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POLYHEDRON INEQUALITY AND STRICT CONVEXITY

B. B. PHADKE

This paper considers convexity of functions defined on the
"Grassmann cone" of simple r-vectors. It is proved that the
strict polyhedron inequality does not imply strict convexity.

H. Busemann, in conjunction with others, (see [3]), has considered
the problem of giving a suitable definition of the convexity of func-
tions defined on nonconvex sets. An examination of various methods
of defining convexity on the "Grassmann cone" (see [1]) is found in
[2]. The most important open problems (see [3]) are whether weak
convexity implies the area minimizing property (also called the poly-
hedron inequality) and whether the latter implies convexity. A modest
result in this direction is proved below, namely, the strict area min-
imizing property does not imply strict convexity.

2* Basic definitions* Let a continuous function j ^ ~ be defined
on the Grassmann cone G> of the simple r-vectors R in the linear
space V* of all r-vectors R (over the reals). Let J^ be positive
homogeneous, i.e., ^{XR) = X^"{R) for λ ^ 0. To a Borel set F in
an oriented r-flat ^ ? + in the ^-dimensional affine space An, we as-
sociate a simple r-vector as follows: R = 0 if F has r-dimensional
measure 0, and otherwise R = vλ A v2 Λ Λ vr, is parallel to &+

and the measure of the parallelepiped spanned by v19 v2, * ,vr equals
the measure of F. (Note a set of measure 0 and equality of measures
in parallel r-flats are affine concepts and hence welldefined.) We de-
note below by & an r-flat parallel to an r-vector R passing through
the origin.

DEFINITION 1. We say that ^~ has the strict area minimizing
property (SFMA) if: Whenever Ro, Rίf , Rv are associated to r-
dimensional faces of an r-dimensional oriented closed polyhedron P
we have ^(-Ro) < Σ^~(Ri), with i = 1 to p, unless R{ = λA, X{ ^ 0
for all i = 1 to p (called the strict Polyhedron Inequality).

DEFINITION 2. ^~ is said to be strictly weakly convex (SWC)
if: Whenever R, Rx and R2 are simple, R = RL + R2ί Rι is not a
scalar multiple of R2, we have ^(R) <

DEFINITION 3. j ^ ~ is said to be convex (C) if there exists a con-
vex extension of j ^ ~ to F r

n.
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DEFINITION 4. ^ is said to be strictly convex (SC) if &~ is C
and if there is at least one convex extension F of J^ to V? which
satisfies the following property: Whenever R = ΣRi with R, R{ e V?,
R is not a scalar multiple of all Ri9 then F{R) <

In terms of these definitions we wish to prove below that: if
is SWC and C then it has the SFMA and that if ^ is SWC and
C it still need not be SC. This implies that the property SFMA is
weaker than the property SC.

3* Some algebraic facts* We collect below some algebraic facts
whicn are either known or are relatively easy to prove.

(a) Let Rι and R2 be simple vectors. Then Rt + R2 is simple if
and only if ^ and &2 intersect in a flat of dimension ^ r — 1.

(b) Identify r-vectors with points representing them in V? con-
sidered as an aίϊine space. If a line in Vΐ contains three points cor-
responding to simple vectors, then the entire line consists of simple
vectors. Put differently, if R1 and R2 are simple and R{ + R2 is not
simple, then the line joining Rx and R2 in V? does not contain any
simple vector other than jRx and R2.

Suppose next that Rlf R2 and R3 are simple but that Rι + R3 is
nonsimple for all i, j — 1 to 3 when i Φ j. Then we have the fol-
lowing:

(c) The set {R19 R2, R3} is a linearly independent set of vectors.
(d) The plane π containing ΔRγR2Rz does not contain any line of

simple vectors.
(e) The flat Ω spanned by the origin, R19 R2 and R3 does not con-

tain a 2-plane of simple vectors.
(f) If a line I lies in Ω and does not pass through the origin,

then I cannot be a line of simple vectors, i.e., I cannot contain three
distinct points corresponding to simple vectors.

4. An example* Busemann and Straus [2] give the following
concrete example which we use here to illustrate the above algebraic
facts. Let the vectors elf e2, e3, e4 form a base for the four dimensional
affine space A\ Denote by ei5 the 2-vectors et Λ e,-. Let Ω denote
the flat spanned by the origin, e12, eu and (eλ + e3) Λ (e2 + e4) in V\.
We denote the vectors spanning Ω by z, Rl9 R2 and R3 respectively.
Then Ri + R3 is nonsimple for all i,j = l to 3 when i Φ j. Thus
any line I in Ω which does not pass through the origin cannot contain
three distinct points representing simple vectors.

5* SWC with C is stronger than the SFMA.
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LEMMA A. If a function ^ is SWC and C then it has the
SFMA.

Proof. Let Ro, Ru R2, , Rp be r-vectors corresponding to r-
faces of an r-dimensional oriented closed polyhedron P. We need
consider only the case when not all Rι are scalar multiples of RQJ

i > 0. In such a case, since P is closed, some other faces which are
not parallel to the face represented by Ro intersect the face repre-
sented by Ro in an (r — l)-dimensional set. Let Rt be associated with
one such face. Then from § 3a the vector Ro + R1 is simple. Also
since P is closed we have — (iϋ0 + Rd — Σ f U # ; Thus Σ?=2 #• is
simple. But then the equation: — Ro = RL + ΣJU-#* shows that

^(-Ro) < ^(Rd +

and, since ^~ is convex, ^( — Ro) < Σf=i*^(i2<) so that ^ has the
SFMA.

6* Existence of functions which are SWC and C but not SC.

LEMMA B. There exist functions which are SWC and C but
not SC.

Proof. We actually construct an absolutely homogeneous func-
tion of this type. Take three simple unit vectors R19 R2, R3 in V"ΐ
such that Ri + Rj is nonsimple for all i, j = 1 to 3 with i Φ j . Choose
unit vectors Sl9 S2f •• , S P in V? such that the set of vectors {RiSj},
i = 1 to 3, j = 1 to p where

is a base for V?. Thus given R e V? we find unique numbers {aif bd}
such that R = la^ + Σb5Sό. We denote this last written equality
by the notation R = (a{, b5). Now define the function J^ in V? in
the following manner:

If R = (aif bj) then ^(R) = Σί.y (αf + δ?)1/2 + ( Σ i &i)1/2 with i = 1
to 3 and j = 1 to p.

We verify that &~ has the required property.
( i ) ^ is clearly absolutely homogeneous {^(XR) = | λ | ^

and a convex function on F r

n, hence convex on G?.
(ii) We next show ^ ^ is >Sΐ7C. Let iZ = (aif b5) and

be two simple r-vectors such that J? + 22' is also simple. Assume
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further that JT{R + R>) = JT(R) + jT(Rf). We prove & is parallel
to ^ ' . Assume that & is not parallel to ^ ' . Then the line I in
Fr

u joining ϋ! to Rf is a line of simple vectors and I does not pass
through the origin. Therefore from the algebraic facts, I does not
lie in the flat Ω spanned by the origin, R19 R2 and R3. Therefore
either a b5 or a b] is different from zero. Without loss of generality
assume that bλ Φ 0. We make the simple observation that when num-
bers ati and & are such that aκ gL βi and Σat = I7/?* then each αfc =
/SΛ. From this and ^~(R + 22') = J^(R) + J H # ' ) we have the fol-
lowing equalities:

* + (Σbfy2 = (Σ(bd + ί>; )2)1 / 2.

For all (i,j),

(Eίy) (α? + δ?)1/2 + (αf + δ;2)1/2 - ((a, + αj)2 + (b, + 6;)2)1/2 .

From the equality (E) we see that there exists a number μ such that

(F) (δί,δί, ..-,&;) = μ(bιyb21 . . . ,6 P ) .

Also from the equalities (E^) we have numbers /^ such that

(F,) (αί, 60 - ^(α,, 6,) .

But combining (F<) with (F) and remembering that bt Φ 0 we have
^ = fe'1/61 = jfiΐβ This shows (αj, 6J) = /i(α€, δ̂  ) which would mean that
<% and ^ ' are parallel. This proves J^ is SWC.

(iii) However, ^ " is not SC. This can be proved as follows:
Take any simple vector R which is linearly dependent on R19 R2, R3

say R = atRL + a2R2 + azR3 with a,i Φ 0, i = 1 to 3. Then we have
^(R) = 1^1 + 1^1 + 1^1 = ^ ( α ^ ) + J?"(a2R2) + •^(αaB3), which
violates strict inequality even on G>. Consequently it is impossible
to extend J?" to a strictly convex function on F r \ We note here
that in the example of § 4 all vectors axRγ + a2R2 + (— α1α2/α1 + a2)R3

are simple. This completes the proof of Lemma B.

7* THEOREM. T%e strict area minimizing property does not
imply strict convexity.

Proof. By Lemma A we have the SFMA implied by SWC and
C. But by Lemma B, SWC and C do not imply SC. Hence, the
SFMA does not imply SC. Briefly SFMA ^ SWC + C < SC.

Suggestions for this paper from Professor H. Busemann are grate-
fully acknowledged.
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