ON UNIVERSAL TREE-LIKE CONTINUA

J. W. Rogers, Jr.

Abstract

R. M. Schori has conjectured that if T is a tree, but not an arc, then there is no universal T-like continuum. We show that if G is a finite collection of trees and there is a universal G-like continuum, then each element of G is an arc. It then follows that if G is a finite collection of one-dimensional (connected) polyhedra, and there is a universal G-like continuum, then each element of G is an arc.

1. Definitions. By a continuum here we mean a compact connected metric space; by a polyhedron, a nondegenerate (finitely) triangulable continuum. In a metric space, the distance between two points, A and B, is denoted by $d(A, B)$, and a similar notation is used for distances between points and point sets. The closure of a point set K is denoted by \bar{K}.

The point P of the continuum M is a junction point of M if and only if $M-P$ has at least three components.

A tree is a polyhedron that contains no simple closed curve. The point P of the tree T is an endpoint of T if and only if P is a noncutpoint of T.

The continuum M is an n-od if and only if n is a positive integer greater than 2 and there is a point P such that M is the sum of n arcs, each two intersecting only at P, which is an endpoint of both of them. If $P Q$ is one of the n arcs, then $P Q-P$ is called a ray of M.

If $\varepsilon>0$, a transformation f from a metric space X onto a space Y is called an ε-map if and only if f is continuous and if P is a point of Y, then $f^{-1}(P)$ has diameter $<\varepsilon$. The space X is Y-like if and only if there is an ε-map from X onto Y for each $\varepsilon>0$. If G is a collection of spaces, the metric space X is G-like if and only if for each $\varepsilon>0$, there is an ε-map from X onto some element of G [1].

2. Lemmas.

Lemma 1. If P is a junction point of the subcontinuum M of the continuum U, then there is an open set R in U containing P such that if R^{\prime} is an open subset of R containing P, then there is a positive number ε such that every $\varepsilon-m a p$ from U onto a tree, T, throws some point of R^{\prime} onto a junction point of T.

Proof. Since M, P has at least three components, $M-P$ is the sum of three mutually separated point sets, K_{1}, K_{2}, and K_{3}. For
each $i \leqq 3$, let P_{i} denote a point of K_{i}. Let R denote an open set in U that contains P but not P_{1}, P_{2}, or P_{3}, and suppose R^{\prime} is any open subset of R that contains P. Let ε denote a positive number less than the distance between any two of the sets $K_{i}-K_{i} \cdot R^{\prime}(i \leqq 3)$, and also less than $d\left(P_{i}, K_{j}\right)$, for $i \leqq 3, j \leqq 3, i \neq j$.

Now, suppose f is an ε-map from U onto a tree T. Since, if $i \leqq 3, \bar{K}_{i}$ is a continuum, $f\left(\bar{K}_{i}\right)$ contains an arc α_{i} from $f\left(P_{i}\right)$ to $f(P)$. If no two of these arcs intersect except at $f(P)$, then $f(P)$ is a junction point of T. If the arc α_{1} intersects the arc α_{2} in a point distinct from $f(P)$, let Q denote the first point of α_{2} on α_{1} from $f\left(P_{1}\right)$ to $f(P)$. Clearly, Q must also be the first point of α_{1} on α_{2} from $f\left(P_{2}\right)$ to $f(P)$. Hence the three $\operatorname{arcs},[f(P), Q]$ and $\left[Q, f\left(P_{1}\right)\right]$ on α_{1}, and $\left[Q, f\left(P_{2}\right)\right]$ on α_{2}, intersect only in the point Q, and Q is a junction point of T. Moreover, Q is a point of $f\left(R^{\prime}\right)$, since $f^{-1}(Q)$ intersects both K_{1} and K_{2}, but cannot intersect both $K_{1}-K_{1} \cdot R^{\prime}$ and $K_{2}-K_{2} \cdot R^{\prime}$.

A similar argument suffices in case some other pair of the arcs α_{1}, α_{2}, and α_{3} intersect in a point distinct from $f(P)$.

Lemma 2. If N is an n-od with junction point P, lying in a continuum U, there is a positive number ε such that if f is an ε-map from U onto a tree T with at most one junction point then (1) T is a j-od with junction point Q, and $j \geqq n$, (2) each endpoint of N is thrown by f into some ray of T, but no two into the same ray, and (3) if E is an endpoint of N and $f(P)$ lies in the ray of T that contains $f(E)$, then $f(P)$ lies in the arc in T from Q to $f(E)$.

Proof. By Lemma 1 there is an open set R in U containing P and a positive number ε^{\prime} such that (1) \bar{R} contains no endpoint of N and (2) if f is an ε^{\prime}-map from U onto a tree T_{0}, then $f(R)$ contains a junction point of T_{0}. Let P_{1}, \cdots, P_{n} denote the endpoints of N and, for each $i \leqq n$, let Z_{i} denote the ray of N that contains P_{i}. Let ε denote a positive number less than each of the numbers ε^{\prime}, $d\left(P_{i}, R\right)$, and $d\left(P_{i}, N-Z_{i}\right)$, for $i \leqq n$, and suppose that f is an ε-map from U onto a tree T with at most one junction point.

Since f is also an ε^{\prime}-map from U onto $T, f(R)$ contains a junction point Q of T. Hence T is, for some positive integer j, a j-od. Now, if $i \leqq n, d\left(P_{1}, R\right)>\varepsilon$ and Q is in $f(R)$, so $f\left(P_{i}\right) \neq Q$, and $f\left(P_{i}\right)$ lies in a ray of T.

Suppose i and k are two integers such that $f\left(P_{i}\right)$ and $f\left(P_{k}\right)$ lie in the same ray of T. The arc in T from $f\left(P_{i}\right)$ to $f\left(P_{k}\right)$ must contain $f(P)$, for otherwise either $f\left(Z_{i}\right)$ contains $f\left(P_{k}\right)$ or $f\left(Z_{k}\right)$ contains $f\left(P_{i}\right)$, neither of which is possible, since $d\left(P_{i}, N-Z_{i}\right)>\varepsilon$ and $d\left(P_{k}, N-Z_{k}\right)>\varepsilon$. But then if $m \leqq n$ and $i \neq m \neq k$, either (1) $f\left(P_{m}\right)$ lies in $f\left(Z_{i}+Z_{k}\right)$ or (2) $f\left(P_{i}+P_{k}\right)$ intersects $f\left(Z_{m}\right)$, neither of which is possible. So the
images of different endpoints of N lie in different rays of T, and $j \geqq n$.

Finally, suppose $i \leqq n$ and $f(P)$ lies in the ray W of T that contains $f\left(P_{i}\right)$, but $f(P)$ is not on the arc in T from Q to $f\left(P_{i}\right)$. Then $f\left(P_{i}\right)$ is on the arc in T from Q to $f(P)$. So, if $k \leqq n$, and $k \neq i$, then since $f\left(P_{k}\right)$ is not in $W, f\left(Z_{k}\right)$ contains $f\left(P_{i}\right)$. But $d\left(P_{i}, N-Z_{i}\right)>\varepsilon$.

Lemma 3. Suppose (1) $I_{1} ; I_{2}$; and I_{3} are the intervals in the plane with endpoints $(-1,1),(-1,-1) ;(-1,0),(1,0) ;$ and $(1,1),(1,-1)$, respectively, and (2) $H=I_{1}+I_{2}+I_{3}$. Then if T is any tree with at least two junction points, and $\varepsilon>0$, there is an ε-map from H onto T.

Proof. Let A and B denote the points $(-1,0)$ and $(1,0)$, respectively. Since T has two junction points, T contains an arc α whose endpoints, X and Y, are junction points of T, but no other point of α is a junction point of T. Let E denote the sum of all the components of $T-X$ that do not contain $\alpha-X$. Then E contains two mutually exclusive arcs β_{1} and β_{2} such that if $i \leqq 2$, then β_{i} contains no junction point of T, and one endpoint of β_{i} is an endpoint of T. If $i \leqq 2$, let Q_{i} denote the endpoint of β_{i} that is not an endpoint of T. Then $\left[E-\left(\beta_{1}+\beta_{2}\right)\right]+X+Q_{1}+Q_{2}$ is a tree.

Now, suppose $\varepsilon>0$. Let $C_{1} ; D$; and C_{2} denote the subintervals of I_{1} with endpoints $(-1,1),(-1, \varepsilon / 2) ;(-1, \varepsilon / 2),(-1,-\varepsilon / 2)$; and (-1 , $-\varepsilon / 2),(-1,-1)$, respectively. There is a continuous transformation g_{1} from I_{1} onto $E+X$ such that (1) if $i \leqq 2, g_{1} \mid C_{i}$ is a homeomorphism from C_{i} onto β_{i}, (2) $f(A)=X$, and (3) $f(D)=\left[E-\left(\beta_{1}+\beta_{2}\right)\right]+X+Q_{1}+Q_{2}$. Clearly, g_{1} is an ε-map. Similarly, there is an ε-map from I_{3} onto $[T-(E+\alpha)]+B$ which may be combined with a homeomorphism from I_{2} onto α to obtain an ε-map from H onto T.

3. Theorems.

Theorem 1. If k is a positive integer and G is a collection each element of which is a tree with not more than k junction points, but some element of G has two junction points, then there is no universal G-like continuum.

Proof. Suppose U is a universal G-like continuum. Then by Lemma 3, the continuum H defined in Lemma 3 is G-like, and so U contains a continuum H^{\prime} homeomorphic to H. Let T denote an element of G such that no element of G has more junction points than T, and let j denote the number of junction points of T. Let T_{0} denote the continuum obtained from T by replacing, with a pseudo-arc, each arc in T which is maximal with respect to the property that each interior
point of it is of order 2 , in such a way that T_{0} is T-like, and hence G-like. Again, U contains a continuum $T^{\prime \prime}$ homeomorphic to T_{0}.

Suppose that one of the junction points of H^{\prime} is not also a junction point of T^{\prime}. Then U contains at least $j+1$ points $P_{1}, P_{2}, \cdots P_{j+1}$ each of which is a junction point of a subcontinuum of U. By successive applications of Lemma 1, there is a positive number ε and a sequence $R_{1}, R_{2}, \cdots R_{j+1}$ of open sets in U such that (1) $d\left(R_{i}, R_{n}\right)>\varepsilon$, for $i \leqq j+1, n<j+1$, and $i \neq n$, and (2) if f is an ε-map from U onto a tree, T, then if $i \leqq j+1, f\left(R_{i}\right)$ contains a junction point, J_{i}, of T. Note that the points $J_{1}, J_{2}, \cdots, J_{j+1}$ must all be distinct; hence T must have at least $j+1$ junction points. But since U is G-like, U can be ε-mapped onto some tree in G, and no tree in G has $j+1$ junction points. Thus we have a contradiction, and both junction points, A and B, of H^{\prime} are also junction points of T^{\prime}.

So U contains both an arc from A to B, and a continuum (T^{\prime}) that contains A and B, but no arc from A to B. Since U is treelike, and so hereditarily unicoherent, this is impossible.

Thus, there is no universal G-like continuum.
Theorem 2. If G is a finite collection each element of which is a tree, and there is a universal G-like continuum, then each element of G is an arc.

Proof. Suppose some element of G is not an arc, but U is a universal G-like continuum. If some element of G has two junction points, then Theorem 1 is contradicted. Thus each element of G is an arc or, for some n, an n-od. Let n denote the greatest positive integer j such that G contains a j-od. Then U contains (1) an n-od N, and (2) a continum H which is the sum of n pseudo-arcs, all joined at only one point. By arguments used in the proof of Theorem 1 , the junction point, P, of N is also the junction point of H.

Let (1) ε_{1} denote a positive integer for the subcontinuum N of U as in Lemma 2, (2) ε_{2} and R denote a positive number and an open set in U, respectively, such that R contains P, and if E is an endpoint. of N, then $d(E, R)>\varepsilon$, and (3) C denote the component of $U \cdot R$ that. contains P.
\bar{C} is a subset of N, for suppose A is a point of \bar{C} not in N. Let ε denote a positive number less than $\varepsilon_{1}, \varepsilon_{2}$, and $d(A, N)$. Since U is G-like, there is an ε-map f from U onto an element T of G. Since $\varepsilon<\varepsilon_{1}$ we have, using Lemma 2, that (1) T is an n-od with junction point Q, (2) each ray of T contains the image of one, and only one, endpoint of N, and (3) there is an endpoint E of N such that $f(P)$ lies in the arc in T from Q to $f(E)$. Since $d(A, N)>\varepsilon, f(A)$ does not intersect $f(N)$, so there is an endpoint E^{\prime} of N such that $f\left(E^{\prime}\right)$
lies in the arc in T from Q to $f(A)$. Since \bar{C} is a continuum that contains A and a point of $f^{-1}(Q), f(\bar{C})$ contains $f(A)$ and Q, and so $f(\bar{C})$ contains $f\left(E^{\prime}\right)$. But since $d\left(E^{\prime}, C\right)>\varepsilon$, this is impossible.

Thus \bar{C} is a subset of N. Since the component C^{\prime} of $H \cdot R$ that contains P is a subset of C, \bar{C}^{\prime} contains an arc. But H itself contains no arc, and we have a contradiction.

Theorem 3. If G is a finite collection each element of which is a one-dimensional polyhedron, and there is a universal G-like continuum, then each element of G is an arc.

Proof. If some element of G contains a simple closed curve, then by a theorem of M.C. McCord [2, Th. 4, p. 72], there is no universal G-like continuum. So each element of G is a tree, and by Theorem 2 , each element of G is an arc.

We note that if each element of G is an arc, there is a universal G-like continuum [3].

References

1. S. Mardešić and J. Segal, e-mappings onto polyhedra, Trans. Amer. Math. Soc. 109 (1963), 146-164.
2. M. C. McCord, Universal \mathscr{T}^{-}-like compacta, Michigan Math. J. 13 (1966), 71-85.
3. R. M. Schori, A universal snake-like continuum, Proc. Amer. Math. Soc. 16 (1965), 1313-1316.
4. Universal spaces, Proceedings of the Second Prague Topological Symposium, 1966, 320-322.

Received November 18, 1968.
Emory University

