ON UNIVERSAL TREE-LIKE CONTINUA

J.W. ROGERS, JR.

R. M. Schori has conjectured that if T is a tree, but not an arc, then there is no universal T-like continuum. We show that if G is a finite collection of trees and there is a universal G-like continuum, then each element of G is an arc. It then follows that if G is a finite collection of one-dimensional (connected) polyhedra, and there is a universal G-like continuum, then each element of G is an arc.

1. Definitions. By a continuum here we mean a compact connected metric space; by a polyhedron, a nondegenerate (finitely) triangulable continuum. In a metric space, the distance between two points, A and B, is denoted by d(A, B), and a similar notation is used for distances between points and point sets. The closure of a point set K is denoted by \overline{K} .

The point P of the continuum M is a junction point of M if and only if M - P has at least three components.

A tree is a polyhedron that contains no simple closed curve. The point P of the tree T is an *endpoint* of T if and only if P is a noncutpoint of T.

The continuum M is an *n*-od if and only if n is a positive integer greater than 2 and there is a point P such that M is the sum of n arcs, each two intersecting only at P, which is an endpoint of both of them. If PQ is one of the n arcs, then PQ - P is called a ray of M.

If $\varepsilon > 0$, a transformation f from a metric space X onto a space Y is called an ε -map if and only if f is continuous and if P is a point of Y, then $f^{-1}(P)$ has diameter $< \varepsilon$. The space X is Y-like if and only if there is an ε -map from X onto Y for each $\varepsilon > 0$. If G is a collection of spaces, the metric space X is G-like if and only if for each $\varepsilon > 0$, there is an ε -map from X onto some element of G [1].

2. Lemmas.

LEMMA 1. If P is a junction point of the subcontinuum M of the continuum U, then there is an open set R in U containing P such that if R' is an open subset of R containing P, then there is a positive number ε such that every ε -map f from U onto a tree, T, throws some point of R' onto a junction point of T.

Proof. Since M - P has at least three components, M - P is the sum of three mutually separated point sets, K_1 , K_2 , and K_3 . For

each $i \leq 3$, let P_i denote a point of K_i . Let R denote an open set in U that contains P but not P_1, P_2 , or P_3 , and suppose R' is any open subset of R that contains P. Let ε denote a positive number less than the distance between any two of the sets $K_i - K_i \cdot R'$ $(i \leq 3)$, and also less than $d(P_i, K_j)$, for $i \leq 3, j \leq 3, i \neq j$.

Now, suppose f is an ε -map from U onto a tree T. Since, if $i \leq 3, \overline{K}_i$ is a continuum, $f(\overline{K}_i)$ contains an arc α_i from $f(P_i)$ to f(P). If no two of these arcs intersect except at f(P), then f(P) is a junction point of T. If the arc α_1 intersects the arc α_2 in a point distinct from f(P), let Q denote the first point of α_2 on α_1 from $f(P_1)$ to f(P). Clearly, Q must also be the first point of α_1 on α_2 from $f(P_2)$ to f(P). Hence the three arcs, [f(P), Q] and $[Q, f(P_1)]$ on α_1 , and $[Q, f(P_2)]$ on α_2 , intersect only in the point Q, and Q is a junction point of T. Moreover, Q is a point of f(R'), since $f^{-1}(Q)$ intersects both K_1 and K_2 , but cannot intersect both $K_1 - K_1 \cdot R'$ and $K_2 - K_2 \cdot R'$.

A similar argument suffices in case some other pair of the arcs α_1, α_2 , and α_3 intersect in a point distinct from f(P).

LEMMA 2. If N is an n-od with junction point P, lying in a continuum U, there is a positive number ε such that if f is an ε -map from U onto a tree T with at most one junction point then (1) T is a j-od with junction point Q, and $j \ge n$, (2) each endpoint of N is thrown by f into some ray of T, but no two into the same ray, and (3) if E is an endpoint of N and f(P) lies in the ray of T that contains f(E), then f(P) lies in the arc in T from Q to f(E).

Proof. By Lemma 1 there is an open set R in U containing Pand a positive number ε' such that (1) \overline{R} contains no endpoint of Nand (2) if f is an ε' -map from U onto a tree T_0 , then f(R) contains a junction point of T_0 . Let P_1, \dots, P_n denote the endpoints of Nand, for each $i \leq n$, let Z_i denote the ray of N that contains P_i . Let ε denote a positive number less than each of the numbers ε' , $d(P_i, R)$, and $d(P_i, N - Z_i)$, for $i \leq n$, and suppose that f is an ε -map from U onto a tree T with at most one junction point.

Since f is also an ε' -map from U onto T, f(R) contains a junction point Q of T. Hence T is, for some positive integer j, a j-od. Now, if $i \leq n, d(P_1, R) > \varepsilon$ and Q is in f(R), so $f(P_i) \neq Q$, and $f(P_i)$ lies in a ray of T.

Suppose *i* and *k* are two integers such that $f(P_i)$ and $f(P_k)$ lie in the same ray of *T*. The arc in *T* from $f(P_i)$ to $f(P_k)$ must contain f(P), for otherwise either $f(Z_i)$ contains $f(P_k)$ or $f(Z_k)$ contains $f(P_i)$, neither of which is possible, since $d(P_i, N - Z_i) > \varepsilon$ and $d(P_k, N - Z_k) > \varepsilon$. But then if $m \leq n$ and $i \neq m \neq k$, either (1) $f(P_m)$ lies in $f(Z_i + Z_k)$ or (2) $f(P_i + P_k)$ intersects $f(Z_m)$, neither of which is possible. So the images of different endpoints of N lie in different rays of T, and $j \ge n$.

Finally, suppose $i \leq n$ and f(P) lies in the ray W of T that contains $f(P_i)$, but f(P) is not on the arc in T from Q to $f(P_i)$. Then $f(P_i)$ is on the arc in T from Q to f(P). So, if $k \leq n$, and $k \neq i$, then since $f(P_k)$ is not in W, $f(Z_k)$ contains $f(P_i)$. But $d(P_i, N-Z_i) > \varepsilon$.

LEMMA 3. Suppose (1) I_1 ; I_2 ; and I_3 are the intervals in the plane with endpoints (-1, 1), (-1, -1); (-1, 0), (1, 0); and (1, 1), (1, -1), respectively, and (2) $H = I_1 + I_2 + I_3$. Then if T is any tree with at least two junction points, and $\varepsilon > 0$, there is an ε -map from H onto T.

Proof. Let A and B denote the points (-1, 0) and (1, 0), respectively. Since T has two junction points, T contains an arc α whose endpoints, X and Y, are junction points of T, but no other point of α is a junction point of T. Let E denote the sum of all the components of T - X that do not contain $\alpha - X$. Then E contains two mutually exclusive arcs β_1 and β_2 such that if $i \leq 2$, then β_i contains no junction point of T, and one endpoint of β_i is an endpoint of T. If $i \leq 2$, let Q_i denote the endpoint of β_i that is not an endpoint of T. Then $[E - (\beta_1 + \beta_2)] + X + Q_1 + Q_2$ is a tree.

Now, suppose $\varepsilon > 0$. Let C_1 ; D; and C_2 denote the subintervals of I_1 with endpoints (-1, 1), $(-1, \varepsilon/2)$; $(-1, \varepsilon/2)$, $(-1, -\varepsilon/2)$; and $(-1, -\varepsilon/2)$, (-1, -1), respectively. There is a continuous transformation g_1 from I_1 onto E + X such that (1) if $i \leq 2$, $g_1 | C_i$ is a homeomorphism from C_i onto β_i , (2) f(A) = X, and (3) $f(D) = [E - (\beta_1 + \beta_2)] + X + Q_1 + Q_2$. Clearly, g_1 is an ε -map. Similarly, there is an ε -map from I_3 onto $[T - (E + \alpha)] + B$ which may be combined with a homeomorphism from I_2 onto α to obtain an ε -map from H onto T.

3. Theorems.

THEOREM 1. If k is a positive integer and G is a collection each element of which is a tree with not more than k junction points, but some element of G has two junction points, then there is no universal G-like continuum.

Proof. Suppose U is a universal G-like continuum. Then by Lemma 3, the continuum H defined in Lemma 3 is G-like, and so U contains a continuum H' homeomorphic to H. Let T denote an element of G such that no element of G has more junction points than T, and let j denote the number of junction points of T. Let T_0 denote the continuum obtained from T by replacing, with a pseudo-arc, each arc in T which is maximal with respect to the property that each interior point of it is of order 2, in such a way that T_0 is T-like, and hence G-like. Again, U contains a continuum T' homeomorphic to T_0 .

Suppose that one of the junction points of H' is not also a junction point of T'. Then U contains at least j + 1 points $P_1, P_2, \cdots P_{j+1}$ each of which is a junction point of a subcontinuum of U. By successive applications of Lemma 1, there is a positive number ε and a sequence $R_1, R_2, \cdots R_{j+1}$ of open sets in U such that (1) $d(R_i, R_n) > \varepsilon$, for $i \leq j+1, n < j+1$, and $i \neq n$, and (2) if f is an ε -map from U onto a tree, T, then if $i \leq j+1, f(R_i)$ contains a junction point, J_i , of T. Note that the points $J_1, J_2, \cdots, J_{j+1}$ must all be distinct; hence T must have at least j+1 junction points. But since U is G-like, U can be ε -mapped onto some tree in G, and no tree in G has j+1 junction points. Thus we have a contradiction, and both junction points, A and B, of H' are also junction points of T'.

So U contains both an arc from A to B, and a continuum (T') that contains A and B, but no arc from A to B. Since U is treelike, and so hereditarily unicoherent, this is impossible.

Thus, there is no universal G-like continuum.

THEOREM 2. If G is a finite collection each element of which is a tree, and there is a universal G-like continuum, then each element of G is an arc.

Proof. Suppose some element of G is not an arc, but U is a universal G-like continuum. If some element of G has two junction points, then Theorem 1 is contradicted. Thus each element of G is an arc or, for some n, an n-od. Let n denote the greatest positive integer j such that G contains a j-od. Then U contains (1) an n-od N, and (2) a continum H which is the sum of n pseudo-arcs, all joined at only one point. By arguments used in the proof of Theorem 1, the junction point, P, of N is also the junction point of H.

Let (1) ε_1 denote a positive integer for the subcontinuum N of U as in Lemma 2, (2) ε_2 and R denote a positive number and an open set in U, respectively, such that R contains P, and if E is an endpoint of N, then $d(E, R) > \varepsilon$, and (3) C denote the component of U·R that contains P.

 \overline{C} is a subset of N, for suppose A is a point of C not in N. Let ε denote a positive number less than $\varepsilon_1, \varepsilon_2$, and d(A, N). Since U is G-like, there is an ε -map f from U onto an element T of G. Since $\varepsilon < \varepsilon_1$ we have, using Lemma 2, that (1) T is an n-od with junction point Q, (2) each ray of T contains the image of one, and only one, endpoint of N, and (3) there is an endpoint E of N such that f(P) lies in the arc in T from Q to f(E). Since $d(A, N) > \varepsilon$, f(A) does not intersect f(N), so there is an endpoint E' of N such that f(E').

lies in the arc in T from Q to f(A). Since \overline{C} is a continuum that contains A and a point of $f^{-1}(Q)$, $f(\overline{C})$ contains f(A) and Q, and so $f(\overline{C})$ contains f(E'). But since $d(E', C) > \varepsilon$, this is impossible.

Thus \overline{C} is a subset of N. Since the component C' of $H \cdot R$ that contains P is a subset of C, \overline{C}' contains an arc. But H itself contains no arc, and we have a contradiction.

THEOREM 3. If G is a finite collection each element of which is a one-dimensional polyhedron, and there is a universal G-like continuum, then each element of G is an arc.

Proof. If some element of G contains a simple closed curve, then by a theorem of M.C. McCord [2, Th. 4, p. 72], there is no universal G-like continuum. So each element of G is a tree, and by Theorem 2, each element of G is an arc.

We note that if each element of G is an arc, there is a universal G-like continuum [3].

References

1. S. Mardešić and J. Segal, ε-mappings onto polyhedra, Trans. Amer. Math. Soc. 109 (1963), 146-164.

2. M. C. McCord, Universal *P*-like compacta, Michigan Math. J. 13 (1966), 71-85.

3. R. M. Schori, A universal snake-like continuum, Proc. Amer. Math. Soc. 16 (1965), 1313-1316.

4. _____, Universal spaces, Proceedings of the Second Prague Topological Symposium, 1966, 320-322.

Received November 18, 1968.

Emory University