in the open right half of these intervals with
2 ^2i ^ n — 1,1 in the open interval (—00, ΰw_1) i/ n is

Proof. Since the total number of roots asserted in the latter
three statements is exactly equal to the degree n of the GP, it
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suffices to prove the existence of at least 1, 2,1 roots respectively
within the indicated open intervals. For the first interval this has
been done in Theorem 1. For the other intervals it suffices, besides
the obvious facts

/(A) = -d< 0 (i = 0,1, •••,**- 1)

and

lim f(x) = + oo if n is even ,
X—*—oo

to verify the inequalities

f(Ci) > 0 (2 ^ 2ί ^ n - 1) ,

i.e.,

f(Ci) + d = (Ci- DoXct - A ) (ct - Dn_x) > d ,

with 2^2i ^n - 1 and c< = (Ai-i + A*)/2. Now according to (18)

Ci- D3 <0 for j = 0,1, , 2ί - 1 ,

Ci - D3 > 0 for i = 2i, 2i + 1, , w - 1 ,

and as the j in the first line are in even number, certain at least

f(Ci) + d > 0 .

According to (17) and the obvious consequence d \ (Di — Dά) one has
more precisely

ct - D31 ^ d + — = —d for j Φ 2% - 1, 2% ,

c. - D31 ^ — d for i = 2ΐ — 1, 2% ,

and hence

Observing that 2 ^ 2i ^ n — 1 implies w ^ 3, one obtains thus for
d ^ 2 the desired inequalities

In the special case d = 1 still more precise lower estimates are
required, viz.,
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\c( - Dj\ ^ (2i-l-j)d + ^. = 2i-l-j + ±. for i = 0,l f , 2 i - l ,
Δ Δ

\Ci- D3\^ (j - 2i)d + — = j - 2ί + — for j = 2i, , rc - 1 .

The lower bounds have values from the sequence 1/2, 3/2,5/2,
For each relevant i two values 1/2 and, if n ^ 5, at least two values
3/2 and one value 5/2 occur. For n > 5 therefore certainly

In the remaining cases d = 1 with n — 3,4 there is only one relevant
ί, viz., i — 1. One verifies easily that the desired inequality

fie,) + 1 > 1

is true under the conditions (19).
We shall now rearrange f(x) in powers of x — D. We shall

first prove the formula

/<*>(*) = kl Σ(x - Dh) ix - Dίn_k) ,

(20) 0 ^ ix < i2 < < *„_* ^ n - 1,

k = 1, , n — 1 .

We shall denote

g(X) = iχ- D0)ix - A ) (x - 2>*-i) /(») - g(χ) ~ d .

(21) fix) = g'(χ) = g(χ) Σ (l/(« - Dy))

0 ^ ix < i2 < < iΛ_! ^ w - 1 .

Thus formula (20) is correct for k = 1. Let it be correct for k = mr

namely

/<m>(α;) = m! Σ (x — Di)ix — Di2) (x — Di%__J ,

or, in virtue of (21)

(22)
(a? - Dh)ix - Dh) . . . (a - Dy J

0 ^jι<j\<j\< < i w ^ rc - 1 .

Differentiating (22) we obtain
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ml

= 9\x) Σ
(x - Dh)(x - Dh) (x - D3J

0^j1<j2<

Σ (x-Dh)(x-Dh)- (x-DJm))

= 9{X) §•Ax-D. {x- Dh)(x - Dh) ••• (x - D3J

0 ύ j\ < jt < i3 < < i . ^ n - 1

(x-Dh) (x-DJrJ(x-DJrr(x-DJr+l) •.. (*-Z>im) '

But it is easily seen that

^ - ΰ , Σ ( ^ - Dh)(x - Dh) (x - Djm)

0 S 3\ < 3i < J» < < in, ^ Λ - 1

+ Σ

- D i 2 ) ' " ( x - Djm)

j u " ,jm; 0 ^ j ι < j 2 < ••• < j m ^ n -

1

( x - Dh) •••(x- DJrJ(x - Z > i r )
2 ( x - Djr+ι) . . . ( * - Z > ί m )

o ^ i, < i, < i3 < < i . ^ w - l .

Therefore

m!

_ a(χ\ V1

άi x - Ds * (x - Dh)(x - Dh) . . . (x - Djm)

Φ ii, , im o g j y < j 2 < j 3 < < j m ^ n - l

0 g ί t < ί2 < ί 3 < - < ί m + 1 ^ ί ί - 1

= (m + 1)! flr(x) Σ -. =- : ; ^ ? „ ^

(x - Dh)(x - Dh) -"(x- Dtm+l)

0 ^ <! < ί2 < ί3 < < ίm+1 ^ w - 1

= (m + 1)! Σ (x - AJte - A2) (x - A._(.+1))
0 ^ i t < i2 < i3 < - < in-im+i) ^ n - 1
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which proves formula (20).
From (20) we obtain for x = Do = D, taking into account that

D - Dh = 0 for ί, = 0

/<*>(/?) - ft! Σ Φ - A,)Φ - A2) (2) - AW_J ,
(23) 1 ^ ix < i2 < < i._& ^ n - 1 ,

k = l, ---,n- 1 .

From (17) we obtain

(23. a) f(D)= -d; f™(D) = nl ,

and, combining (23), (23. a) and using Taylor's formula for develop-
ing f(x) in powers of x — D,

f(x) = (x- DY + ( Σ fc.(s - Dy~s) - d ,

<24) *, = Σ ( f l - A , ) ( ^ - A 2 ) • • • ( £ - A . ) ,

4* Inequalities* In this chapter we shall prove the inequalities
needed for carrying out the Algorithm of Jacobi-Perron with a basic
sequence αf} (i = 1, , n — 1) chosen from the field K(w).

We obtain from Theorem 1 and D < w < D + 1

(25) [w] = D .

In the sequel we shall find the following notations useful

One of the basic inequalities needed in the following

(27) j
U ^ ii < *2 < < ** ^ n - 2 .

To prove (27) we have to verify

(28) 0 < (w - D)PhPh • • Pik < 1 .

From (25), (26) we obtain

Pi = w - Di > D - Di > 0 .

Thus the left-hand inequality of (28) is proved. From (17) we obtain

(29) W-D = ^ - .
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(w - D)PhPh ~Pik = dPhPi2. . PikIPUn

= d/Pik+ιPik+i Pin_x < d/(D - Dik+ι)(D - DikJ . . . φ - DinJ

but, as was proved before, D — D{. ^ d (j = 1, , n — 1) therefore

(.-WΛ Λ<ϊέ7ίί-i.

which proves the right-hand inequality of (28).
From (27) we obtain easily, since d ^ 1

(30)
[(w-D)PhPi2 --Pik] = 0;

1 ^ i, < i2 < ik ^ ^ - 2 .

We further obtain, in virtue of (25)

(31) [PJ = D - A

From (31) we obtain, since d | D — A,

(32) [P,/d] = (D - A)

* Jacobi-perron algorithm for polynomials of decreasing

order*

(33)

DEFINITION. An (w — 1) by (w — 1) matrix of the form

0 0 . . . 0 Ax

0 0 . . . 0 A2

0 0 . . . 0 A%

will be called a fugue the last column vector

A,

will be called the generator of the fugue.

THEOREM 3. Let f(x) be the GP from (17) and w its only real
root in the open interval (D, D + 1). The Jacobi Perron Algorithm
of the decreasing order polynomials
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α<°> = ±(w - i?)PlflP1+..._1 , (β = 1, . . . . Λ - 3)
a

(34)
d

^n—i — -1- 1,1 1

- D)Puί,

is purely periodic and its primitive length is T = n(n — 1 for d Φ 1,
and T = n — 1 for d = 1. T%e period of length n(n — 1) consist of
n fugues. The generator of the first fugue has the form

(35)

D-D,

D - D2

D — Dn.

The generator of the r + 1 -th fugue (r — 1, , n — 1) has the form

(36) D - Dr

The period of length n — 1 consists of one fugue whose generator
has the form (35).

Proof. In the sequel we shall use the notation

'u v = %(w - 1 +) v (M = 0,1, v = 0,1, , n - 2)
(37)

1 (u; n-l = u + l; 0 .

Because of (26) the formula holds

(38)

Since, from (17),

(w - D)(w - D,)(w - D2) - (w - ZVi) - d = 0 ,

we obtain
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(39)

hw - JD)P1,1Pt+.,n_1 =
d

hw - D)pUί = L

(s = 1, • , n - 3)

We shall substitute these values for α^0) in (34), so that

(0) -L

(40) S p 2,i+, '
(s = 1, . . . , n - 2 )

We obtain from (34), in virtue of (30), (31)

(41) 6i0) = 0 (s = 1, . , n - 2) 5 ^ = D - D, .

We obtain from (31)

(Pi,* - [P ί f i] = w - D

(42)
d L d J cί

From (40)—(42) we obtain

(8 = 1, . . . , n - 2 )

L + s 1 + β p >
•^2,2+8

^α^ii — b{nU = w — D ,

so that, in virtue of (4)

(s = 1, . . , n - 3)

α^i2 = (w — D)P2>2 ,

» —1 ~ - ^ 2 , 2

From these formulas we obtain, in virtue of (40)

as" = —

(43)
•^3,2+s

n(l) p
Un — l — -^2,2

Since
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1/P...+. = Mw - D)P1P2 ,
a

we obtain, from (43) and in virtue of (30), (27), (31)

and from (43), (44), in virtue of (42)

(45)

{nU — KU = W — D .

Frow (45) we obtain, in virtue of (4) and (38)

α(2) =

(46)

α<fi8 = (w - D)P2,2PS>3 ,

a%U = (w-

αίfii = -Pa,*

P
-^4,3+s

αi2i3 = (w -

α " , = (w - Z»)P3,s ,

We shall now prove the formula

ι{k) = ί/P

(s = 1, . . . , w - 4)

(β =

(s = 1, , n — 4)

(47)

= 1, ...,n - k - 2)

lr — 9 . . . <YI **

Formula (47) is valid for k — 2 in virtue of (46). We shall prove its
validity for k + 1. Since

we obtain from (47), in virtue of (30), (27), (31)

(48) bp = 0; (j = 1, , n - 2) b^ = D - Dk+1 ,
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and from (47), (48), in virtue of (42)

( a ^ - 6<fe> = l/Pk+2,k+ί+s , (« = 1, , n - k - 2)

α(*) i _ &(*)1 = w - D
' a ( k ) _ £(fc) __ J / p

ai+s — δίϊ-β — l/Pk+2,k+2+8 i (s = 1, ' ' , n — k — 3)

α^Λ — δ^Λ = w — D ,

so that, in virtue of (4)

and, in virtue of (42),

γ.(*+l> =

(49)

α î/c + ij — p /p /ς» — *\ Ύl — h — R^

s — •*- Jfc + 2 A + 2/-^1 A + 2 fc + 2 + s > \ — 9 1 /

&n-2 — \W D)Pk + 2,k + 2 >

(s = 1, , w — k — 3)

αί»Jiιi,+< = (w -
(k + l) _ p
w-l — -Γk+2,k+2

With (49) formula (47) is proved.
We now obtain from (47) for k = w — 3

(50)

α(—3) =

(w—3) p
TO—1 — J n—2,n—2

- 3)

From (50) we obtain, in virtue of (30), (27), (31)

(51) 6*"-3' = 0 (s = 1, , n - 2) &£?> = D -

and from (50), (51), in virtue of (42)

(52) ΐ73) - &ίΐ73) = (w - D)Pι+i,n-2 ,

,<C_-i3) - 6iM3> = w - D .

From (52) we obtain, in virtue of (4),

(a{

s

n~2) = (w -
,_1,,_1 ,

(i = 1, , n - 3)

(i = 1, , n - 3)
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or

(53)
αi"-2' = (w - D)P1+Un_ι ,
π(n-2) __ p

(i = 1, , n - 2)

From (53) we obtain, in virtue of (27), (31),

(54) δr 2 > - 0 (β = 1, , * - 2 ) 6 ^ 2 ) = 2?

and from (53), (54), in virtue of (42),

= 1, . . . , Λ - 2)

αi^ 2 5 - 6£ϊ2) = w - D
f αί- 2 ) - 6{w-2) = (w -

s,n^ , (s - 1, . . . , n - 3)

so that, in virtue of (4),

(n-l) _
'β —

(n-l) _
2

but, from (39) we obtain

therefore,

( l ; 0 ) _
1

thus, with the notation of (37),

(55)

From (55) we obtain, in virtue of (30), (32), and since

b™l = D ~ D ι

a
(56) 5ili01 = 0 (8 = 1, , w - 2)

and from (55), (56), in virtue of (42)

. f w - 3)

(β = 1, • • - , « - 2 )

(β = 1, . . . , » - 2 )
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or
~(l;0) t ( l O) — Λ IP
W-l — 01 — l l± 2,2 >
~(l;0) Jjd O) — Λ IP

thus, in virtue of (4),

p p
2,21 * 2,2+s1

™(1;1) _ p Γ

or

(57) αίiLV = (w - D)PJd ,

^ " «—1 — -̂  2,2

o"!1,' -

UίίiV - 6Ϊ1V = w - I>

or

(59)

(s = 1, , n — 2)

(8 = 1, •••,*- 3)

(β = l , • • - , « - 3)

(β = l , • • • , * - 3 )

From (57) we obtain, as before,

(58) δα ; 1 ) = 0 (s = 1, , n - 2) δαiV = D - D2 ,

and from (57), (58), in virtue of (42),

(8 = 1, • • - , » - 3 )

~ ( i ; D λ d D — I I P
W Ί + S ^ 1 + S — •*•/-' 3,3+β >

" α ^ - b^l = (w - D)PJd ,

An-l — bn-ί. = W — D .

From (59) we obtain, in virtue of (4),

/Λd;2) — p ip
Us — ^ 3,3/ ^3,3+s >

' α i 1 ^ = (w - Z>)PS,3 ,

(8 = 1, • • - , » - 4 )

(s = 1, •• ,n- 4)

or
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Ό ' 1 * = 1/P4>3+S , (ί = l , , » - 4 )

α»iϋJ = (w - D)P2,3/d ,

a™ = (w-D)PlΛ ,

G-w-l — -* 3,3

We shall now prove the ̂ formula

(61)

/βd fc) _

αϋϋU = (w- D)P2,k+1/d ,

k = 2, - - , n — 3 .

(s = 1, « , ^ - k - 2)

Formula (61) is correct for k = 2, in virtue of (60). We shall prove
by induction that it is correct for k + 1.

We obtain from (61), as before,

(62) 5i1J*> = 0 ; (s = l, - . . , r c -

and from (61), (62), in virtue of (42)

W*Λ = D - D k + ι ,

or

(63)

fc+2,fc+l+3 9 (S — 1 , , W /^ ^ )

/•(l fe) λd fc) //i/i Π\ Γ> //7

ΛΛ_A:-I — 0M-*-i — ^ — JJ)Jr2,k+1/a ,
α ( 1 ί/c) __ r\ (1 * ^) //i/ί /J i /-̂  i ĵ . "I iv . "I i

Λ - f c - l + i ϋ % - / ί " l + i — V^ 7 ~~ •U)Γ2+i,k + l \V ~ L> •••,«/ - L ;

•α(l;Jfc) _ J ( l fc) =

α(i;j) _ &(i|*) = l / p f c + 2 > ; , + 2 + s , (s = 1, . . . , n - k - 3)

a™U - bϊ?U = (w - D)P2fk+1/d ,

μM) _ juj*) = w - D .

From (63) we obtain, in virtue of (4),

-/γd fc+1) ID / Γ> /« — 1 . ,
tts — j r k + 2,k + 2/jrk + 2,k + 2+s j \ b ~ x >

αίίiVi' = (w-D)P%,k+1Pt+t,k+ild ,

&n-k^2+i = ( ^ — D)P2+i,]c+ιPjc+2tk+2 j \Ί ~

Λ(l;fc+1) //m ΊΊ\T>

CLn-Z — yW — ±J)rk + 2,k + 2 9

>,n - k - 3)

n(l;k + l) _

or
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/π(Uk+ί) —

(64)

1, , n — k — 3)

αiίi^t1,' = (w - D)P2,k+2 ,

^ ( l fc+1) _
U>n-k-2+ί —

With (64) formula (61) is proved.
We now obtain from (61) for k = w — 3

(67)

,-2 = (w - D)P2,nJd ,
(65)

(^(I Λ-3) _ p

From (65) we obtain, as before,

(66) δi1—3 ) = 0 (β = 1, , n - 2) 6i?ir8) = D- 1

From (65), (66) we obtain as before

^l n-8, _ 6(i;.-8, = llPn_Un_γ ,

jti -8) _ 5(i;-») = ( W - D)P2,nJd ,

v(l;n—3) ϊ»(l;w—3) //,», TΊM* (% =
l2+i — 02+i — \ ^ — ^)Γ2+i,n—2 1 \ υ

| Λ ( 1 ; Λ - 3 ) _ ϊj(l;»-3) _ w __ Π .

and from (67), in virtue of (4),

^ ( l .n-2, = ( ^ _

αίVΓ2) = (w -

" αίfir8 ) = (w -
Λ(1;Λ—2) P
U/^ — l -ί- n —1,71 — 1 »

, n - 4)

n — l , w — 1 >

or

(68)

Ό"'—« = («; - D)PMJd ,

oίϊΓ" = (w - - , » - 3 )

Prom (68) we obtain, as before,

(69) ft"1-21 = 0 (β = 1, . .-, w - 2) fti'ir" = ̂  - I>.-i -

and from (68), (69), in virtue of (42)

'α« —«

(70) £?-2> = (to - DJP^i,^! , (t = 1, ,» - 3)

ίir*' = w - D
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From (70) we obtain, in virtue of (4) and (39)

/π(2;θ) _ flp fp /o — 1 . . . /M _ Q\
as — U'X2+8,«-i/X2,w-i , v^ — • * • > > " ' «/

Λ(2;θ) _ > 7 / p

Q"n—l : = -̂  1,1 \

or

(71)
(2;0)

From (71) we obtain, as before,

(72) δί*°> = 0; (s = l, . . . , n - 2 )

and from (71), (72), in virtue of (42)

α ? ; o , _ 6(.;o, =

or

(73)

« - KHZ = w-D;

Zj(2;0) _
— °i —

From (73) we obtain, in virtue of (4)

/«(2;i) — p ip

• αi?ϋ» = (w -

\<*)i-l — - ' 2 , 2 / " ' I

or

(74)

//γ(2;l) — Λ IP

jαί?!1,' = (w - Z>)P2,2/cί ,

(s = 1, , n — 2)

and from (74), as before,

(75) &«!1> = 0 (s = 1, , n - 2) &«i\> =

From (74), (75) we obtain, in virtue of (42)

&SS = (w —
&«iV = ( w -

, Λ - 2)

(β = 1 , • • - , » - 3)

(β = l , . . , Λ - 3)

(β = l , • - . , « - 3 )

or
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αίί1.' - δίϊi' = 1/P3,3+S , (β = 1, , n - 4)
~(2;1) #»(2;1) / Λ , , Γϊ\ D /i7
W'n—2 — On—2 = \ ^ — J^)-^2,2I^/ >

( β = 1 , • • - , % - 4 )

,nn\

From (76) we obtain, in virtue of (4),

OS' = (w - D)P2,2P3,3/d ,

aΐ*l = (w- D)P3t3/d ,

Λ(2;2) _ p

or

(77)

//γ(2;2) 1 /p

αi2i2

3

} = (w - D)P2Jd ,

' α ^ = (w - D)P3>3/d ,
«(2;2) Ό

(JLn__l — -*• 3,3

From (77) we obtain, as before,

(78) &<*»> = 0; (s = l, . . . , w - 2 ) 6i5

and from (77), (78) and in virtue of (42),
fπ{2;2) A(2;2) __ 1 / p

αjf-i — δ ^ = (w — D)P2Jd ,

.αίfi2! — δi2-i ~ w — D ,

(8 = 1, , » - 4)

D-D,,

(s = 1 , ••-,% - 4 )

or

(79)

'^(2;2) J(2;2) _

/»(2;2) Z (̂2;2) __

α«i2' - &«!« = (w - Z>)P2l3/^ ,

(8 = 1, • • - , » - 5 )

From (79) we obtain, in virtue of (4), and carrying out cancellation

and multiplication as before,

/αf 3' = 1/P5i4+S , (8 = 1, ••-,»- 5)

α«!2 = (w - I>)P,,4/d .

(80) • oίfJS = (w - -D)P3>4/d ,

α*5 = (w - D)PM ,
/7(2;3) _ p

\U'Λ-1 — Γ4,4 .
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We shall now prove the formula

αίίiU = {w- D)P2,k+1/d ,

(81)

(s = 1, •••, w - k - 2)

αίfiϊ = (w - D)P3,k+ί/d ,

a{2-k+i = (w —

\ t l w _ l — ΓA + l.Λ + l >

(t = l , ••-,*-2)

ΓC
 z=z O, * , TV O

The proof of (81) is by induction like that of formula (61) or (47).
First we see that (81) is correct for k = 3 then we show that it is
correct for k + 1.

We now obtain from (81) for k — n — 3

(82)

a&Γ3) = (w - D)Ps+i,n_z ,

•^n~2,n—2

and from (82), as before,

(83) δί»-8 ) = 0 (s = 1, , n - 2) 6i2iΓ3) = D - Dn_2 .

From (82), (83) we obtain, in virtue of (42),

(83)
(2;w-3) Iv(2;u-3) _ / . . .
3+i — ^3+ί — ^

^(2;π-3) _ l,(2;*-3) — w _ Γ)

From (83) we obtain, in virtue of (4) and carrying out multiplication

as before,

fαί2—2> = (w - D)P2,nJd ,

(84)

From (84) we obtain, as before,

( 8 5 ) b[2''n-2) = 0; (s = 1 , . . . , n - 2

and from (84), (85), in virtue of (42),

(i = 1, ---,n - 4)

(2;w-2) _ Γ)
n _! — U —
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(85a)
α<«; -«> _ 6?:-«) = ( W _ D)Ps>n_ί/d ,

α ί ? r 2 ) - &£Γ 2 ) = (w - D)PMfn_ι , (< = 1,

From (85a) we obtain, in virtue of (4),

(π(z;θ) — p / p

- 4)

(i = 1, . .-,» - 4 )

or, after carrying out the necessary cancellation and multiplication

(86)

(3;0) _
l

1 i —

From (86) we obtain, as before,

(87) 6i3;0) - 0 ; (β = 1, . . . , r c - 2 )

and from (86), (87), in virtue of (42)

/^y(3;0) k(3;0) -| ip

/QQ\ /t(3*,0) ϊk(3;0) rJ I T>

An-l ~ bn-i = W — D .

,n- 3)

Prom (88) we obtain, in virtue of (4), and carrying out the necessary
cancellation

α f 1 ' = d/P3ι2+i ,

(89)

and from (89), as before,

(90) 6?sl> = 0 (β = 1 , , w - 2) 6

From (89), (90) we obtain, in virtue of (42),

(91)

^ = Z? -

- 4 )

α S - 6Ϊ2Ϊ = w- D
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From (91) we obtain, in virtue of (4), and carrying out the necessary
cancellation and multiplication

/Λ(3;2) 1 / E>
ai — J-/-* 4,3+; ,

αi3i2

3

} = (w - D)P2Jd ,
(92)

and from (92), as before,

(93) 6ί8*> = 0; (s = l, - . . , t t - 2 ) 6J

From (92), (93) we obtain, in virtue of (42)

- A

(93a)

(3;2) 1(3:2) _

Ί °1 —
(3;2) Iv(3;2) _

•ίt-3 — °ίί-3 ,3/tt , Ctn_2 O,,_2

α » - 6«i« = (w -

From (93a) we obtain, in virtue of (4),

(94)

(ΐ = 1, . . . , n — 5)

a«J5 = (w - -D)P3l</

aϊϋSI = (w -
«(3;3) _ p

XW'ίi—1 — *• 4,4

From (94) we obtain, as before,

(95) 6ί8ϊ8> = 0 ; (s = l , . . . , w - 2

and from (94), (95), in virtue of (42),

(96)

ϋ

δ«i3' = (w -

δ«i33» = ( w -

δ»i ,> = (w -

&»iϊ = w - D .

From (96) we obtain, in virtue of (4), and carrying out the necessary
cancellation and multiplication
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a™l = (w- D)PtΛ/d ,

(97) f - = {W ~ D)P-ld '
te = (w- D)PJd ,

αίfJi' = (w - -D)Pδ>5 ,

αίίii' = PM

We shall now prove the formula

(98)

(i = 1, . , n - fe - 2)

a™U = (w- D)Pt,k+1/d ,

oίfiV = (w - D)P3,k+ι/d ,

n(3\k) /nn n\τ> id

n(3\k) _ / - . , _ Γ)\Ό
Wn—k + 1 + 8 — \ w 1 J ) Γ 4+s,k + l i

^n—l — •*• k+l,k+l >

Jc = 4, , n — 3 .

(8 = 1 , • - . , & - 3 )

Formula (98) is correct for k = 4 because of (97). We then prove
as before, that it is correct for k + 1, so that (98) is verified. We
obtain from (98), as before,

(99) b^k) = 0; (8 = 1 , . . . , w -

and again from (98), for k = n — 3 ,

(100)

0 n _ ! — JJ — JJjc + 1 9

(i - 1, 2, 3)

(β = 1, • • - , » - 6 )

«{3;n-3) _ p
\^n—1 — -^w—2,%—2

From (100) we obtain, as before,

(101) 6i8ϊ—8) = 0 (s = 1, , n - 2) δ£ir 3 ) = I> - D._ 2 ,

and from (100), (101), in virtue of (42)

(102)

γ(3;%—3) ϊj(3;%—3) __

£(3;*-3) _ J(3;w-3) _ / ^ _

^4 + ? ^4 + s — ( ^ ~~

T(3;Λ—3) — Ij(3;w-3) Λ., —

(i = 1, 2, 3)

From (102) we obtain in virtue of (4), and carrying out the necessary
cancellation and multiplication
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(103) ί ί r 2 ) = (w - D)P4+s,n_1 ,

(i = 1, 2, 3)

(s = 1, '•-,%- 5)

and from (103), as before,

(104) δ<3;"-2> = 0 (s = 1, , n - 2) δ ί i r 2 ) = D

From (103), (104) we obtain, in virtue of (42),

(105)

α«
!—*> - δ<3;κ~2> = (w - D)Pt,._Jd ,

a<3;«-v _ 6 «:-i ) = ( W _ D)Ps,nJd ,

αί"—' - δf—2> = (w -

= l, , ί i-5)

< 3 i r 2 ) - δi3i

and from (105), in virtue of (4),

(106)

αί4 ; 0 ) =

x2+s —

(4;θ) _

(s = 1, , n — 4)

The reader will easily verify, on ground of previous formulas, that
the 4(n — 1) supporting sequences

\ , biίLV (k - 0, , n - 2 i = 0,1,2,3)

generate the first four fugues whose form is that as demanded by
Theorem 3.

The complete proof of Theorem 3 is based on the following

LEMMA 1. Let the generating sequence

α!/c;0) (s = 1, , n - 1 k = 3, , n - 2)

have the form

(107)

(.k\0) _
i

(k;0) _

(s = 1, , n — k)

then the n — 1 supporting sequences

fc(λ O)

generate a fugue which has the form of the k + 1 -ί/i fugue as demanded
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by Theorem 3, and the generating sequence a{

s

k+U0) (s — 1, , n — 1)
has the form of (107), where k is to be substituted by k + 1.

Proof. In virtue of formula (86), the generating sequence

π(k;0) π(k;0) π(k\Q)
Mi , U/2 y y U"rι—l

has the form as in (107) for k = 3. The n — 1 supporting sequences
δi(3;0), 62(3;0), •••, &(3; 0) form the fourth fugue of the period as
demanded by Theorem 3. The generating sequence

7(fc+i;θ)
, , U,w_!

too, has the form as in (107) for k = 3, in virtue of formula (106).
Thus the lemma is correct for k = 3. Let it be correct for k — m.
That means that the n — 1 supporting sequences

Zj(m i) IJro ΐ) . . /.(m ΐ)
Ί > ̂ 2 > > y » - 1 f (i = 0, - 2)

form the m + 1 -th fugue as demanded by Theorem 3, and that the
generating sequence

(m+l;0) ^ ( w + l O)
-l a2

has the form

(108)

i — •L/jr2,ι+ί i (ΐ = 1, . . . , m - 1)

(s = 1, , n — m — 1)
(m+l;0) __

From (108) we obtain, as before,

(109) b{

s

m+U0) = 0 (s = 1, , n - 2)

and from (108), (109), in virtue of (42),

(110)

/π(m+V,Q) ZJm+l O) _

|k(w + i;θ)
Jm—l + s (s = 1, — m — 1)

From (110) we obtain, in virtue of (4)

{m+ί,l)

(m + l l)
m—2+s

(m_+l;l)

(m + l l)

= ^2,2/ί

= ^ P 2 , 2 /

— (w —

= ^ 2 , 2 ί

>
2,2+i 1

J^2,m + s y

D)PM ,

(s

(i

= 1,

= 1, ,
• " , % -

m

m
- 2 )

- i )

or
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(111)
αi-ί 1 ' 1 ' = (w - Z>)P2,2 ,

(i = 1, . . , m - 2 )

(s = 1, , ίi. — m — 1)

We shall now prove the formula

γ(m+l;ί)

(112)

(i = 1, . . . , m — t — 1)

(s — 1, , n — m — 1)

,t = 1, , m — 2 .

Formula (112) is correct for t = 1, in virtue of formula (111). We
shall prove that, being correct for t, it is correct for t + 1. From
(112) we obtain, as before,

(113) &im+1;ί) = 0 (s = 1, , n - 2) b'fL+

L

ut) = D- Dt+1 ,

and from (112), (113), in virtue of (42)

(114)

αίT? l ! t ) - δί?,+1;t) = l / P ί + 2 , ( + 2 + ί , (i = 1, , m - t - 2)

αί-iϋ'Λ. - 6L"_Vi{U = d/Pt+2,m+s , (s = 1, , n - m - 1)

αr_| i^ } - - δ iΐ-ϊi'ί, = (w - D)P1+Jιt+ι , (j = 1, , ί)

From (114) we obtain, in virtue of (4)

(115)

6 Δ)

u,m-t~2+s — ujrt+2>t+2/jrt+2}m+s , V» — JL, , Λ«r — 7f6 — -L;

α ^ T i ^ ! ^ = (w - D)Pι+j>t+1Pt+2,t+2 , (i = 1, , t)

α (mfl ; ί + l) — ion J~)\J-^
n—2 — \ w ± J ) Γ tΛ-2,tΛ-2 >

and from (115), carrying out the necessary cancellation and multi-

plication

(i = 1, , m — t — 2)

(s = 1, •••, w - m - 1)

i,ί+2 \J — J-> J ̂  ' -1-/
(116)

l t + 1) —

With (116) formula (112) is proved. We now obtain from (112), for

t = m-2,
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/n(m+Um—2) __

(117) -

^ f t - 1 ' = x m - l , w - l

and from (117), as before,

(118) &<»+"«-« = 0 (β = 1, , n - 2) i

From (117), (118) we obtain, in view of (42)

(s = 1, , n — m — 1)

(119)

Zv(m+i;m—2) 1/P
1̂ — -L/- ί m,m 9

i m—2) I»(m+r,i»-2)

+ l:m-2) /.(m + l m-2) _ / . . .

+ V,m-2) ϊj(m + i;m-2) _ . . . T) .

- 2 ) = D -

1 . . . >w onn Λ\

{J — 1, , Ύϊl — Δ)

and from (119), in virtue of (4), and after carrying out the necessary
cancellation and multiplication

(120)

/^(m+l m-1) _ ^ J / p

α (w.+i,w. i) — ion J)\ ~P
n—m — l + j — \W U)JΓ iJrJjm ,

(s = 1, , n — m — 1)

( i = 1, . . ,m - 1)

From (120) we obtain, as before,

(121) b{

s

m+um~l) = 0 (s = 1, , n - 2) b(

n

mΛum~1] = D - Dm ,

and from (120), (121), in virtue of (42)

~ ( m + l;m—1) ZV(JΛ + I;TO—l) /7/P

(̂TO + i m-i) /.(m + i m-i) _ / . . .

— ±, , n — m —

VJ — ±, , 7W

or

(122)
= 1, ' , n — m — 2)

(j = 1, . . . , m - 1)

fj(m + i ; i»- l) — n,% _ 71

From (122) we obtain, in virtue of (4) and after carrying out the
necessary cancellation and multiplication

(123)

/n(m+l;m) 1 IT)

- ϊ i T i , = (w - D)P1+J,m+Jd ,

(s = 1, , w — m — 2)

(i = 1, . . . , m )
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From (123) we obtain, as before,

(124) δt»+i;m) = o ; (s = 1, . . . , ^ - 2) bl^t1''7'

and from (123), (124), in virtue of (42),

yίm-fl m) ZJm+l m) 1 I'D
ll ϋl — •L/jrm+2,m+2 >

D-D,
d

α( ?+i;«, _ 6(T#+i;», = l / p m + 2 > m + 2 + s , (S = l , . . . , n - m - 3)

a^L^lj - δiί.ϊiϊiy = (w - D)Pι+j,m+1/d , (i = 1, , m)
(125)

From (125) we obtain, in virtue of (4) and after carrying out the
necessary cancellation and multiplication,

/Λ(m+i;iB+l)

(126)

— -V-* m+3,m+2+s 1

α(m+i;m + l) — (in TY\ ~P Irl

%_m_3_f_j — \ίV ±JJJL i+ j ,m + 2/ ^ >

— Pm+2,m+2

From (126) we obtain, as before,

(127) b(

s

m+um+1) = 0 (β = 1, , n - 2)

and from (126), (127), in virtue of (42)

(s = 1, , n — m — 3)

(j = 1, « , m + 1)

— U -LJmΛ-2 y

(128)
^(m+l m + l) _ n+s,m+z+s , (s = 1, , n - m - 4)

b^^tf = (w - D)P1+j>m+2/d , (i = 1, ., m + 1)

&J!Li ' m = w — Z/ .

From (128) we obtain, in virtue of (4), and after carrying out the
necessary cancellation and multiplication

(129)

m+4,m+3+s (s = 1, . . . , % — m — 4)

( i = 1, . . . , m + 1)

i m + 2) _
m + 3,m + 3

We shall now prove the formula

„<«+!;«+*) = l / P m + f e + 2 j m + f e + 1 + s , (s = 1, , n - m - k - 2)

alZSLTHίl,- = (w - D)P1+ί,m+k+1/d , (i = 1, , m + 1)

(130) = (w - D)Pm+2+t,
m+k+1

(ί = 1, , k -

k = 2, •• ,n — m — 3 .
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Formula (130) is correct for k = 2, in virtue of (129). Presuming it
is correct for k, we shall prove its correctness for k + 1.

From (130) we obtain, as before,

(131) b{

8

m+iim+k) = 0 (s = 1, ., n - 2)

and from (130), (131), in virtue of (42)

(132)

= D - Zλ + k + l

,w — m —fc — 3 )

α w _ f c _ 1 + ί O w _ f c _ 1 + ί — \W U)JΓm+2+t,m+k+i i

From (132) we obtain, in virtue of (4) and after carrying out the
necessary cancellation and multiplication

= 1, ,n — m — k — 3)

(j = 1, . . . , m + 1)

(t = 1, ••-,&)

αi-+

m^i3fc/)} = (w - D)P1+j,m+k+2/d ,

r>

which is formula (130) with k being replaced by k + 1 this proves
formula (130).

We now obtain from (130) for k — n — m — 3

Λ(m-fl;w—3)
um+2+t —

( i = 1, . . , m + 1)

(ί = 1, , w — m — 4)

Λ(w+i;»-3) _ 1 / p
" Ί — J-/-IΓ Λ—I W—l J

(134)

Λ(m+l;Λ~3) _ p
U"n—l — Γ n—2,n—2 >

and from (134), as before,

(135) &<«+"»-» - 0 (s = 1, , n - 2) b^ΛUn~"] = D- Dn_2 ,

From (134), (135) we obtain, in virtue of (42),

(136)
α(.+ii--.) _

Λ—3)
t

Λ—3)

(-;i;-3) = ( W _ D)Pι+j,n_2/d , (j = 1,
v(m + l;w—3) /ΛM

, m + 1)
nnn Λ\

/»(m+l;w—3) — η n jΓ)
un—1 — ^^ -L>' >

and from (136), in virtue of (4), and after carrying out the necessary
cancellation and multiplication
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/αy.+i;.-« = ( W _ D)P1+j,nJd , (j = 1, , m + 1)

(137) jαίΓίϊr" = (w - D)Pm+2+t,^ , (t = 1, . , w - m - 3)

From (137) we obtain, as before,

(138) δ<«+"—» = 0 (s = 1, , n - 2) δί,"ΐ1:"-ι) = D- Dn^ ,

and from (137), (138), in virtue of (4),

α _ 6 = (W

~(m + l;»-2) ZJOT + I W-2) _ /,,., 71\P /r/ ( Ί — 1 Ύ

~(»i + l;w—2) ~L(m-\-l;n—2) /,,., Tl\T> (+ 1 . . . Ύl ΎYi

α m + 1 + ί — om+ι+t — yw — JJ)J"m+2+t,n~i i [i — l., * ,n — m

From (139) we obtain, in virtue of (4), and after carrying out the
necessary cancellation and multiplication

(140) aϊXSV - d/P2,m+ι+t , (ί = 1, , n - m - 2)

According to formula (109) (one line of the period), formula (113)
(m — 2 lines of the period), formula (121) (one line of the period),
formula (124) (one line of the period), formula (127) (one line of the
period), (131), (n — m — 4 lines of the period) and formula (138) (one
line of the period-totally 1 + m — 2 + 1 + 1 + 1 + w — m — 4 + 1 =
n — 1) the m — 2 -th fugue has the form as demanded by Theorem
3. Since (140) is formula (107) for k = m + 2, the Lemma 1 is
completely proved.

In view of the Lemma 1 we obtain that the (n — 5)(n — 1) lines

form n — 5 fugues, beginning with the fifth fugue, as demanded by
Theorem 3 we further obtain, applying the lemma for k = n — 2,
h + 1 = n — 1, that the generating sequence αίΛ~1:0>, (i = 1, , n — 1)
has the form, following (108)

π(n-l;0) _ Λip /• _ 1 ^ _ o \
Lt/̂  — /-*• 2 1 + ΐ ) V ̂  — "^ > % ϊv — O l

(141)
~{n — l O) E>

^tt-^ — i — -^1,1

From (141) we obtain, as before,
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(142) b{

s

n~u0) = 0 (s = 1, . . . , n - 2)

and from (141), (142), in virtue of (42)

(143)
_ 1/p (i — 1, , n — 4)

« — l O)
—2

From (143) we obtain, in virtue of (4), and after carrying out the
necessary cancellation and multiplication

/π(n-l;l) _

(144)
a^rz

ul) = (w — D)P2>2 ,

We shall now prove the formula

(145)

{n-Uk) _ 1 ip

(n-l;k) _ Jl p
k ("I A +

(i = 1, - Λ - 3)

α i V 4 + s = (w - D)P1+8tl+k ,
~(Λ—l Jfc) __ p

U = 1, -- ,n - 4 .

(8 = 1,

In virtue of (144) formula (145) is correct for k = 1. We prove, by
completely analogous methods used to prove previous, similar formulae
that it is correct for k + 1, thus verifying its correctness. We now
obtain from (145), as before,

(146) VΓVΛ) = 0 (s = 1, , ϋ - 2) b£r™ = D- Dk+1 ,

and again from (145), for k = n — 4,

( 1 4 7 ) c i 4, / ™ P / 1 ^
«2ΪS = (W — ΰ ) Λ + .,n-3 > (8 = 1, , W — 4)

-^w—1 ' = = -^%—3,^—3

From (147) and (146) (for k = n - 4) we obtain, in virtue of (42),

(148)
(»—I Λ—4) ϊvίw—i w—4)
2 O 2 —
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and from (148), in virtue of (4), and carrying out the necessary
cancellation and multiplication,

(149) \alls

Un 3) = (w - Z))P 1 + S , W _ 2 , (β = 1, • • • , » - 3 )

From (149) we obtain, as before,

(150) &ί—li"-» = 0 (s = 1, , n - 2) 6^ 1 ; i ί- 3 ) = Z) - Z>κ_2 ,

and from (149), (150), in virtue of (42)

(151)

(n—V,n~ 3)

(s = 1, , ̂  — 3)
Λ-i π—3) ϊv(»-i;»-3) — w — U .

From (151) we obtain, in virtue of (4), and carrying out the necessary
cancellation and multiplication

(152)
{n—Un—2) = (w - D)P1+s>n_Jd , (s - 1, , n - 2)

and from (152), as before,

(153) &i-ι.-*> = 0 (s - 1, •, n - 2) δ ^ 1

From (152), (153) we obtain, in virtue of (42),

/α(n-l;n-2) _ J( -l;n-2) = ^ _ typ^^Jd ,

(154) lα ί ϊ7 1 : *- 2 > - 6ί*τ 1 : — 2 ) = (w - D)P2+s>n_ί/d ,

d

(β = 1, , w - 3)

and from (154), in virtue of (4),

π(n;0) — p IP — 1 ip - 3)

Thus

(155)
(n;0) _

,^: = (w - D)Pί,nJ{w - D)PtlU_1 = PM .

(β = 1, ••-,%- 2)
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Comparing (40) with (155) we see that

α^ 0 ) = αί0) , (s = 1, . . . , r c - 1)

i.e.,

(156) αin ( n-1 ) } = αi0) (s = 1, , n - 1)

which proves that, in case d Φ 1, the Jacobi-Perron Algorithm of the
basic sequence a{

s

0) (s = 1, , n — 1) from (34) is purely periodic and
its length T = (n - 1)%. Since, in virtue of (142), (146), (150), (153)
the n — 1 supporting sequences

δ r ; f e ) , δ r i ; f c ) , •• ,δiw--1:fc) (k = 0,1, ...,n-2)

form a fugue which is the n -th fugue of the period, we see that
this last fugue, together with the 4 + (n — 5) = n ~ 1 preceding
ones form the n fugues of the period, as demanded by Theorem 3.

In case d = 1, we obtain from (55)

(157) <eo ) = 1/P2fl+. , (s = 1, , n - 2) a™ = PU1 ,

so that, comparing (157) with (40), we obtain

(158) a{rl) = αl°> , (s = 1, , n - 1)

so that the length of the period is here T = n ~ 1 from (41), (44),
(48) (54) we obtain that in the case d = 1 the period has the form
as demanded by Theorem 3.

The reader should note that proving case d Φ 1 we presumed
n ^ 6. The special cases n = 2, 3, 4, 5 are proved analogously.

We shall now give a few numeric examples. Let the generating
polynomial be

fix) = x5 - 15a;4 + 54a;3 - 3 = 0 ,

which can be easily rearranged into

fix) = (x - 9)(x - 6)x" - 3 = 0

and has the form (17) with

D = 9, A = 6, A = D3 = A = 0 d = 3

9 < w < 10 (w - 9)(w - 6)w3 - 3 = 0 .

The Jabobi-Perron Algorithm of the basic sequence
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(w - 9)(w - 6)w2 (w-9)(w-6)w (w - 9)(w - 6) nn R

3 3 3 '

or

w3 — 15w2 + 54w w2 — 15w + 54 a

is purely periodic with period length T = 20. The period has the
form

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3
9

9

9

1

9

9

9

3

3

9

9

3

9

3

9

3

9

9

0 0 0 3 .

Let the generating polynomial be

f(x) = x6 - Sxδ - 5x* + 15x8 + 4α2 - 12a? - 1 = 0 ,

which is easily rearranged into

f(x) = (x - S)(x - 2)(x - l)x(x + l)(x + 2) - 1 = 0

and has the form (17) with
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Z> = 3, A = 2, A = 1, A = 0, A = - 1 , A = - 2 d = 1
3 < w < 4 ,

(w - S)(w - 2){w - l)(w + l)(w + 2)w - 1 = 0 .

The Jacobi-Perron algorithm of the basic sequence

<> = (w
<> = (w

α<0) = (w

α<0) = (w

α<°> = w -

is purely

the form

— 2){w —

- 3)(w -

- 3)(w -

- 3)(w -
- 2

periodic

2)w(
2)(w
2)(w

2)

and

M; + :

+ 2)

the

0

0

0

0

0

l)(w
(w -f

+ 2)
• 2 )

= w

= w4

= w3

= w2

= w

period length

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

—
—

—

—

—

is

1

2

3

4

5 .

2wr
2w3

Sw2

5w

2 ,

T

- lw3

- 7w2

- Aw -

+ 6,

+ 8w* + 12w ,
+ 8w + 12 ,

M 2 ,

= 5. The period has

Let the generating polynomial be

f(x) = .τ3 - 16a; - 2 = 0 ,

which is easily rearranged into

f(x) = (x - 4)x(x + 4) - 2 = 0

and has the form (17) with

D = 4, A = 0, A = - 4 d = 2
4 < w < 5 ,

(w - 4)(w + 4)w - 2 = 0 .

The Jacobi-Perron algorithm of the basic sequence

(w — 4)w _ w2 — Aw

2 2 w

is purely periodic and the period length T = 6 the period has the
form

0 4
0 8

0 2
0 8

0 4
0 4 .
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6* The Jacobi' perron algorithm for polynomial of increasing
order• In this section we shall show that, by imposing further
conditions on the coefficients of the GP from (17), one can select
increasing order polynomials from the algebraic number field K(w)
generated by f(w) — 0, D < w < D + 1, such that their Jacobi-
Perron algorithm is purely periodic. This result is stated in

THEOREM 4. Let the coefficients of the GP in addition to (17)
fulfil the inequalities D — D{ Ξ> 2d(n — 1), i.e., altogether

D. D;, d rational integers d > 1: n > 2
(159) * / , _ , _ ,

d\(D - Dt); D - A ^ 2d(w - 1) (i = 1, 2, . . . , n - 1)
Let w be the only real root in the open interval (D D + 1). T%βw
£Λe Jacobi-Perron algorithm of the basic sequence

aΐ\w) = ΣJ-o*. (w - /?)*- , (β = 1, , n - 1) Λ. = 1

(160) ft. = Σ CD - ^ Φ - i) i2) (D - Djs) , (s = 1, , n - 1),

1 ^ ii < j* < < Js ^ w - 1

is purely periodic and its length T — n for d > 1, and T — 1 /or
d = 1. The period has the form

s ) = A?ί (i = 1, . . . , n - 1 - s) ,

(161) h-s) = kjd (i = n - s, ••., n - 1; s = 1, , n - 2)

b'f-v - kjd (i = 1, •••, w - 1)

d > 1 .

(161a) 610) = A:, (i = 1, . . . , n - 1) d = 1 .

Proof. This is essentially based on the simple formula

(162) \af\w)} = ki (i = 1, , n - 1) .

Since, as will be proved later, w is irrational under the conditions
(159), we have to verify the two inequalities

(163) hi < af\w) <ki + l (i = 1, •, n - 1) ,

or, in virtue of (160)

(164) 0 < (w - DY + kλ(w - D)1-1 + - -. + k^{w - D) < 1 .

The left-hand inequality of (164) follows from w > D and k{ > 0.
We shall prove the right-hand inequality

(165) (w - DY + kx{w - DY~ι + + k^(w - D)< 1 .
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Since 0 < w — D < 1, we obtain (w — D)1 ^ w — A and we shall
prove, since

(w - BY + k,(w - D)1-1 + + ki^(w - D)

^(w - D) + k,(w - D) + + ki^(w - D) ,

(166) (w - D)(l + kx + k2 + . + fc^) < 1 .

From w > D, (w - D)(w - Z)x) . (w - Dn^) — d = 0, we obtain

A) (w - D.^))(167) w D

< d/((D - DX{D - A) (D - A-0) .

We shall now prove the inequality

(168) ks(w - D)< 2-{n-1~s) , (s = 1, .., n - 2) .

Let the A be arranged in nondecreasing order, so that

(169) D - A ^ - D - A ^ ^ - D - A-i .

In virtue of (169), and taking into account the values of ks from
(160) we obtain

ks(w - D) ^(w - D)Σ(D ~ Di)(D - A) (D - A)

(n ~ 1V^ - D){D - A)(J5 - A) (D - A)

cin- 1
s
(D - DX)(D - A) (D -

in virtue of (17). Therefore

(170) ks(w - D) < ^—-
(D - D9+1)(D - A+ 2) - (D - Dn_i

But D - A ^ 2d(w - 1) therefore we obtain from (170)

(2d(n - l))^-8-1

n- 1>
s

2n~s~1(n - \γ-s-χ

n — 1 β ^ - 2 g + 1 < 1_
1) (n - s -

which proves formula (168).
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We further obtain from (167)

w-D< d 1 . 1
(2d(n - I))71-1 2n-\n - iy~γdn~2 ~ 2n~ι

In virtue of this result and of (168), we now obtain from (166)

(w - P)(l + * , + . . . + k ^ ) < - L + - L + ... + J ^ r

O?ι—1 O%—2 p O«—1

Thus (162) is proved.
In virtue of (163), we obtain the inequalities

so that

d

(162) and (171) provide the key to our proof of Theorem 4. The
further course of the proof is similar to methods used in previous
papers ([10], [12]) and we shall, therefore, give here only a very
general outline of same. Denoting in the sequel

(173) a?\w) = a?^ , (i = 1, . ., n - 1)

we obtain from (160), (162)

αί°Λ = (w- D)ap + ki+ι , (i = 0, •, n - 2)<C = 1 ,
π(0) Ij(0) _ π(0) _ I.

(174) αfΛ - δ|°Λ = (w- D)af (i = 0, . . , n - 2) .

We further obtain from (24), for f(w) = 0,

(w - D)n + &i(w - ΰ ) " - 1 + A;2(w - D)n~2 + + kn_,{w - D) - d = 0 ,

w — P d d

since, from (174), α!0) — b[0) = w — P, we obtain

I ,γ(0)

(175) = - ^
a[0) - &ί0) d

We shall now carry out the Jacobi-Perron algorithm of the basic
sequence (160) and obtain from (162)
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(176) b(

s

0) = ks , (8 =

and from (174), (175), in virtue of (4)

a[0) - b[0) = w - D ,

α(o)χ _ b^ = (w — D)af] , (ί = - 2)

(177)
^ ( 1 ) _ Λ ( 0 )

From (177) we obtain, in virtue of (162), (171)

(178) 6<» = Λ. (s = 1, , n - 2) 6«i, =

and from (177), (178), in virtue of (174), (175)

(α 11 - δί11 = w - D ,

(178a)

, w - 3 )

, Λ - 3 )

αίfit = aϋLJ

It will now be easy to prove formula

(179) n(s) . _ α (β) Λ

Q — 1 . . . 47 9
o — JL, , It — ^

(ϊ = 1, , n — s — 1)

Formula (179) is correct for s = 1, 2 in virtue of formulas (177), and
(178a). It is then presumed that it is correct for s — m and proved
that it is correct for s = m + 1.

We now obtain from (179), in virtue of (162), (171)

(i = 1, •••, n - s - 1)

(180) δί, i._1 + i = fe-'-'+i

s = 1, , n — 2 .

We further obtain from (179), (180) for s = n - 2

•, w - 2)

so that, in virtue of (174), (175), (4)
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la[n-2) - b[n~2) = w - D ,

| < 7 2 ) - b[\T' = (w- D)afld , (j = 1, , n - 2)

(181) αj—" - αΓ/d (i = 1, , n - 1) .

From (181) we obtain, in virtue of (171)

(182) δί- 1 ' = kjd , (i = 1, , n - 1)

and from (181), (182), in virtue of (174)

/rf , (i = 1, •, rc - 2)

so that, in virtue of (4) and (175)

(183) αί*} = αί0) , (i = 1, , n - 1)

which proves that the Jacobi-Perron algorithm of the basic sequence
α|0) (i = 1, , n — 1) is purely periodic and its length T = n for
d> 1. We further obtain from (177), for d = 1,

so that in this case the Jacobi-Perron algorithm is purely periodic
and its length T = 1.

From (176), (180), (182) we conclude that the period of the
algorithm has the form as demanded by Theorem 4, for d ^ 1.

We shall take up the numeric examples of § 5 to illustrate
Theorem 4.

1. f(x) = x5 - 15a;4 + 54a;3 - 3 = (x - 9)(x - 6)x3 - 3 = 0 .

Developing f(x) in powers of x — 9 we obtain

f(x) = (x- 9)5 + 30(a; - 9)4 + 324(a; - 9)3

+ 1458(a; - 9)2 + 2187(a; - 9) - 3 = 0 .

The basic sequence has the form

a[0) - (w - 9) + 30 - w + 21

α<0) = (w - 9)2 + 30(w - 9) + 324 = w2 + 12w + 135

α(o = ( W _ 9)3 + 3O(W _ 9)2 + 3 2 4 ( ^ _ 9) + 1458

= w3 + Zw2 + 27'w + 243

^l0) = (w - 9)4 + 30(w - 9)3 + 324(^ - 9)2 + 1458(^ - 9) + 2187
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The period of the Jacobi-Perron algorithm of these numbers has the
form

30

30

30

30

10

324

324

324

108

108

1458

1458

486

486

486

2187

729

729

729

729 .

2. f(x) = x6 - 3x5 - 5x4 + 15a;3 + 4x2 -

= (a? - 3)(x - 2)(x - l)x(x + l)(x + 2) - 1 = 0 .

Developing f(x) in powers of x — 3 we obtain

f(x) = (x- 3)6 + 15(a? - 3)5 + 85(£ - 3)4 + 225(α; - 3)3

- 3)2 + 120(α? - 3) - 1 - 0 .

The basic sequence has the form

< - (w - 3) + 15 = w + 12 ,

α<0) = (w - 3)2 + 15(w - 3) + 85 = w2 + 9w + 49

αί0) = (w - 3)3 + 15(w - 3)2 + 85(w - 3) + 225

= ws + 6^;2 + 22^ + 78

a[0) = (w - 3)4 + 15(w - 3)3 + 85(w - 3)2 + 225(w - 3) + 274

= w4 + 3w3 + 94w2 - 258w + 40

αl0) = (w - 3)5 + 15(w - 3)4 + 85(w - 3)3 + 225(w - 3)2

- 3) + 120 = w5 - 5w3 + 4 ^ .

)2

The period of the Jacobi-Perron algorithm of these numbers has the
form

15 85 225 274 120 .

3. f(x) = xz - 16α> - 2 = (x - 4)x(x + 4) - 2 = 0 .

Developing f(x) in powers of x — 4 we obtain

f(x) = (x - 4)3 + 12(.τ - 4)2 + 32(x - 4) - 2 = 0 .

The basic sequence has the form

a[Q) = (w ~ 4) + 12 = w + 8

αl0) = (^ - 4)2 + 12(w - 4) + 32 = w2 + 4w .

The period of the Jacobi-Perron algorithm of these numbers has the
form
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12
12

6

32
16

16 .

We shall now return to formula (11) in order to calculate w and
obtain for Theorem 3 :

for Theorem 4 :
<> = w - D + k, = lim (Aίv)/Ai,v)) ,

where the A{

Q

υ), A{;Lγ from Theorem 3 are not the same as A(

Q

V\ A[v)

from Theorem 4. Yet, as the first author has proved, there are
always indices vs for the Aiv) from Theorem 3 and indices vA for the
A\v) from Theorem 4 such that

7* Units of the field iΓ(w)* Let the coefficients of the GP

f(x) = (x- D0)(x - A) (x - ΰ j - d

now fulfil the conditions (17), (18), (19) from Theorems 1, 2 and the
supplementary inequalities from Theorem 3, i.e., altogether

Di9 d rational integers d ^ 1 n ^ 2

A > A > > A»-i d\(D0- A) ,

A - A ^ 2d(^ - 1) , (i = 1, w - 1)

(184) and in the special case d = 1 moreover

A - A ^ 2 or A - A ^ 4 for w = 3 ,

A - A ^ 2 or A - A ^ 3 or A - A ^ 3 or

A - A , A - A > 2 for n = 4 ,

and let be

(185) /(w) = (w - D0)(w - A) (w - D.-O - d = 0

A < w < A + 1 .

Perron [18] has proved the following important theorem :

// the supporting sequences of the Jacobi-Perron algorithm fulfil
the conditions

(186) b(

n% ̂ n + b[υ) + δί > + bl% , (v = 0,1, • •)
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then f(w) is irreducible in the rational number field.

We shall apply Theorem 3. Here

d

In order to verify (186), we thus have to prove Do — Ό{ ^> nd. But
in virtue of (184) we have, indeed,

Do- Di^ 2d(n - 1) ^ nd, since n ^ 2 , (i = 1, . . . , n - 1) .

Thus f(w) is irreducible in the field of rational numbers, which is
true already under the conditions (159), and w, as well as the other
roots of f(x) are algebraic irrationals of degree n. Thus, in virtue
of Theorem 2 and the conditions (184), f(x) has n different real roots
which are all algebraic irrationals of degree n. According to the
famous Dirichlet theorem, the exact number of (independent) basic
units of the field K(w) is N — rι + r2 — 1, where

r1 is the number of real roots of f(x) ,

r2 is the number of pairs of conjugate complex roots of f(x) .

In our case rί — n r2 = 0, so that N = n — 1 . We shall now prove

THEOREM 5. Under the conditions (184) the n algebraic irrationals

(188) ek = {w ~ D k r , (k = 0,1, , n - 1)
a

are n different units of the field K(w).

That the numbers (188) are all different follows from Di Φ Djr

(i φ j iy j — 0,1, , n — 1). We further note that one of the
numbers (188), for instance

e.-i = (w - Dn^)n/d

can be expressed by the other n — 1 numbers. We obtain from (185)

d/(w - ZVi) = (w- D0)(w - A ) (w - Dn_2) ,

dn/(w - Dn

and from this

d
(w — Dn_γ)

so that

.-l) + " =

(w
n

(w

—

d

- DX(w

D 0 ) M _ (w

- A ) " •

- A)" .
d

• (w

(w

- A.-.)'

- A.-.)"
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(189) e~U = βcA β%_2 .

There is a simple algebraic method to prove that the ek are all
units (see the Appendix by H. Hasse) for this purpose, in view of
(189), it suffices to show that the ek are algebraic integers. This,
however, does not disclose the more organic connection between a
unit of a field and the periodic algorithm of a basis of the field
after a unit of a field has been found by some device, it is easy to
verify that it is one, indeed. The problem of calculating a unit in
a quadratic field K(-\/m) is entirely solved by developing \/~m in a
periodic continuous fraction by Euclid's algorithm.

In a joint paper with Helmut Hasse [16] it was proved that in
the case of a periodic Jacobi-Perron algorithm carried out on a basis
w, w\ , w71-1 of an algebraic field K(w), w = (Dn + d)ίln d, D
natural numbers, d \ D, a unit of the field is given by the formula

(190) β-1 = a^altγ ... α ^ - 1 ' ,

where S and T (see (6)) denote the length of the preperiod and the
period of the algorithm respectively.1

Turning to Theorem 3, we obtain S = 0, T = n(n — 1) for d Φ 1,
and formula (190) takes the form

(191) e-1 = IKir1 '-1 <^i = Π S Π U a«ir1>+4) .

Following up the various stages of the proof of Theorem 3, one can
easily varify the relations

(192) TIU <l{n% = Pί9lPl.t P-1,-1 ,

(193) ΠΠo2 αί?ir1}-* = d~ΨuιP2i2 Pn-Un^, (i = 1, . . n - 1) .

In virtue of (192), (193) we obtain from (191)

(194) β-1 = d-«-»(PltlPt9t P^un^)n .

From (39) we obtain

(195) PuιP2>2 Pn_un

 d

w — D

and from (194), (195)

d96) β-i = _ A _ , β = /
, e

(w-D)n d

1 Formula (190) holds for any algebraic irrational w.
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which proves Theorem 5 for k = 0, since D = DQ. Yet it is rather
complicated to prove the remaining statement of Theorem 5, namely
that the other ek (k = 1, , n — 2) are units of K(w) which can be
derived from a periodic algorithm like e0. We say deliberately
periodic algorithm and not periodic Jacobi-Perron algorithm, which
has its good reasons in the following observation : if one reads the
author's joint paper with Professor Helmut Hasse carefully enough,
he will soon realize that in order to prove formula (190) two pre-
sumptions are necessary—first that the numbers b[v), biv\ , b^
(v = 0,1, •) be all integers; second that the algorithm be periodic,
while the formation law by which the b^ are derived from the α v)

is altogether not essential. In this chapter we shall define a new
formation law for the b\v) and obtain, on ground of it, a periodic
algorithm for n — 1 polynomials chosen from the field K(w). In this
algorithm the b\v) will all be rational integers so that formula (190)
can be applied. These results are laid down in Theorem 6. Before
we state this theorem, we shall explain the new formation law for
the b[v) and introduce, to this end, a few more notations.

DEFINITION. Let w be the only real root in the open interval
(Do, Do + 1) of equation (185), so that

(w - D0)(w - A) (w - Dn_,) - d = 0 .

Let the elements of the basic sequence of an algorithm G be poly-
nomials in w with rational coefficients, i.e.,

(197) αi0) = a?\w) = Σ!=o C.w8^ (s = 1, . , n - 1)

if the b{

s

v) (s = 1, , n — 1 v = 0,1, •) are rationals, then, in
virtue of (4), the a^\ too, are polynomials in w with rational
coefficients for all s, v, i.e.,

(198) a{

s

v) = a{:\w) = ΣUoC^w3^ (s = 1, ., n - 1 v = 0, 1, . . . )

G is called the Modified Algorithm of Jacobi-Perron, if the 6f} are
obtained from the α v) by the formation law

(199) Vs

v) = a{

s\Dk) (s, v as in (198)) .

Here Dk is one of the numbers DQ, Dlf - - -, Dn^; Dk remains the
same during the process of G.

We shall now introduce the following notations
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, Dn^Riyi = w — Diyi DiΛ any of the numbers Do,

(200) Ri}i Φ Rjfj for i Φ j

From (185) and (200) we obtain

- 1).

(0 < % I

(0 =

( 0 <

S i
S i

i =

<

<

ί n

n
n

, —

- i )

- i )

1 ) .

(201)

We are now able to state

THEOREM 6. Under the conditions (186) let

(202) Rltl, i?2,2, , Rn-2,n-2

be any n — 2 of the n — 1 polynomials

- ^ 0 , 0 ? " j -Lk—l,k—U •* fc + l,/c + l> * " " • * » — l , w — 1 > (/C = 1 , , t t "

fee Modified Algorithm of Jacobi-Perron of the basis

i^^4; a{ — JX>i,n-ι~i-Lk,k J [i — L, ' , n — Δ) Q>n-i —

is purely periodic the length of the period is T = n(n — 1)
d > 1 and T = n — 1 /or d = 1. T%e period of length T = n
consists of one fugue its generator has the form

(205)

for

— 1

\Dk -

ΓΛ-e period of length n(n — 1) consists of n fugues the generator
of the first fugue has the form

Dk - A,i

(Dk - D^^d-1

Dk - Dn_2,n_2

Dk - Dn_%,n_%

(206a)

Dk - DM

The generator of the i -th fugue (i = 2, , n — 3) has the form
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(Dk - Duι

Dk - £._!

Dk - Dn^

(206b)

(Dk - i ) , . , , . ^ - 1

\Dk - DM .

The generator of the n — 2 -th fugue has the form

(Dk - A.i

Dk

T
(206c)

- A

The generator of the n — 1 -£& fugue has the form (205) ίλe genera-
tor of the n -th fugue has the form

(206d)

(Dk -

Dk -

- !>._,,,-,

Dk - DtΛ .

The reader should note that the generators (205) and (206a)-
(206d) consist of rational integers only. The differences Dk — Diri

(i = 1, , n — 1) are algebraic sums of natural numbers and since
d I Dk, d I Di,it so is d\Dk — Diti. One further notes that these
generators contain no zeros, since Pk<k Φ RiΛ and therefore Dk Φ DiΛ,

Proof of Theorem 6. We first make the following observation :
since, in virtue of (202), (203), we can have either

±k,k — -Lk,k —

we shall choose

(207)
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We shall now carry out the Modified Algorithm of Jacobi-Perron for
the basic sequence (204). We obtain from (204), since every factor
a\0) (i = 1, , n — 2) contains the factor Pktk, and in virtue of (199),

(208) 6J°> = 0; (i = 1, , n - 2) WU = Dk - Duι .

From (204), (208) we obtain, since RίΛ - (Dk - Dlfl) = w - Dk = Pkfk

(209) π(o) /,(o) _ τ> p
WΊ+i u l + i — -**Ί,w—2—i-L k,k 1

(0)
*

and from (209), in virtue of (4) and (201), (207)

(a? =
U

(i = 1, ••-,%- 3)

(210) Uίi, = R.-Un-ιPk,k/d ,

From (210) we obtain, since every αj1' (i = 1, , n — 2) contains the
factor P i > t > and in virtue of (199)

(211) 6I1' = 0; (i = 1, , Λ - 2) 6"!, = (Dk - D._ ι,._1)d-1 ,

and from (210), (211), since

{Rn-UnJd) - (Dk - D^^dd-1 = (w - D^d-1 = P,,^-1 ,

(211)
oίϊ, - feίΐ, = JBI,_3-i-B»-1,»-Λ,^-1 , (i = 1, , w - 4)

From (211) we obtain, in virtue of (4) and (201), (207),

if = R^n-^iRn-l.n-iPkJd , (ΐ = 1, , % - 4)

(212)

From (212) we obtain, since every αf (i = 1, , n — 2) contains the
factor Pfc.fc, and in virtue of (199)

(213) 6f» = 0; (i = 1, , n - 2) 6«it = Dk - £„_,.„_, ,

and from (212), (213), since Λ,_,,B_, - (i?» - i)n_2>n_2) = w - Dk = Pk,k
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(214)

/α<2> - δ<2> = R1,%.tRΛ^,<t.ιPk,t/d ,

aϊ^ - b{% = Rι,n^_iRn_1,n.ιPt,k/
π(2) _ r(2) — τ> P Id
Wn—3 Vn—3 — Λ β _ 2 , n ~ l-Γk,klU/ >

^(2) jL(2) _ T> P Id

From (214) we obtain, in virtue of (4) and (201), (207)

3> = Rl,n-4-iRn-3,n-lPk,kld , (ί = 1, , U ~ 5)

(215)
Λ-4 —

πi3} — J? P

(3) _
w—1 —

(216)

We ishall now prove the formula

a^ = Run-^t-iRn-t.n-fUd , (ΐ = 1, , tt - 2 - ί)

π(t) — P P Id

π{t) _ p P Id

π(t) — 7? p /// — -i . . . /• p \
^n — t + j — •Li/n—t,n—2—j-L k,k 1 \J — -1- > > ̂  ^ /

^ n —1 — ±\>n—t,n—t 9

\ί/ — O, , fί/ — 6 .

Formula (216) is correct for t — 3, in virtue of formula (215). Let
it be correct for t = m (m = 3, , n — 4). From (216) we obtain,
for t = m, since every α w ) (i = 1, , n — 2) contains the factor
Pk>k, and in virtue of (199),

(217) b^ = 0; (i = 1, ., n - 2) 6^\ - Dfc - !)._,„._„ ,

and from (216) (for t = m) and (217), since

Rn-»,n-» ~ (Dk ~ ί>-*fn-») = 117-2)* = P*ffc

(218)
ry(w) __ Zj(m) _ I") P Id

(w) . _ him) p
re — m + j v w — m + j •L*'n — m,n—2—o

, (i = 1, , n - 3 - m)

i = l, •• , m - 2 )

From (218) we obtain, in virtue of (4) and (201), (207)
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; m + 1 ) = RL,n-2-m-iRn-m-l,n-lPk,k/d J (ί = 1, , W — 3 — m)

(219)

π(in+i) p P Id

Usn—i—m — 1Λ"n—m—l,n—2Γk,klU/ f

n ( m + l) _ Γ> p

^ ( m + 1) _ D
XW'Λ—1 — •LX'n—m—l,n—m—l

(j = 1, «.,m - 1)

But (219) is formula (216) for t = m + 1, which completes the proof
of this formula. We now obtain from (216) for t = n — 3

(220)

π(n-3) _ p p
^ 3 + j — •L*'3,n—2—jjrk,k 1

-γ (•«. 3) P

\C6π_i — -tt3,3

From (220) we obtain, since every α^~3) (ί = 1, , n — 2) contains
the factor PA,Λ, and in virtue of (199)

(221) 6^-3) - 0; (i = 1, , n - 2) δ ^ ^ = Dk - A, 3

and from (220), (221), since P3,3 - (Dk - A,3) = w - Dk = Pkik

(222)

yίw—3) h(n—3)

U = !,'•-,n-S)

From (222) we obtain, in virtue of (4) and (201), (207),

Λn-2) _ p p ifJ. n(n-2) _ p p IJ

(223)
o}n-2) _ j ^ 2 n_2_.pk ki (j = i ... n — A) a{n~*] —

and from (223), since every a[n~2) (i = 1, , ̂  — 2) contains the
factor Pfc,fc, and in virtue of (199);

(224) ¥Γ2) = 0; (i = 1, . , n - 2) 6 ^ ) = £>* - A, 2 .

From (223), (224) we obtain, since R2>2 - (Dk - D2,2) = w - Dk = P,,/c ,

j{n-2) _ J(w-2) — ̂  P Id

"2 + j ^2+j Ή'2,n—2—j-Lk,k j \J -̂  J y ' ^ ^*/

(225)

and from (225), in virtue of (4) and (201), (207)
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'αί l i β ) = Run-t

(226)

Here we are making use of the notation (37) u; v = u(n — 1) + v.
In virtue of formulae (208), (211), (213), (217), (224) the first n-1
supporting sequences of the algorithm form a fugue which has the
form of the first fugue as demanded by Theorem 6.

From (226) we obtain, since every α{1:0) (i = 1, , n — 2) has
the factor Pkιk, and in virtue of (199)

(227) 6Γ'0) - 0; (i = 1, , n - 2) b™ = Dk - Duι ,

and from (226), (227), since R1Λ - (Dk - Duι) = w - Dk = Pk,k ,

ίπ{u0)

(228)
f w - 3 )

l<e°> - b^i = p k Λ .

From (228) we obtain, in virtue of (4) and (201), (207),

m ) = Λ L . - W Λ - L . - Λ , * . (i = 1, , » - 3)

(229) \a™l = Λ._1,._Λ,4 ,

and from (229), since every a[ul) (i = 1, , n — 2) contains the
factor Pkιk, and in virtue of (199),

(230) 6Γ> = 0; (i = 1, , n - 2) δίfi\» = Z)» - £)._,,._, .

From (229), (230) we obtain, since #»_!,„_! - (D* - Z>»_i,._i) = w - Dk =

/7 ( 1 ; 1 ) — /) ( 1 ; 1 ) — 7? P

Λ ( i ; i ) Λ^1"'1) — P

and from (231), in virtue of (4) and (201), (207)

(232)

- 4)

F r o m (232) w e o b t a i n , s ince e v e r y α | 1 : ί > ( i = 1, ••,» — 2) c o n t a i n s
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the factor PkΛ, and in virtue of (199) ,

(233) 6P> = 0; (i = 1, , n - 2) 6»i» = (Z>4 - Dn_2,n.2)/d ,

and from (232), (233), since

- ({Dh - Dn_2,n_2)/d) = (W- Dk)/d = PkJd ,

(234)

345

aft? - &ίϊ? = Λi..-wΛ.-,,._ii>*.t/d , ( i = 1, , n - 5)

(ί;2)

From (234) we obtain, in virtue of (4) and (201), (207) ,

αf3) - Run-t-jR^n-fjcJd , ( i - 1, , n - 5)

(235) \a^+s = Rn^,n-sPk,Jd , (β = 1, , 3)
,,(1:3) _ τ>

From (235) we obtain, since every αί1;3) (ΐ = 1, •••,« —2) contains
the factor PkΛ, and in virtue of (199),

(236) δί1;3) = 0; (i = 1, , n - 2) 6»i3' = 2?4 - £„_,,„_, ,

and from (235), (236), since Λ,_,,,._, - ( ΰ , - iVs^-s) = w - Dk = Pk,k

'αίl5S) - &ίlι3> = Λi,.-^.-..._Λ,*/d ,

¥5' - δίi J' = Run-s-iRn-^-^Jd , ( i = 1 , . - , » - 6)

^ , - 6«i«+. = Λ»_,,._Λ,*/d , (β = 1, 2, 3)
(237)

From (237) we obtain, in virtue of (4) and (201), (207),

(238)

f4) = i

(s = 1, 2, 3)

Λ(i;4) — /? p

«( i ;4 ) _ τ>
^n—ί — •L*>n—4,n—4

We shall now prove the formula

(239)

<•" = R1,n-1-t-jBn-t,n-ιPkJd , (j = 1, , n - t - 2)

αi,1!1,'.^. = Λ»_«,»_.P*,*/d , (β = 1, 2, 3)

αi'lV+i+u = Rn-t,n-%-uPk,k , (« = 1, , ί - 3)

ί = 4, , w — 3 .
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Formula (239) is correct for t = 4, in virtue of (238). We presume
(239) is correct for m ̂  4, i.e.,

(240)

a0 ' — ICί,n-l-m-j-Kn-m,n-l*k,k/U' 1

π(i;m) — 7? P
^n—m + i+u — •L*"n—m,n—Z—uJrk,k J

i = 1, , n — m — 2)

(s = 1, 2, 3)

(w = 1, , m — 3)

I — J-*/n—m,n—

From (240) we obtain, since every αj l ί w ) contains the factor P ^
(i = 1, . . . f n — 2), and in virtue of (199)

(241) b^m) = 0; (i = 1, . , n - 2) 6i1iT) = D* - £>M,._™ ,

and from (240), (241), since

Rn-m,n-m ~ (Dk - Dn_m>n_m) = W - Dk = Pkfk ,

(242)

αίϊ f - ί̂ + r5 = Rl,n-»-2-iRn-«,n-lPk,k/d , (^ - 1, , 71 ~ 7Π ~ 3)

m,n-s*k,k/a \ b ~ LJ ΔJ ύJ

«, -^.-P*,* » (M = 1, , m - 3)

jd m) —
υn-m-2+s ~

n— l — Un—l — -*-k,k

From (242) we obtain, in virtue of (4) and (201), (207),

(243)

(l;m+l) _ Έ> ID P
' i — •LXΊ,n—m—2—j L*"n—m,n—lrk

w-m-3+s — I*'n-m-l,n-sjrk,kla >

(i;m + i) p p
'ίi—m + u — •L^n—m—l,n—Z—ujrk,k >

(l m + l) _ D
Ti — 1 • z l / % — m — ί , n — m — 1

= 1,

= 1, .

- m - 3)

= 1, 2, 3)

. . , m — 2)

Substituting m + 1 for £ in formula (239) we obtain formula (243)
which completes the proof of (239).

From (239) we now obtain for t = n — 3 ,

(244)
Λ ( i ;w-3) _ D p
^ f ί t — 2^3,w—3—u1 k,k >

and from (244), since every αί1;%~3) (i = 1,
factor Pktk, and in virtue of (199)

(246)

(d;w-3) Jd w-3) _ _

d w—3) ϊvd w—3)

— 0

(s = 1, 2, 3)

& = 1, , n — 6)

2) contains the

(s = 1, 2, 3)

(u = 1, . - . , » - 6)
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From (246) we obtain, in virtue of (4) and (201), (207)

/̂ (i;%—2) __ β P Id

(OΛΠ\ J/ϊ(i;«-2) — 7? P Id

\^CiL±i J Λ(*3 — J'-*'2,n—3-*- k,kl^ y

a{

z%Z~2) = R2,n-z-uPk,k y (v, = 1, , n — 5)

From (247) we obtain, since every ail;n~2) (i — 1, , n — 2) contains
the factor Pkyk, and in virtue of (199)

(248) δί 1:*-8) = 0; (i - 1, , n - 2) 6ίίiwr2> = Dk - D2>2 ,

and from (247), (248), since

#2,2 — (Dk ~ D2y2) = w - Dk = Pk>k

(249)

— T? P Id
— 112,71-2* k,kIa i

(i;.-2,

{i:n-2) J.d n—2) —
2 ~ " O

(ί;n-2) ^(l w-2) _ Γ> Ώ Id
3 — Oz — J^2tn-^k,kla i

(lln-2) __ Zj(l;w-2) _ r> p
S+i ^3+1 — •L*'2,n—Z—irk,k 1

(Un-2)
w—1 w—1

From (249) we obtain, in virtue of (4) and (201), (207) ,

(250)
(i = 1, - 4)

In virtue of formulae (227), (230), (233), (236), (241), (248), the n - 1
supporting sequences, starting with the n -th sequence of the
algorithm, form a fugue which has the form of the second fugue as
demanded by Theorem 6.

The proof of Theorem 6 is essentially based on the following

LEMMA 2. // the generating sequence

α ί t ϊ 0 > ; ( ΐ = l , - . . , r a - 1; ί = 1,

has the form

(251) at+j — jχlyn_ί_t_jrkyk ,

,n-4)

i = 1, - ί - 2)

ί/ie n — 1 supporting sequences
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. ftt s) (β = 0 , 1 ,

/orm α fugue which has the form of the t + 1 -ίfe fugue as demanded
by Theorem 6, cmc£ ί&β generating sequence

(ί+l;θ) (t+i\0)

/orm (251) where t is to be replaced by t + 1.

Proof. The Lemma 2 is correct for t = 1, as can be easily
verified by the formulae (226), (250) and the remark following formula
(250). We shall presume that the Lemma 2 is correct for t = m — 1
(m ^ 2) and shall prove its correctness for t + 1 = m. We obtain
from (251), on ground of the second statement of the Lemma 2 (viz.
f or t + 1 = m)

(252) J ~(ra;O) r> p
Λ^m + j —-^l^—l—m—j^kyk 1

(i = 1, . ,m)

i = 1, . . . , rc - m - 2)

α- (m O) —

From (252) we obtain, since every α< m;0) (i = 1, , n — 2) contains
the factor Pktk, and in virtue of (199)

(253) 6ίm;0) = 0; (i = 1, . ., n - 2)

and from (252), (253), since i2 l f l - (Dk

(254)
«(w;0) k(m;o) __

/y(w O) Z)(m;θ) _
am+j Om+3 —

π(m;0) _ jL(*;o) =

— JJ1}1

(i = 1, « , m - 1)

(i = l , . . . , w - m - 2 )

From (254) we obtain, in virtue of (4) and (201), (207),

(m,D _ RUn_2_iRn__un_1pkik/d , (i — 1, , m — 1)

(255)
U - 1, , n - m - 2)

From (255) we obtain, since every alm'Λ) (i = 1, , n — 2) contains
the factor Pfc,fc, and in virtue of (199) ,

(256) blm'Λ) = 0; (ΐ = 1, -, n - 2) 6 ^ υ = Dk - Dn^1>n^ ,

and from (255), (256), since

Rn-l,n-l ~ (Dk — Dn-l,n-ί) = W — Dk — Pkfk ,
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ΐ f - ftίTl11 = Rl,n-S-iRn-Un-lPk,k/d . (l = 1, , »» - 2)

<257) -j αίΓJίV, - δ^ίV. = Λ1,.-i-«_ίΛ,-i.^.1P».*, (j = 1,-• ,n-m-2)

Q"n—2 On—2 — •**«—l,tι—l-*^k,k 9

n(m;ί) ΪJro l) _ p

^ί l —1 y f t - l x fc,fc

From (257) we obtain, in virtue of (4) and (201), (207),

/αjm;2) = RUn-3-iRn-2,n-iPk,k/d , (ΐ = 1, , m — 2)

β « n — 2 + i = : : : •Kl,n—l—m—j-Kn—2,n—l*k,k f \J=*-i°°°i/M/ ^ •"/

\ώOθ) Ί«-n-3 — K>n-2,n-l±k,k 9

We shall now prove the formula

(259)

ίarΛ) - Ri.n-i-t-Jtn-t.n-iPk.Jd , (i = 1, - , m - ί)

αiίiίVi = Ri,n-l-m-jRn-t,n-lPk,k , (j = 1, ' ' ' , U ~ Wl - 2)

&T-t-2+u = Rn-t,n-u-LJc,k 9 V^ ~ •*•> * " * > ^)

«(m;ί) _ D
^ n — l — £X"n—t,n—t 9

t = 1, , m — 1 .

Formula (259) is correct for t — 1,2, in virtue of formulae (255),

(258). Let it be correct for t = s ^ 2, i.e.,

(260)

(Li""s — Klfn_1_s_iKn_Sfn_1rk>k/d , (i — 1, , ifϊi s)

βim s) __ Jβ J£ p (jz=z\ % Wl 2)

a (m\S) P ~D ini 1 . . . Q\

n—s—2+u — J-^n—s,n—u-Γk,k 9 V^ — ±9 9 ύ /

n(m;s) _ p

From (260) we obtain, since every α | m ; s ) (i = 1, •••,% — 2) contains

the factor P i > f t > and in virtue of (199),

(261) br °> = 0; (i = 1, , n - 2) 6£i«> = i ) » - £>„_,,„_, ,

and from (260), (261), since # B _ S > K _ S - (Dh - Z>π_s,B_β) = w - Dk = Pk,k,

(262)

s) ϊv(w s) — p p P / / 7 /'V — 1 . . . /yw o 1 "\
— ί^l + i — * * Ί , i i — 2 — s— i -*-*n—s,n I-*- k,kl^/ 9 \ ̂  — J > " ^ " /

α (m s) /v(w s) —

»—s—2+w vw—s—2+1* — -

α ^ \ s ) - 6L-:is) = Pk,k .

From (262) we obtain, in virtue of (4) and (201), (207)
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(263)

(arS+1) = Run-Z-s-iRn-^s.n-lPkJd , (i - 1, , 7Π - 8 ~ 1)

α^/i+M = Rn-l-s,n-uPk,k j (^ = 1, , S + 1)

κ^n—1 J^n—1—s,ίi—1—s

But (263) is formula (260) where s is to be replaced by s + 1; this
completes the proof of formula (259),

We now obtain from (259), for t = m — 1,

(264)

*

( - , Π - 7YI ~ 2)

= 1, , m - 1)

From (264) we obtain, since every αiw ; m~1 } (ΐ = 1, , n — 2) contains
the factor Pktk, and in virtue of (199),

Oi — U, ^ — 1, , 71 — Δ)

and from (264), (265), since

(266)

n{m\m—l) Î ίm m—1) p p P //7

^(m m—1) "U{m\m—1) D

From (266) we obtain, in virtue of (4) and (201), (207),

n(m;m) _ p T> p
Wj — •L*'l,n—l—m — j J *'n—m,n—l-L k,k >

^w — l — ±*"n—m,n—m

i = 1, •-., n - m - 2)

(u = 1, . . . , m )

From (267) we obtain, since every α m ; m ) (i = 1, , n — 2) contains
the factor Pkfk, and in virtue of (199),

(268) 6 ί " ) = 0; (i = 1, , n - 2) δ ^ = 2?4 - D - » f — ,

and from (267), (268), since Rn^m>n.m - (Dk - Dn_m,n_m) = w - Dk =

± k , k y
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aL υ i — ^Un~2-mr^n-m,n-\.rk,k 1

(269) αίί?} ' bin*' = Bi,,-*-M-jR»-M.^-iPk,k, U = 1, ' . n - m - 3)

a (m;m) (m ra) ~D T) /ηl

α (m w) ~L{m\m) Γ)

N n — 1 "n — l — -L k,k

From (269) we obtain, in virtue of (4) and (201), (207) ,

7(m;m+l) = Rl.H-t-n-jRn-n-Un-lPkJd , (j = 1, , Π ~ M ~ 3)

(270) W^JZ^U = Rn-m-l,n-uPk,k/d ,

and from (270), since every α^m;w+1) (ί = 1,
factor Pkfk, and in virtue of (199),

(271) 61m;m+1) - 0; (i = 1, . . . , n - 2) 6^* + l ϊ

From (270), (271) we obtain, since

(272)

(u = 1, •••, m + 1)

, n — 2) contains the

- Dn_m_ll%_M_1)/d .

( i = 1, . . . , w - m - 4)

α ^ - ΐ i . - b^-^lu = Rn-m-Un-uPkJd , (U = 1, , Tϊl + 1)

~(ra;m + l) ϊv(m;m + l)

\dn-i ~ Vn-l —

and from (272), in virtue of (4) and (201), (207)

(273) • a^Z-lXu = Rn-m-2,n-UPk,k/d ,
β(m;m + 2) _ -β

, U ~ 7Π ~ 4)

= 1, , m + 2)

From (273) we obtain, since every aίm*m+2) (i = 1, , n — 2) contains
the factor Pfcffc, and in virtue of (199),

(274) 6ί— ̂  - 0; (i - 1, , n - 2) δi«+ 2> = JD4 - i )^ m _ 2 , ._ w _ 2 ,

and from (273), (274), since

tin-m-2,n-m-2 \J-^k ~ -LJn-m-2,n-m-2) = W ~~ Dk = Γu,k i

,π(m\m+2) Zj(w;m+2)

(m;m+2) ^(m m+2)

(275)
_ r> P Irl
~ •Lln-m-2fn-wtrk,kja

2)
Z)(m;m+2) _
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From (275) we obtain, in virtue of (4) and (201), (207),

(m m+3) = R^^^.R^^^P^Jd , (j = 1, , U ~ ΎΠ - 5)

α££ί6

8l« = Rn-m-3,n-uPk,k/d , (u = 1, , m + 2)
(276)

n—TO—3,%—m—3

~ ( T O ; T O + 3 )

.W-w-1 —

We shall now prove the formula

a{rm+t) = Ri,n-»-i-t-ίRn-»-t,n-iPk,k/d , (i = 1, • , n - m - 2 - ί)

Ct-^_m_2—ί4-w — ^n—m—t,n—u-*-k,kl^/ 9 \™ — -̂  > > " ^ ~Γ ' " Z

ίθr7r7\ J r # ( w ' m + ί ) P P /Ό* — 1 . . . f 9\
^ύl I ̂  ΛCt'^,_ί^.j — ±\>n-.m — t,n—m~2—i-Lk,k 9 K" — •*-> > ̂  — ' " /

£ = 3, •••, w - m - 3

Formula (277) is correct for ί = 3, in virtue of (276). As before,
(277) is proved by induction.

We now obtain, from (277), since every a\m'm+t) (i = 1, - ,n — 2)
contains the factor Pktk, and in virtue of (199),

h(m\m + t) _ Λ. (A — 1 . . . /̂  _ O \ IΛm m + t) —
Ô  — U, ̂  — 1 , , ̂  — Δ) 0 % _ ! —

We further obtain from (278), for t — n — m — 3

(279)
TO + S+i — J-^3,n—m—2--ίjrk,k 9

(u = 1, « ,m + 2)

(i = f cl, •••, w - m - 5)

From (279) we obtain, since every a\m;w~3) (ΐ = 1, , n — 2) contains
the factor Pktk, and in virtue of (199),

(280) 6ί" -3> = 0; (i = 1, , n - 2) 6^Γ~3 = 2)Λ - A, 3 ,

and from (279), (280), since R3y3 - (Dk - D3,3) = w - Dk = Pk>k ,

(281)

(X>1 ' 0^ ' — •E*l,\-*-*Z,n—\-*-k,kld/ 9

^(m w-3) Ij(m;%-3) _ Γ> P //7
^ l + w ^ l+ί t — •L*'Z,n—u-Lk,klU/ 9

,(m;n—2)

0 i
p

itn-m-2-i-L k,k 9

(u = 1, . . . , r a + 2)

(i = 1, , w — m — 5)

From (281) we obtain, in virtue of (4) and (201), (207) ,

αjm;-«) = Rtιn_.pktk/d , (ΐ = 1, , m + 2)

(282) αίΓπi?^ = R2,n-m-2-iPk,k 9 U = 1, , n - m - 4)
(m w-2) _ p
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From (282) we obtain, since every aim;n~2) (i = 1, , n — 2) contains
the factor Pktk, and in virtue of (199),

(283) b{rn-2) = 0; (i = 1, , n - 2) 6£?r 2 ) = Dk - D2f2 ,

and from (282), (283), since R2y2 ~ (Dk - D2,2) = w - Dk = Pktk ,

(284)

fβ{m;n—2) ^(m;~2) __ J£ P Id

a (m;n—2) l>(m;n—2) — JD P Id (i — 1 . . mn Λ- 1 \
l+i — "i+z — L*/2,n-Ί-—i *-k,klU/ > \ ̂  — •*- y 1 *'^ > •*•/

u ' m + 2 + j ι um+2+3 — ±*/2,n~m—2—o± k,k 1 \J — XJ y ι v "*> * /

^ ( w ίi—2) Zv(m;%—2) p
V t tw-l ϋw—l ~-~ Γk,k

From (284) we obtain, in virtue of (4) and (201), (207)

(285) αLm

+

+i+i} = Kn-^-jPk.k

U

(i = 1, , m + 1)
(i = 1, , n - m - 3)

We note that formula (285) is obtained from formula (252) replacing
in the latter m by m + 1.
We further note that the n — 1 supporting sequences

b[m;s), δ^m;s), , b%Lf (s = 0, 1, , w — 2)

generate a fugue which has the form of the m -\- 1 -th fugue, as
demanded by Theorem 6. Thus the Lemma 2 is completely proved.

We now obtain, on ground of the lemma, and in virtue of formula
(251) for t = n — 3, since (251) is correct for £ + 1, too,

(286)

(w-3;0) __ (ί = 1, . . . , » - 3)

V^w-l — -^1,1

from (286) we obtain, since every αίB- 3 ; 0 ) (ΐ = 1, •••,» — 2) contains
the factor P A l f c and in virtue of (199)

(287) δ r 3 : 0 ) = 0; (i = 1, , Λ - 2) δM 3 1 0 ' = 2?* - A . i ,

and from (286), (287), since RιΛ - (Dk - Duι) = w - Dk = Pk>k ,

(288)

n(n~3;0) 3k(w-3;O) __ p
\CLn-i Vn-ί — -Lk,k

From (288) we obtain, in virtue of (4) and (201), (207),
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(289)

(i = 1, •.., w - 4)

Λ(w-3;i) — P P p

Λ(w-3;i) _ p p
^ n — 2 — •**'»—1,»—l* k,k 9

.W'w—l — ±X;n—l,n—l f

and from (289), since every α^~3:1) contains the factor PΛ>fc

(i = 1, , n - 2), and in virtue of (199)

(290) ί>r3 ; 1 ) = 0; (i = 1, , n - 2) δ ^ 3 ^ = Dk - D^-i .

From (289), (290) we obtain, sinceRn- l tn-i - (Dk-Dn_1>n_ι) = w-Dk = Pk>k

, n - 5)

Λί«-3;i) ΪJ(Λ-3;I) _ p p
^ 7 1 — 2 V 7 i — 2 — ±x'n—l,n—ljrk,k 1

and from (291), in virtue of (4) and (201), (207),

(αί-8!2> = Run-lr-iRn-2.n-lPk.kId , (i = 1,

(292) ^(w-3-,2) _ τ> τ> p ^(Λ-3-,2) _ p p
^ T C — 4 — -£*'1,1-1*'«—2,»—l-^ Jfc,fcι ^71—3 — •LX"n—2,n—lΓk,k 1

~(n—Z;2) p p /»(«—3;2) p
W'rj—2 — "^•'w—2,TO—2jrk,kt ^n—l — J^n—2,n—2

It is now easy to prove the formula

(293)

αί-8ϊ*> - Run-t-1-iRn-t.n-fk.kld , (i = 1, , W - ί - 3)

n(n—3;ίj T> T? P

αiV4Vi = Rn-t.n-jPk.k , 0" = 1, •-•,*)

κt — 1, , n — 4 .

Formula (293) is true for ί = 1,2, in virtue of (289), (292). It is
then presumed that (293) is true for m ;> 1 and proved, as before,
that it is correct for m + 1, too, which completes the proof of (293).
From (293) we obtain, since every αiw~3;<) (i = 1, , n — 2) contains
the factor Pktk, and in virtue of (199),

(294) bln~3U) = 0; (ΐ = 1, , n - 2) b^U) = Dk - Dn_Un_t ,

and further for t = n — 4,

[ » i — •tt>i,2-H'4,n-l-Lk,k/U/ >

(295)

(n-3;n-4) _
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From (295) we obtain, since every α^~3;%~4) (ΐ = 1, , w — 2) contains
the factor Pfc>fc, and in virtue of (199),

(296) &<•-»••-<> = 0; (i = 1, , n - 2) δ ^ - 4 * = Dk - D4,4 ,

and from (295), (296), since R4>4 - (Dk - D4>4) = w - Dk = Pk}k ,

3 ; Λ - 4 ) _ 3 ? p Z ' ^ — 1

From (297) we obtain, in virtue of (4) and (201), (207),

(298) α£78ϊ*-3) = R^-j
Λ(n-3;tt-3) _ f>
α Λ-l — -^3,3

( i = 1, , n - 3)

From (298) we obtain, since every a[n~3;n~3) (i = 1, , n — 2) contains
the factor Pk}k, and in virtue of (199),

(299) δί-*"-^ = 0; (i = 1, , n - 2) bϊs?*-* = Dk - D3,3 ,

and from (298), (299), since i?3,3 - (Dk - A,3) = w - Dk = Pktk,

(299a)

(«-3;n-3) JJ(Λ-3;Λ-3) _

k(n—3;rc—3)
= Rs,»-iPk,k 9 U = 1 , • • - , * & - 3 )

, — 1 ' ^ 7 1 — 1 ' ~ -Lkyk »

From (299a) we obtain, in virtue of (4) and (201), (207) ,

(α^-3 ; %-2 ) _ % .pfc Jd , (j = 1, , n — 2)

( 3 0 0 ) {n_,,n_2) _

and from (300), since every af~^n~2) (j = 1, , ̂  — 2) contains the
factor P ^ , and in virtue of (199),

(301) &(-*-*> - 0; (ί = 1, , n - 2) δϊL-Sϊ-2> = (Z>* - A,?)/ώ .

From (300), (301) we obtain, since (R2f2/d) - ((Dk - D2y2)/d) = Pk,k/d,

(302)

^1 ^1

Ί{n—Z\n—2) Λ(w—3;n—2)

and from (302), in virtue of (4) and (201), (207),

(303)
τ(w-2;0) _
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Formulae (287), (290), (294), (299), (301) show that the n - 1 support-
ing sequences

Iv(»-3;fc) JMw-3;fc)
01 * °2 > - υ, 1, *, 71 — Δ)

form a fugue which has the form of the n — 2 -th fugue as demanded
by Theorem 6.

From (303) we obtain, since every α^~2;0) (j = 1, , n — 2) con-
tains the factor Pktk, and in virtue of (199)

(304) bϊ"-^ = 0; (ί = 1, , n - 2) &£r*°> = Dk - Dίtl ,

and from (303), (304), since Rltl - (Dk - Duι) = w - Dk = Pkfky

jr(»-2;0) ^(n-2;0) _

(305)

From (305) we obtain, in virtue of (4) and (107), (108) ,

(308) Cfc 2 : 1 ) = Rn-l,n-lPk,k ,
r*{fi—2;1) ~D

It is now easy to prove the formula

, ^ - 3)

(307)
/γ(w—2;ί) T> p
W'ίi—2—t + i — -Li/n—t,n--iJ- k,k

U"n~l — •Ll'n—t,n—t i

t = 1, .- , n - 3 .

Formula (307) is correct for t = 1, in virtue of formula (306), (307)
is then proved by induction.
From (307) we obtain, since every αiw"2 ; ί ) (i = 1, , w - 2) contains
the factor PΛfJfe, and in virtue of (199),

(308) 6^-2;ί) = 0; (ί - 1, , n - 2) δ^i 2 ; ί ) = £>A - !>-,,*-, ,

and further from (307), for t - n - 3 ,

(309) (i = 1, , w - 3)

From (309) we obtain, since every α^-2:*~3) (i = 1, . . . ,
tains the factor Pfc,fc and in virtue of (199),

— 2) con-

(310) δ ί - * -a> = 0; (i - 1, , n - 2) ^ n " 3 ) = £>* -
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and from (309) (310), since R3tZ - (Dk - D9tZ) = w - Dk = Pk>k ,

(w—2;n—3) Z.(w—2;%—3) __ JD JD ί ί = 1 W 3)

(%—2\n—3) Zj(%—2;w—3) T>

From (311) we obtain, in virtue of (4) and (201), (207),

γ(»—2;Λ-2) _ p
(312)

and from (312), since every α|w~ 2 ί l~ 2 ) (ΐ = 1, •••, w — 2) contains the
factor PA, f c, and in virtue of (199),

(313) &{—*—2> = 0; (i = 1, . . , n - 2) δ ^ 2 5 — 2 > = Dk - D2,2 .

From (312), (313) we obtain, since R2>2 - (Dk - D2y2) = w - Dk - Pktk,

(314)

/ (% 2*%—2) X\(n~2\n 2) ~D ~D
&L 0 1 = = Ή'2>n_ιJΓktk ,

y(w—2;w—2) Zj(%—2;%—2) D p

y(w—2;%—2) ~L(n—2;n—2) T>

and from (314), in virtue of (4) and (201), (207),

(315)
αί- l ί 0> -

, Ύl — O)

(i - 1, ., n - 2)

α£lls0> = RJd .

Formula (304), (308), (313) show that the n — 1 supporting sequences
fyn-2jo (i — x^ . , . n __ ι^ A; = o, 1, , w — 2) form a fugue which has
the form as demanded by Theorem 6.

From (315) we obtain, since every αl*~1:0> (i = 1, , n — 2) con-
tains the factor Pktk, and in virtue of (199),

(316) &r i : 0 ) - 0, (i = 1, , n - 2) δ£ϊlϊ0> - (D, - A,i)/d ,

and from (315), (316), since (RJd) - ((Dk - Dlfl)/d) = (w - DΛ)/d = Pktk/d9

^ Ί + ΐ ^ l + i — •c^iyn-2-ί-Lk,k!a J \l ~ L, , Ύb —

From (317) we obtain, in virtue of (4) and (201), (207),

(318)
(n-VΛ)

From (318) we obtain, since every α|n"1 : 1 ) (i = 1, , n - 2) contains
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the factor Pkyk, and in virtue of (199),

(319) δί- 1 : 1 ) = 0, (i = 1, , Λ - 2) b£?Λ) = Dk- Dn_Un^ ,

and from (318), (319), since R^,^ - (Dk - Dn_Un^) = w - Dk = Pk,k,

(320)
«(»-l;l) h(n-l) _ p p P Id

^(TO-I I) Zv(ίi-l l) _ p P Id

π(n-l;l) IV(Λ-I I) _ p

,n- 4)

From (320) we obtain, in virtue of (4) and (201), (207),

(321)

4)

π{n~l\2) _ r> p
^ί i—3 — -^m—2,%—2^ Ar,Jfe >

π(n-l\2) _ p
^ w — 1 — •Lifn—2,n— 2 >

and ifrom (321), since every αίn"1 ; 2 ) (i = 1, , n — 2) contains the
factor Pktk, and in virtue of (199),

(322) 6i-1;2> - 0; (i = 1, . , n - 2) b^1'^ = Dk - Dn_2,n_2 .

From (321), (322) we obtain, since Rn_2tn_2-(Dk-Dn_2,n_2) =w -Dk =Pk)k,

(323)

•~{n—l;2) Zv(τι—1,2) ~D ID Ό I rj
W-i O] — JΛ,ι,n-l-K>n-2,n-l-L k,klU >

Λ(«-i;2) ΪJ(Λ-I;2) _ p P Id
Usn—3 Vn—3 — JΛ'n—2,n—lΓk,klUj 1

CLn—2 ' ^»—2 ' " -^n—2,n—2-^kfk >

and from (323), in virtue of (4) and (201), (207),

(324)

(ί = 1, , n - 5)

α«
^-(Λ—i;3) __ p P ' (X(w~1;3) = i2 P '

It is now easy to prove the formula

a i - 1 : 0 - Run-t-iRn-t,n^Pk,kld , (i = 1, , tt - 2 - ί)

(325) p
Λ—t,n—1—jΓ k,k

\Z =z of , lit o



UNITS OF AN ALGEBRAIC NUMBER FIELD OF DEGREE n ̂  2 359

Formula (325) is correct for t = 3, in virtue of formula (324), (325)
is then proved by induction.

From (325) we obtain, since every aϊ-n~ut) (i = 1, , n — 2) con-
tains the factor Pktk, and in virtue of (199),

(326) bi-ut) = 0; (i = 1, ., n - 2) bE?" = Dk - 2?,-*,.-* ,

and further from (325), for t = w — 3,

(326a)

y(Λ—l w—3) _ _

γ(»-l;»-3) _

γ ( n — l w—3)

γ ( t t—l w—3)

. , n - 4)

From (326a) we obtain, since every c&jw~1:*-3) (i = 1, - . . , ̂  — 2) con-
tains the factor Pktk, and in virtue of (199),

(327) δί-^-3> = 0; (i = 1, , n - 2) &£;1;-3> - Dk - A,s ,

and from (326), (327), since J?3,3 - (Dk - D3,3) = w - Dk = Dk>k ,

(328)
n(n—Un—3) Iv(n —l w—3) Γ) T>
^2+3 u2+j — ±l/3,n—1 — ό Γ k,k j

~{n — l,n—3) Ivίw — l , w — 3 ) D
^ 1 ^ 1 — * kk

i = l, • - . , » - 4)

From (328) we obtain, in virtue of (4) and (201), (207),

(329)

[n—Un-2) _

i —

{n~l\n-2) _

+ ί —

(9i-i;w-2) _ r>

j = l f • . . , » - 3 )

From (329) we obtain, since every α<«-1;ίt-2) (i = 1, . . . , % — 2) con-
tains the factor Pkyk, and in vir tue of (199),

(330) &5—1=—*> = 0; (i = 1, , n - 2) 6^lnι;m-2) = Dk - ΌίΛ ,

and from (329), (330), since i?2,2 - (Dk - A > 2 ) = w - Dk = Pk>k,

(331)

(n-Un-2)
1

{n — l\n~2) l v ( w — I Λ — 2 )
~ ~ °l+ι ~ £ί2,n-l-3-Lk,k 1 \J — -Lj

From (331) we obtain, in virtue of (4) and (201), (207),

(332) ' ' " "'—'-•'- — ' J = l, ',n-
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Comparing formula (332) with formula (204), we obtain

(333) αf = a^0) = αί*(—1)} , (ί = 1, . , n - 1) ,

so that the Modified Algorithm of Jacobi-Perron for the basic sequence
(204) is indeed purely periodic with length of period T = n(n — 1)
for d > 1.

For d — 1 we obtain, comparing formula (226) with (204),

(334) αΓ = αΓ> - α*-1' , (i = 1, , n - 1) ,

so that in this case the Algorithm is purely periodic with length of
period T = n — 1.

Formulae (316), (319), (322), (326), (327), (330) show that the
n — 1 supporting sequences

ftn-l.k) Zjfw-l fc) . # . Un-i k) ytc — \J,

form a fugue which has the form of the n -th fugue as demanded
by Theorem 6. Thus, for d > 1, and from what was proved before,
the n(n — 1) supporting sequences of the Modified Algorithm of
Jacobi-Perron form n fugues of the form (206a)—(206d). In case d = 1,
they all have the form (205). By this Theorem 6 is completely proved.

The reader should note the necessity to presume n > n0, (n0 a
constant) while carrying out the proof of Theorem 6. The cases
n = 2, , n0 are easily proved separately by the same mothods used
for the proof of Theorem 6.

We shall now find units of the field K(w) by means of the
Modified Algorithm of Jacobi-Perron.

As Hasse and I have proved in our paper [16], a unit e of the
field K(w) is obtained from a periodic Jacobi-Perron Algorithm by
means of formula (190), viz.

S + T—1

e-1 = Π <% ,

where S and T denote, as before, the lengths of the pre-period and
period of the periodic Jacobi-Perron algorithm respectively.

It is one of the most striking and basic properties of any periodic
algorithm G with integral supporting sequences

b^ , (ΐ = l, .-•,*&-1; v = 0,1, •..)

b{i] rational integers, that formula (190) holds for this general case
of the G. The proof of this statement is not too complicated and
follows exactly the lines of the methods used in [16], though certain
additional results are necessary (see, for example, my paper [12]).
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We then obtain from (190), since in our case again S = 0, T — n(n — 1)
for d > 1, as in (191),

%{n—1)— 1 n—1 %—2

-1 = Π oi Λ = Π Π αl'lr1

v=0 i=0 k=0

Now it is not difficult to verify, following up the various stages of
the proof of the Modified algorithm of Jacobi-Perron, that the relations
hold

(335)
Π <er1)+*> = Rlt.-Jd , (i = 0,1, , n - 3, n - 1)
ft=0

n—2

Π /7((»-2)(»-l)+A;) _ E>
Ce-w—i — -Ll>ι,n~l

We thus obtain from (191), in virtue of (335),

(336) ejΓ1 = (RUn_,Yld*-1 .

From (201) we obtain 1/Bltn^ = i?o,o/^, and, since i20>0 = Rktk ,

(337) Rί>n^ = d/Pk,k .

From (336), (337) we now obtain

or

(338) ek =
 (w ~Ί

Dk)n (k = 1, • , n - 1) ,
d

so that with (196), (338) Theorem 5. is now completely proved by
means of the Modified Algorithm of Jacobi-Perron, since (338) in-
cludes the case d = 1, too.

The n — 1 units β0, eu , en_2 are all different, since Dk > D& + 1

(& = 0,1, , n — 2). It is proved below that they are independent
(see the Appendix by Hasse) in the sense that there cannot exist an
equation of the form

e?°e?i e%Li* = 1 ,

where the ao,a19 , an_2 are rational integers not all equal zero.

Concluding we shall illustrate (338) by a numeric example. Let
the GP be a fourth degree polynomial

f(x) - (x - 10)(a? - 6)(a? - 2)(x + 4) - 2 - 0

f(w) = 0; 10 < w < 11

Do = 10; A = 6; D2 = 2; D3 = - 4 ; d - 2

w is a fourth degree irrational.
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We obtain from f(w) — 0:

w* - 14w3 + 20w2 + 248w - 482 = 0 ,

w' = 14w3 - 20w2 - 248w + 482 .

Thus

(w - 6)4 = -10w8 + 19Gw2 - 1112w + 1778

(w - 2)4 = 6w3 + Aw2 - 280w + 498

(W + 4)4 - 30w3 + 76w2 + %w + 738 .

Substituting these values in (338) we obtain the independent units

e, = 5ws - 98w2 + 556^ - 889

e2 = 3^ 3 + 2w2 - UOw + 249

e3 = 15^3 + 38w2 + Aw + 369 .

Appendix* (By Helmut HASSE, at present Honolulu (Hawaii)).
In § 7 of this paper L. Bernstein, by applying a modified Jacobi-
Perron algorithm to suitable bases of a certain type of totally real
algebraic number-fields K of degree n ^ 2, obtained a system of n
algebraic units in K with product 1. I shall prove here under slightly
stronger conditions that every n — 1 of these units are independent.

The fields K in question are generated by a root w of a poly-
nomial of type

(1) f(x) = JlQ(x-Dv)-d,

where the Dv and d are rational integers, d ̂  1, satisfying the con-
ditions (184), viz.

( 2 ) Do > A > > Dn_x ,

( 3 ) Dv = Do mod. d ,

( 4 ) Do- A- ̂  2 φ * - 1) , (v = 1, , n - 1) ,

and in the special case d = 1 moreover the inequalities (19), viz.

(A - A ^ 2 or A - A ^ 4 for w = 3 ,

( 5 ) ] A - A ^ 2 or A - A ^ 3 or A - A ^ 3 or

( A - A, A - A S 2 for n = 4 .

In addition to these conditions I shall have to presuppose the in-
equalities

( 6) A*-i - D2k ̂  2 (2 ̂  2fc ̂  rc - 1)
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to be satisfied in the special case d = 1.
I shall prove

THEOREM. Let w be a root of a polynomial of type (1) whose
coefficients satisfy the conditions (2), (3), (4), (5), (6). Then the n
algebraic numbers

= (w -Dmγ ( m = o, 1, , n - 1)
d

are algebraic units with product

Π em = 1 ,

and every n — 1 of them are independent.

Proof, (a) By (3)

(w - DmY = ΐί (w - D.) mod. d ,

and by (1)

Π (w - Dv) =f(w) + d = d.

Hence

(w - Dm)n = 0 mod. d ,

so that the em are algebraic integers,
(b) By (1) their product

ffβ. = fftf-d* - DmY

Hence the em are algebraic units.
(c) According to Theorem 2, the generating polynomial f(x) has

w different real roots

(each of which may take the place of the above w), and the relative
position of these roots between and outside of the sequence (2) is
such that, for every fixed v, in virtue of the congruences (3)

- Dm I >

fd for all m Φ v except possibly one

—d for the possible exception m Φ V .

The possible exception occurs for one of the two Dm which
include w{v) (so far v > 0 and for even n also v < n — 1), and hence
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only for n ;> 3 (since for n = 2 both roots w(0), w(1) are excluded by
Do, A). From these inequalities it follows that the units

d

for every fixed v satisfy the inequalities

'dn-ιld = dn~2 for all m Φ v except possibly one

—dn~ι\d — —dn~2 for the possible exception m Φ v
Li Li

Since the exception does not occur for n = 2, and since in virtue of
the presupposition (6) the factor 1/2 may be dropped in the special
case d = 1, these inequalities imply throughout

I e™ I > 1 for m Φ v .

On the strength of the product relation then necessarily

I e™ i < l .

Now the polynomial f(x) is irreducible, as Bernstein derived at the
beginning of § 7 from Theorem 3. under the conditions (4). Hence
for each fixed m the e{Z] are the algebraic conjugates of em. Hence
by a well-known theorem of Minkowski1 the latter inequalities imply
that for any fixed pair m0, v0 the determinant

I l o g I e{Z] I \mφmQ,v^vQ =£ 0 .

From this it follows that every n — 1 of the n units em are in-
dependent.

Note. In spite of this very simple theory of the unit system
em, Bernstein's more lengthly subordination of these units under a
modified Jacobi-Perron algorithm by means of Theorem 6. seems to
me still to be of importance. "The more organic connection between
a unit in a field K and a periodic algorithm of a basis of K", as
Bernstein put it after Theorem 5, may be essential for attacking the
important question whether those units are fundamental units of a
ring (Dedekind order) in K. An answer to this question may lead
to lower estimates of the class number h of K2

2 See H. Hasse, Zahlentheorie, 2. Aufl., Berlin 1963; 28, 2, Hilfsatz.
3 Compare for this: H. Hasse, Uber mehrklassige, aber eingeschlechtige reel-

quadratische Zahlkoerper, Elem. d. Math. 20 (1965), 49-59.
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