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HOLOMORPHIC QUADRATIC DIFFERENTIALS
ON SURFACES IN E°

TiLLA KLotz

Let R be a Riemann surface defined upon an oriented
surface S smoothly immersed in E3, This paper studies holo-
morphic quadratic differentials on R which are related to the
geometry on S, especially those of the form

24 ={(4 —C) — 2tB}dz?

where A4 = Ada? + 2Bdxdy + Cdy* is a smooth linear combina-
tion 2=f[+ gII of the fundamental forms on S, and 2z =
% + 1y is any conformal parameter on R, Most results deal
with the case in which R = R, is determined on S by some
smooth positive definite linear combination 4 = fI+ gII on S.
It is shown, for example, that S is isothermal with respect
to 4 if and only if R, supports a holomorphic 21 =0 in some
neighborhood of any nonumbilic point. By way of contrast,
another result states that a holomorphic 27 # 0 is automatical-
ly available in the neighborhood of any nonumbilic point p,
unless R coincides at p with some R, The paper closes with
a study of surfaces which support an R, on which both 2,%
0 and 2;; #= 0 are holomorphic.

Suppose that S is an oriented surface which is smoothly immers-
ed in E?, and that R is a Riemann surface defined upon the underlying
2-manifold of S so that each conformal parameter z = 2 + 4y on R
yields a smooth, properly oriented coordinate pair x,¥ on S. As an
example, R=R, might be determined on S by some sufficiently smooth
positive definite quadratic form 6 (see [1], §4).

Ordinarily, there is no reason to expect any special relationship
between the holomorphic quadratic differentials on R and the differen-
tial geometry on S. In particular, if one takes some quadratic form
6 of geometric interest on S, and associates with 4 the quadratic dif-
ferential Q5 = @;dz* on R where § = Ada?® + 2Bdady + Cdy® and ¢; =
(A — C) — 2iB, then Q; will not usually be holomorphic, that is, ¢;
will not in general be analytic as a function of the conformal para-
meter z = + 1y on R. There is always, of course, the trivial situa-
tion in which & is proportional to # on S, so that 2; = 0 is automa-
tically holomorphic on R,. Yet in a striking number of cases, surfaces
of particular interest to differential geometers have been shown to
support a nontrivial holomorphic quadratic differential 2; = 0 on some
specific R. It seems appropriate to note a few such examples, as they
provided the major motivation for the study undertaken in this paper.
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First, 2;; is holomorphic on R, if mean curvature H on S is con-
stant, with I and IT the fundamental forms on S (see Chapter 4 of
[2], or [3]). Here 2,; # 0 so long as S is not totally umbilic. Ana-
logously, 2, is holomorphic on R,, if Gauss curvature K is some posi-
tive constant, with S oriented so that H is positive (see [3]). Here
2, # 0 so long as S is not a portion of a sphere. If K is some nega-
tive constant on S, then 2,.,, is holomorphic on R;, with H’ =
VH*—K=+0, and H'II' = HII — KI (see [4] and [5]). Here 2,.,; =
0 cannot occur. Finally, the immersion X: S — E?® is harmonic for
some fixed R on S (meaning that 4X = 0 holds on R) only if 2, is
holomorphic on R. Here 2, 0 unless S is a minimal surface (see [6]).

In the examples just described, # and # were invariably smooth
linear combinations of the fundamental forms on S. To distinguish
such quadratic forms from more general 6 and § on S, we shall reserve
the symbols 4 and A to denote linear combinations fI+g¢II and FI+g§II
respectively, with f, g, f and § smooth, real valued functions. We
further specify that 4 must be positive definite. No such restriction
is placed upon .

In this paper, we attempt to describe the most general situations
in which some 2; on an R, is holomorphic, and to develop the basic
facts implied whenever such an 2; and R, are available on an S in
E®. The results should serve to encourage and facilitate the use of
complex analysis in the solution of problems in surface theory. For,
in each of the cases cited above, properties of the holomorphic 2; in-
volved have proved useful in handling questions (especially questions
in-the-large) about S (see [2], [3], [6] or [8]).

Many of the technical lemmas below merely carry out in general
arguments which had been separately justified for the various cases
alluded to above. Other results help to clarify the special nature of
Riemann surfaces of the form R, on an S. In particular, we show
that given an R on S, there is always a holomorphic 2; = 0 available
on R in some neighborhood of any nonumbilic point » on S, unless R
coincides with some R, at p, that is, unless R induces the same angle
measurement at p as 4 does, for some A. By contrast, we show that
S is isothermal with respect to 4 if and only if R, supports a holo-
morphic quadratic differential 2; == 0 in the neighborhood of any non-
umbilic point. The paper closes with a brief discussion of those S in
E? which support an R, on which both 2, = 0 and 2,, = 0 are holo-
morphic.

2. The results in this section pertain to structures R, on an S
in E°. Quadratic differentials of the form £2; will be mentioned, but
they need not be holomorphic.
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Given a positive definite quadratic form # on S, coordinates x,y
on S are called #-isothermal provided that § = Mz, y)(dz* + dy*) over
the domain D of x,y on S. If A4 = fI + gII is specified on S, one
can always test given coordinates x,y to see if they are A-isothermal.
In fact, x,y are A-isothermal if and only if

(1) fE 4+ gL = fG+gN >0
and
(2) fF+gM=0,

where I = Edx* + 2Fdxdy + Gdy* and II = Ldx* + 2Mdxdy + Ndy® over
D. But if no 4 is specified, and x,y are given, one would like to
have necessary and/or sufficient conditions for the existence of a 4
over D for which x,y are [-isothermal. Our first result establishes
a necessary condition,

LEMMA 1. If xz,y are A-isothermal then
(3) M(E — G) = F(L — N)

holds throughout their domain D of definition.

Proof of Lemma 1. If x,y are A-isothermal for some A= fI+gll
over D, then at every point of D, f and g solve the homogeneous
linear equations (1) and (2). Since A is positive definite f and g never
vanish simultaneously. Thus the determinant of the coefficient matrix
of the equations (1) and (2) must vanish, yielding (3).

It is a slightly more complicated matter to determine the circum-
stances under which (3) is sufficient for the existence of a

A = Max, y)(da® + dy’)

over D. Certainly (3) by itself is insufficient at an umbilic point,
where the stronger conditions E = G and F = 0 must be imposed.
On the other hand, a more subtle obstacle is the need to make the
choice of 4 smooth over D. Lemma 2 will show that under certain
circumstances, 4 can be found provided that D avoids umbilics. To
distinguish the nonumbilic portions of S, R, R,, etc., we shall use the
symbols S°, R’, R, etc., respectively. We further specify that the
choice of signs in (4), (5) and similar formulas below be made so as
to yield a positive definite (rather than a negative definite) quadratic
form.

LEMMA 2. Suppose that the domain D of coordinates x,y on S
lies within S°. If (3) holds with |F'| + | M| = 0 throughout D, then
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x,y are A-isothermal for
(4) A= +(MI— FII) .

If, on the other hand, x, y are lines-of-curvature coordinates on D S°,
then x,y are A-isothermal for

(5) A= +(L— N)I - (E - GII).

REMARK 1. Any coordinates x, ¥ on S determine a unique Riemann
surface R over their domain D of definition, the one upon which z=
2 + 1y is a conformal parameter. Thus the choices of 4 in Lemma 2
are uniquely determined by x,y up to multiplication by a smooth,
positive function on D. In particular, lines-of-curvature coordinates
x,y on S° uniquely determine an R, over their domain of definition.

REMARK 2. It is convenient to speak of z,y as /-isothermal at
p on S provided that A = N(d2* + dy®) at p. Thus, for example, R,
coincides at p with the Riemann surface R on D determined by =z, ¥
(meaning that R, and R induce the same angle measurement at p) if
and only if x,y are /-isothermal at p. It is easily checked that z,y
are /-isothermal at a nonumbilic p if and only if (3) holds there.
They are A-isothermal at an umbilic p if and only if E=G and F'=0
for x,y at p.

Proof of Lemma 2. Since D C S°, I is nowhere proportional to I1
on D. If (3) holds with |F'|+ | M| # 0 throughout D, then MI+ FII
must have the form \(x, y)(dz* + dy*) for an easily computed \(x, ¥)
which never vanishes on D. If, on the other hand, x,y are lines-of-
curvature coordinates, so that FF = M = 0, then (L — N)I — (E — G)II
must have the form \(x, y)(da* + dy*) for an easily computed \(x, y)
which never vanishes on D.

It is a natural extension of classical terminology to call S 6-
1sothermal for some smooth, positive definite quadratic form 6 on S°
provided that in some neighborhood of any pe S° there exist lines-of-
curvature coordinates x, ¥ which are #-isothermal. By way of example,
surfaces of revolution and surfaces of constant mean curvature are
I-isothermal, while surfaces of positive constant Gauss curvature are
II-isothermal (see [3]).

Lemma 2 indicates that the portion of any S within the domain
D of lines-of-curvature coordinates x,y on S° must be A-isothermal
for the 4 given by (5). It is not clear that this 4 may be smoothly
extended to all of S° so as to make S /-isothermal, for if x«,y are
lines-of-curvature coordinates, cx, ¥ are also lines-of-curvature coordi-
nates for any constant ¢ > 0. Yet if ¢ = 1, the 4 associated by (5)
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with x, ¥ will not even be proportional to the A associated by (5) with
cx,y. To distinguish a situation in which this difficulty can be over-
come, we define the notion of a “coherent” covering of S°.

A collection of coordinate pairs «, y whose domains cover a region
<7 < 8° are said to cover &7 coherently (and yield a coherent cover-
ing of <7) provided that wherever the domains of covering pairs x,¥
and w, v intersect, the coefficients of I and II induced by «,y are
identical (as point functions) with those induced by %, v. Thus Lemma 2
may be appropriately restated to yield a 4 over <& for which all pairs
x,y of a coherent covering of <7 are A-isothermal, provided that either
(3) holds for all pairs of the covering with | F'| + | M| never zero, or
that = M = 0 holds for all covering pairs. The latter case has the
following interpretation.

COROLLARY TO LEMMA 2. If S° can be coherently covered by lines-
of-curvature coordinates, then there is a A on S° for which S 1is A-
isothermal.

The next Lemma gives a convenient formula for directions of
principal curvature on an RS. Hopf noted in Chapter 4 of [2] that
the usual equation (7) stated below has the form

Im@,,=0
on R!. We noted in [3] that (7) has the form
Imo,=0

on RY%,. The following result indicates that these neat reformulations
resulted solely from the fact that I is nowhere proportional to I on S°.

LEMMA 3. At any point of S where A is not proportional to 4,
(6) Im 2; =

1S the equation for directions of principal curvature on R,.

Proof of Lemma 3. The assumption that 4 is not proportional
to 4 guarantees that we are working at a point p on RS In terms
of arbitrary coordinates z, ¥ on S° near p, the equation for directions
of principal curvature (see [9], p. 80) is

(7) (EM — FL)d2* + (FN — GM)dy* + (EN — GL)dxdy=0 .
If z,y are A-isothermal at p, then (3) holds, so that (7) becomes

(8) (FN — GM)(dy* — da®) + (EN — GL)dwdy = 0 .
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But since 4 = fI + §II, (6) may be rewritten to read
(9) (fF + gM)(dy* — do*) + {f(E — G) + §(L — N))dady = 0 .

It remains to show that (8) and (9) are equivalent.

Suppose first that FFN = GM at p. Because (3) holds with G=0
and It Il, we conclude that EN — GL =+ 0. But then (8) reduces to
dxdy = 0, making FF= M = 0 at p. On the other hand, ;0 since
ActA. Thus Rep; = fF + gM = 0 implies that

Imp; = {f(E—~G) + §(L — N)} #0.

But then (9), like (8), reduces to dxdy = 0.

Suppose next that FIN == GM at p. Using (3) and I II, we con-
clude that fF + gM + 0. But then both sides of (8) may be multipli-
ed by

fF + gM

= = (
FN - GM

to obtain (9), a clearly reversible process.

REMARK 3. Given a quadratic differential Q = @dz* on any Rie-
mann surface R, the integral curves of the directions opdz* > 0 and
@dz* < 0 (well defined wherever @ = 0) are known as the trajectories
and orthogonal trajectories of Q respectively. Lemma 3 thus states
that wherever A is mot proportional to A on S, the trajectories and
orthogonal trajectories of 23 on R, are the lines of curvature on S°.
Thus the following result is not at all surprising.

COROLLARY To LEMMA 3. If A is nowhere proportional to A in
some deleted neighborhood of p on S, then the index of p in the net
of lines of curvature is given by

47

(10) i(p) = 4o arg @i

where the change in argument is taken going once in the positive
sense about any sufficiently small conformal parameter circle C on
R, centered at p.

Proof of Corollary to Lemma 3. If z is a conformal parameter
on R, near p, and if z = 2z, at p, choose for C any circle |z — z,| =
¢ > 0 so small that A is nowhere proportional to 4 on or inside C,
except perhaps at p itself. Then (see Chapter 3 of [2])

(p) =1 4, arg dz
2
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where dz = dx + idy solves (6), and where C is traversed once in the
positive sense. But (6) gives

1
argde = T 2 ar A
g B 3 g P;i

with m an integer, so that (10) follows easily.

In closing this section, we note that there are Riemann surfaces
R available on any S in E® which are not of the form R, for any A.
In fact, one may specify any p€ S, and find an R, on S which is not
of the form R, for any 4 at any point in some neighborhood of p.
This can be done since the positive definite forms fI + gII at p con-
stitute at most a 2-dimensional subset of the 3-dimensional space of
all positive definite quadratic forms at p. But any 6 not of the form
A at p can be smoothly extended to a positive definite quadratic form
# on S, in which case, ¢ is not of the form A for any 4 at any point
in some neighborhood of p. Of course, one cannot in general find an
R on S which at no point of S is of the form R,. If, for example,
S is compact with genus 2 # 1, any R must coincide somewhere on
S with any given R,. Otherwise, the identity map ¢: R — R, would
preserve a unique pair of orthogonal directions at every point of S,
yielding a nonvanishing tangential direction field on S, a contradiction.

3. In this section, we begin the study of holomorphic quadratic
differentials 2;. As an immediate consequence of Lemma 3 and its
corollary, we have the following result.

LEmmA 4. If Q; = 0 on R, is holomorphic, then the zeros of 2;
coincide with the umbilics on S, and any umbilic p has index

(11) i(p) = —‘23

where n s the order of the zero of 2; at p.

Proof of Lemma 4. At any umbilic p, AdeAd yields 2;(p) = 0.
Since the zeros of any nontrivial holomorphic quadratic differential are
isolated, any point p on S has a deleted neighborhood within S°.
Thus i(p) may be computed at any pe S using (10). But, because ¢;
is analytic, the order n of the zero (if any) of 2; at p is given by

(12) n=_4 arg o;,
2T

which yields (11). If p is a zero of 23, ¢(p) # 0 forces p to be an
umbilic on S°. We have also established the following.



704 TILLA KLOTZ

COROLLARY TO LEMMA 4. If Q3 = 0 on R, is holomorphic, then
the umbilics on S are isolated, irremovable, and have negative index.

Suppose now, more generally, that Q2 = pdz* is a meromorphic
quadratic differential on some R defined on S, that is, suppose each
@ is meromorphic in its defining conformal parameter z on R. Then
the trajectories and orthogonal trajectories of 2 are well defined
wherever 2 = 0 and Q # «. Suppose that wherever the trajectories
and orthogonal trajectories of 2 are defined, they are lines of curva-
ture on S°. This specifically includes the assumption that points where
2+ 0and 2+ -« are in S°. Then

Im2 >0

remains the equation for directions of principal curvature on R wherever
2+ 0 and 2 # . But the zeros and poles of a meromorphic 2 must
be isolated. Thus (10) applies to compute i(p) for any p» on S, with
@ in place of ¢;. Moreover, (12) may be stated for ¢, with » the
order of the zero or minus the order of the pole of 2 at p, =0
meaning that neither a zero nor pole occurs. The following result is
thus easy to check.

LEMMA 5. Suppose 2 % 0 on R is a meromorphic quadratic dif-
Serential whose trajectories and orthogonal trajectories (wherever they
are defined) are lines of curvature on S°. Then the wmbilics on S
cotncide with the zeros and poles of 2, and any umbilic p has index
i(p) given by (11) where n 1s the order of the zero or minus the order
of the pole of 2 at p.

COROLLARY TO LEMMA 5. Under the hypotheses of Lemma 5, the
umbilics on S are isolated and irremoveable.

A recent result of Titus (see [11]) indicates that the index %(p)
of an isolated umbilic on a surface smoothly immersed in E® must
satisfy i(p) < 1. (For old proofs assuming real analyticity of S near
p, see references 2,3 and 5 listed in [3]). Thus the next statement
can be made.

COROLLARY' TO LEMMA 5. Under the hypotheses of Lemma 5,
any pole of Q has order less than 3.

The next result indicates how little extra information was gained
in going from Lemma 4 to Lemma 5. For, given the hypotheses of
Lemma 5, and deleting from S the poles of 2, one is in the situation
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covered by Lemma 4, except, perhaps, at the zeros of 2.

LEMMA 6. Suppose that 2 = 0 s a holomorphic quadratic dif-
ferential on R whose trajectories and orthogonal trajectories are lines
of curvature on S°. Then A and A exist on S° such that 2 = 2; on
R, and R° = R}.

Proof of Lemma 6. By Lemma 5, 2 never vanishes on R°. But
near any point which is not a zero of 2, there is a distinguished con-
formal parameter z = x + 4y on R (so that x, y are called distinguish-
ed coordinates on S for 2 on R) in terms of which 2 = dz* (see [1],
p. 108). Such distinguished parameters for 2 on R are uniquely de-
termined over their domains of definition up to addition of a complex
constant, or multiplication by —1. Moreover & = constant and y =
constant are the equations for the trajectories and orthogonal trajec-
tories of Q over the domain of any distinguished z = 2 + 7y on R.
Thus, given the hypotheses of Lemma 6, it follows that the dis-
tinguished coordinates x,¥ on S for 2 on R constitute a coherent
covering of S° by lines-of-curvature coordinates. Now (5) provides a
4 on S° such that R° = R}, and the choice

=gt twom "

for all distinguished z, y yields a well defined 4 over S° in terms of
which 2; = 2 on R°.

To complement Lemma 6, the next result indicates that any holo-
morphic quadratic differential 2 5= 0 over an R on S is of the form
2; on R°, unless B at some point p on R° coincides with an R, for
some /.

LEMMA 7. Suppose R is mot of the form R, for any A at any
point of R°. Suppose that 2 + 0 s holomorphic on R°. Then there
exists a uniquely determined A on S° such that 2; = Q on R°.

Proof. Since 2 never vanishes, the distinguished coordinates z, y
on S for 2 on R° provide a coherent covering of S°. Thus, using
just these distinguished z, ¥,

MI FII

A= E—GM—(L—-NF (E—GM—(L—-NF

is well defined over S° where, by Remark 2, (3) is never satisfied. It
is trivial to check that 2; = 2 on R". To show that A is uniquely
determined at every p on S°, suppose that 4 = fI + §II also yields
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27 = 0 at p. Then
Qv =0

so that 4 — A= (f— F)I+ (§— §)II must be of the form Mdz* + dy?)
at p. Thus, unless A = 0, the positive definite form

A= +A— 1)

gives rise to an R, = R at p, a contradiction.

If Lemma 7 is applied in some neighborhood of » on S° where R
is nowhere of the form R, for any 4, then taking any z on R near
p and setting 2 = dz?, we obtain the following.

COROLLARY TO LEMMA 7. In some mneighborhood of any p on S°
at which R is not of the form R, for any A, there exists a holomor-
phic quadratic differential 2; = 0.

If 2; # 0 is holomorphic on an arbitrary R on S rather than on
an R,, then one loses the identification of umbilics on S with the zeros
of Q; provided by Lemma 4. Nonetheless, the following can be said.

LEMMA 8. If 2; = 0 on R is holomorphic with Q2;(p) = 0, then
either » 1s an umbilic, or else R = R, for some A at p, or else f=
g=0at p for A.

Proof of Lemma 8. For any z = & + iy on R near p,

AE —G) +g§(L—N)=0

13 ~
(13) fF+dM=0

holds at p since 2; has a zero there. If |f|+ |§| = 0 at p, the de-
terminant of the coefficient matrix for (13) must vanish at p yielding
(8). Thus, unless p is an umbilic, Remark 2 indicates that R = R,
at p for some /.

In contrast with the situation described in Lemma 7 and its
corollary, our next results indicate that severe restrictions are placed
upon S in claiming (even locally) the existence of a holomorphic 2;=£0
on an R,. Moreover, even if S does support such a holomorphic
Q; £ 0 on some R, most holomorphic 2 % 0 on R, will not be of the
form Q3.

THEOREM 1. If Q; =0 on R, is holomorphic, themn S 1is A-iso-
thermal.

Proof of Theorem 1. At any pe S°, 2;(p) # 0. Thus, using dis-
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tinguished coordinates x, ¥ near p for 2; on R,, A must be of the form
A= Ada? + (A — ydy*
while
A = Mda? + dy?) .

But A = fI + ¢gIT and A = I + GII yield
(14) FF+gM=0, FfF+§M=0

for x,y. Moreover, 2; = dz? near p shows that A is never propor-
tional to 4 in some neighborhood of p where, therefore, f§ — gf 0.
It follows that (14) has there only the trivial solution FF = M = 0.
Thus near any p on S° there exist /-isothermal lines-of-curvature
coordinates z, y. Combining Lemmas 5 and 6 with Theorem 1, we can
state the following.

COROLLARY TO THEOREM 1. If 2 =% 0 is a meromorphic quadratic
differential on R whose trajectories and orthogonal trajectories are
lines-of-curvature on S°, then there exists a A on S° for which S 1s
A-isothermal.

THEOREM 2. If S° can be coherently covered by A-isothermal lines-
of-curvature coordinates, then there exists a A on S° for which 2;+0
on RS is holomorphic.

Proof of Theorem 2. Define a holomorphic quadratic differential
2 # 0 on R as follows. Use a coherent covering of S° by isothermal
lines-of-curvature coordinates. If x,v and wu,v are covering pairs
whose domains intersect, then over that intersection D, w =wu + v is
an analytic function of 2z = x + 7y since w and z are both conformal
parameters on R,. But the correspondence of curves & = constant and
y = constant to curves u = constant and v = constant implies that
w = ¢z + d with ¢ real or pure imaginary. That ¢ = +1 follows from
the fact that &k, =+ k, on S°, while E,F =0,G, L = kE, M =0 and
N = k,G are the same for x, y over D as for u,v. Thus dz* = dw?® on
D, and the consistent choice of 2 = dz* for covering coordinates x, y
yields a holomorphic 2 which never vanishes on S° and whose trajec-
tories are lines of curvature on S°. Lemma 6 now applies with R = RS,
giving the required A on S

Of course, if S is A-isothermal, then in some neighborhood of any
p on S° there is a 4 for which 23 #+ 0 on R, is holomorphic. This
together with Theorem 1 yields the following.

CHARACTERIZATION. Given A on S°, S is A-isothermal if and



708 TILLA KLOTZ

only if in some neighborhood of any p on S° there is a A for which
Q3 #0 on R, ts holomorphic.

4. In this section we make a detailed study of functions on S°
associated with a holomorphic 2; #£0 on an R,. Given such a 2; on
a specified R,, Lemma 4 applies, and one easily checks that the dis-
tinguished coordinates for 2; on R! provide a coherent covering of S°
by A-isothermal lines-of-curvature coordinates. This covering deter-
mines functions £ and G on S° such that, given distinguished coordi-
nates «,y on S° for 2; on RS,

I = Eda* + Gdy*

(15)
II = kEda* + k,Gdy® .

Note that knowledge of E, G, k, and k, on S° will not by itself deter-
mine I and II over S°. For this purpose, one must also have some
way of recognizing which coordinates x, ¥ on S° are distinguished for
2; on R). The next lemma allows us to work with normalized ver-
sions of 4 and A throughout S°.

LEmMMA 8. If 2; %0 on R, is holomorphic, then there exist quad-
ratic forms T and S on S° which are smooth linear combinations
of I and II, and which have the form 3 = da*+ dy* and 5 =
(1/2)(dx* — dy®) in terms of distinguished coordinates x,y for 2; on
R,, so that R, = R; and Q2; = Q;.

Proof of Lemma 8. The choices indicated locally for X and 3
in terms of distinguished coordinates for 2; on R} yield well defined
quadratic forms ¥ and 5 over all of S°. For, as noted in the proof
of Theorem 2, where the domains of distinguished parameters w =
% + 1v and z = x + 1y intersect, w = +z + d, yielding da* = du* and
dy? = dv*. We need only check therefore over the domain D of any
distinguished coordinate pair z,y that R,=R;, that 2;=2: and that
both ¥ and 3 are smooth linear combinations of I and II. But these
are indicated by noting that Q3 = dz* over D, that 4 = fI + gII =
AMda? + dy?) over D, and that 4 = Ada* + (A — 1)dy® over D, yielding

2:i[+iﬂ
A he
and
S=i+1=2%45

2

over D.
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We conclude from Lemma 8 that there is no loss of generality in
working on S° from the outset with the normalized forms

(16) A=fI+gll=3
and
(17 A=fI+gIll=5%.

With 4 and A so chosen, the smooth functions f, g, f and § are well
defined on S°, The functions E,G,k, and k, associated with the
coherent covering of S° by distinguished coordinates for 2; on Rj are,
of course, related to the functions f, g, f and §. The precise relation-
ship is given in the following result.

LEMMA 9. The functions E, G, k., k,, f, g, F and § on S° satisfy

1

18 kyg— — =0,

(18) f+ kg =

(19) Ftkg——=0,
G

(20) Fki——2—=0,
2F

(1) Fikg+—=o0.
2G

Proof of Lemma 9. Substitute (15) in (16) and (17). Then equate
the coefficients of da* and dy* respectively on opposite sides of the

two resulting equations.
In reading (18)-(21) it is well to keep in mind that

by kb [P+ G # 0,72 +5=0,fg—fG#0,

and £>0,G>0. One may also use (19) and (21) to show that 2§+¢g++0
since, otherwise, f§ — fg = 0 would follow. As a direct consequence
of (18)-(21) we have the following.

LEMmMA 10. Throughout S°

- 20-9 @ gq- 2+g
o= 2 =F k= =2 —F
g — 29 g+ 29

while
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. Gk, — Ek, g=—_E—-G
EG(k, — k) ’ EGk, — k) '
(23) 7_ Gl + Bk, G_ _E+G
2EG(k, — k,) ’ 2EG(k, — k)

REMARK 4. Lemma 10 indicates that throughout S°

K:kk:MA_z_ H = ki+ ks _ 47§ — fg
v 92—4§2 ’ 2 g2_4gz
and
H,Z‘kl—kz _ o4l —f3
2 g* — 4§*°

Thus in particular the expression f* — 47%/¢g* — 4§ for K is completely
determined by I on S°.

Various simple facts may be read from the equations (22) and (23).
We list a few.

Fact 1. f+ kg, f+ kg, f+ kg and f — k,§ are all positive.

Fact 2. If k, =0, f and f are positive.

Fact 8. 2f — f =0 if and only if k, = 0.

Fact 4. 2f + £ =0 if and only if %k, = 0.

Fact 5. Sign § = Sign (k, — k,) = 0.

Fact 6. If f=10, K<O.

Fact 7. If f =0, then K > 0.

Fact 8. If H=0, then /> 0.

Fact 9. Sign (2§ — g) = Sign (2§ + ¢) = Sign (f§ — fg) = 0.

Lemma 10 suggests the possibility of expressing any four of the
functions k., k., E, G, f, g, f and § in terms of the remaining four.
While this is not always possible, simple arithmetic will establish the
following result.

LEMMA 11. Given any 4-tuple from among the functions
kyk, B, G, f,9,F and § on S° which is included in the chart printed
at the top of the next page, equations (18)-(21) may be uniquely solved
for the remaining 4-tuple (subject to parenthesized hypotheses).

REMARK 5. By Fact 5, H, K and Sign § determine %, and k, over
S°. Thus any of the 4-tuples K, H, §, E, or HKGG or HKjg or HKGF,
or if H+0) H, K, g, f will determine all 8 of the functions involved
in (18)-(21) over S°.

Suppose now that D is a simply connected domain in the z, y-plane.
If E>0,G>0, k, and k, == k, are any smooth functions on D, the
fundamental theorem of surface theory (see [9], p. 124 and p. 113)
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k. k. EG

kkEf (if k, = 0)
k.k.Eg

kJ.Ef (if k, # 0)
k.. E§

kk.Gf (if k, # 0)
k.Je,Gyg

kJe.GF (if k. # 0)
k.Je,Gg

k1k2fg

kJe.ff (if K # 0)
kke.f§ (if H # 0)
kie.gf (if H =+ 0)
ke Je.gi

ke, fg
kEGf(ifk,#k,and E+G)
kEGg (of E # Q)
kEgf (if k, # 0)
k. EGq

kEff (if k, = 0)

kEf§ (if k, # 0)
kEgf (f k, = 0)
kEgg

k.Gfg (if g+ 0)
k.G (if k, =+ 0)
k.Ggg

k.GF g

k.fof (if k, = 0)
k.f99
ko fF 3
kgfg
kLEGS (if k,#0 and E+G)
k.EGg (if E #+ G)

k.Egf (if k, = 0)

kL, EGq

k.Efg (if g # 0)

kLEff (if ky#0 and Ef+1)
k.Egg

kEf§

k.Gff (if k. = 0)

(if ki #0)
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kGfg (of k. + 0)
kGaf (if k, + 0)
k.Gg

k.fof (if k. =+ 0)
szgg
ko f1 G
k.9f g
EGfg (if E + G)
EGf§ (if E + G)
EGgf (if E + G)
EGf§

Efgf (if g #0)
Efgg (if 9 # 0)
Eff§ Gf 2f +# f)
Egfg

Gfaf (if g+ 0)
Gfgg (if g + 0)
Gffg (if 2f# —f)
Gofg

fofg .

(@f Ky # 0)

and the Fact in [7] state that D is smoothly immersible in E° with
I = Eda* + Gdy* if and only if

(24) ks = ”27;%@’_ {<1/§:G) + (VEJJEZGL}
and
(25) (), = L BB g, = % .

Using 4 given by (5), and A from the proof of Lemma 6, (24)

and (25) become necessary and sufficient conditions for the smooth im-
mersion of D in E° with x, y distinguished coordinates for 2; = dz?
which is holomorphic on R,.

On the other hand, suppose we take any four smooth functions
a, 8,7 and 0 on D, and assign them the role of a 4-tuple o from the
formal list K, G, k,, k., f, 9, f and §, subject only to the restriction
that given the values «a, 8,7 and ¢ in their o-roles, (18)-(21) may be
uniquely solved for any of the functions E, G, k, and k, not already
in g so as to yield over D an £ >0,G>0 and a k,#k,. Then using
these values for E, G, k, ond k,, (24) and (25) constitute necessary and
sufficient conditions upon «, 8,~ and 6 for the smooth immersion of
D in E® with «, 8,7 and ¢ achieving their o-roles, with
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I = Eda* + Gdy?, IT = k,Eda® + k,Gdy®, A = fI + gII
=da* + dy’, 1 = fI + GII = }(da* — dy®) ,

and with f, g, f and § satisfying (23). To illustrate the proceedure,
we state the following result.

THEOREM 3. Suppose f,g, f and § are smooth fumnctions on a
stmply connected domain D in the xy-plane such that

(26) Sign (2§ — g) = Sign (2§ + ¢) = Sign (f§ — fg) = 0.

Then (24) and (25) with E, G, k, and k, given by (22) are mecessary
and sufficient conditions for the smooth immersion of D im E® with
A = fI+ gIT = da* + dy?, 4 = fI + GII = 4(da* — dy?), I = Eda* + Gdy?
and II = kEdx* + k,Gdy?, making 2; = dz* on R, over D.

Proof of Theorem 3. The necessity is obvious. Sufficiency is es-
tablished by noting that (26) insures values for E, G, k, and k, in (22)
such that £ >0, G >0, and k, # k,. Simple arithmetic will show
that any immersion of D in E*® with I and II as specified will yield
FI + gIT = da* + dy* and fI + §II = 3(da® — dy?). Finally, the smooth
immersion of D in E*® with I and II as given satisfying (24) and (25)
is guaranteed by the Fact in [7].

5. Our basic method throughout § 4 was simple arithmetic. No
use was made of the Gauss or Codazzi-Mainardi equations, except to
say, of course, that they do describe the immersion of S in E® In
practical terms however, these equations are the most likely tools for
finding in any particular situation exactly which 2; = 0 (if any) is
holomorphic, and on which R, (see Chapter 4 of [2], or [3] as examples).

For the various cases described in § 1, interest in S preceeded dis-
covery of 2; on R,. But one can work in the other direction, and
seek to diseover by use of the Gauss and/or Codazzi-Mainardi equations
which sort of S will support a particular 2;=0 which is holomorphic
on a specified R,. As a simple variation on this proceedure, we study
in this section the nature of an S in E°® which supports a Riemann
surface R, on which both 2, = 0 and 2,, = 0 are holomorphic. We
assume henceforth that S ts such a surface.

LEMMA 12. In the nmeighborhood of any point on S° there ewxist
coordinates x,y on R, in terms of which

1—ck 1—c¢ck
T=L—Ck gpo 10k g
R R A
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and

— kl(l _ Ckz) 2 kz(l _ Ck) 2
II=>=___7 ¢ LAl 7 O g
R

for some fixed constant ¢ #= 0.

Proof of Lemma 12. Use distinguished coordinates x, y for 2,,%0
on R, to give F, G, k, and k, associated with them anywhere on S°.
In terms of such =z, v,

27 Ek, — Gk, =1
while
Q,=E—-G@dz*=0,

so that (E — G) must be analytic in 2z =z 4 4y. It follows, since
(E — G) is also real valued, that

(28) (E—-G=c+#0

over the domain of x,y for some real constant ¢. Solution of (27) and
(28) for E and G yields

1 — ¢k, Gzl—ck1

29 E=_——, _—.
(29) k, — k, k, — k,

That ¢ maintains a fixed value throughout S° follows from the fact
that S° has one component since, by Lemma 4, umbilics on S are
isolated. We note in passing that 2, = ¢2,, on R,, while

(30) Sign (1 — c¢k,) = Sign (1 — c¢k,) = Sign (k, — k;) = 0
throughout S°.

LEMMA 13. S is a Weingarten surface satisfying
(31) 1 —ck)1—ck,) =%,
or (equivalently)
(31) 1-2cH+cK=%
Jor constants ¢ = 0 and & > 0.

Proof of Lemma 13. Using the coordinates x, ¥ and the constant
¢ of Lemma 12 anywhere on S° the Codazzi-Mainardi equations (25)
with F and G given by (29) yield
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(kl)ll (kz)u =0
1 — ck, * 1 — ck,

and

(k,). (ko).  _
1 — ¢k, * 1 — ¢k,

If we set k, and %, at any umbilic p on S equal to the common value
of the normal curvatures at p, then k&, and %k, become continuous func-
tions over all of S. By (30) and the fact that umbilics on S are iso-
lated, we conclude that

log (1 — ck)(1 — ck,)
is constant throughout S, so that
1 —ck)1 —ck,) =%

over S for some constant = > 0.

LEMMA 14. There is a smooth function p = 0 on S such that
A= pI — cll),
with ¢ = 0 the constant in (31).

Proof of Lemma 14, Using (31) and the coordinates x, ¥ of Lemma
12 anywhere on S°, we get

& (da* + dy’) = (kb — k){I — cll}

which establishes I — ¢II as a definite quadratic form proportional to
A throughout S°. Since I — ¢II and 4 are each smooth quadratic
forms on S, and since umbilics on S are isolated, the proof will be
complete if we can show that I — cII is definite at any umbilic p on
S. But at such a p,

I—cIl =11 — ¢k),
where k = k, = k,, and (31) yields

_1xVE

k c

Thus, at »p,
VZ I if ck=1-1VZ
Vel ifck=1+VZ.

In either case, I — c¢II is definite since & > 0. We have thus shown

I —cll =
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that (with the appropriate choice of sign)
R, = Ri([—cll} .

REMARK 6. In [11], J. Wolf studied surfaces which for some
fixed constants «, 8 and v satisfy

(32) a+ BH+7K=0.
We thus have an S of the type Wolf studied with (81") yielding a=
1—- %, 8= —2¢ and v = ¢*. The conclusion in [11] was that for an

S satisfying (32), the quadratic form A = al + BII + ~vIII with III=
2HII — KI must be flat wherever nondegenerate. For our S a brief
computation shows that A is everywhere degenerate.
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