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TOPOLOGICAL RINGS WITH PROPERTY (Y)

W. E. BAXTER

This paper continues the study of Jordan ideals of the
symmetric elements, S, of a 2-torsion free semiprime ring, A,
with 2A = A. Previous results assuming proper involution,
as well as the annihilator condition on certain right ideals in
topological rings with property (Y), are shown to be too re-
strictive. Finally, it is shown that every Jordan ideal of S
either contains an idempotent, or is contained in the annihilator
of the socle.

We denote the involution by x~-+x*, and let (α, b)j = ab + δ*α*
and (α, b)L = ab — 6*α* for all α, b e A. In [1], we observed that B —
{b I (δ, a)j e U, a Jordan ideal of S, for all aeA} is a right ideal, that
SBQB, U o U S B, and £f(B)S S £f(B). This is the notation of [1].

In [2], Herstein proves that if A is semiprime then there exists
no nonzero left or right nil ideals of bounded index of nilpotency.
In [l], we proved that if U is a Jordan ideal of S and u2 = θ for all
ue U then U — (θ). We now generalize this result to the analog of
the Herstein result.

THEOREM 1. Let U be a Jordan ideal of S. Assume that there
exists an integer k such that uk = θ for all ue U, then U = (θ).

The theorem is proved in [1] for k = 2. It is sufficient by in-
duction argument to show that um = θ for all ue U implies u2N = θ
for then, u4 = θ for all ue U implies U = (θ), while for k ^ 5, then
4 is a factor of k, k + 1, k + 2, or A: + 3 and so 2iV < A: and by in-
duction we are done. Now, ue U, implies u2NeB and so assuming
v4N = θ for all v e U, we have for each a e A, θ = u2N(u2Na + a*u2N)m =
u2ΛΓ(α*u2ΛT)4iv and therefore, {u2Na)AN+1 = θ or u2iNΓ = 0.

We note next that if b and c are in B and r e A, then both
rc*6 = (c, r)jb — cr*beB and c*& = (c + c*)6 — cbeB. We make use
of these facts in the following theorem which is the main result of
§2, [1].

THEOREM 2. J*f(B) is a self-adjoint two-sided ideal in A.

We need only show that ^f(B) is a right ideal. Using the above
remark (ab*beB for all beB, ae A) we see that as

x((b, ah)2 = θ
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for all aeA,beB,xe £?(B), then

( I ) α(α*δ*)2 = θ .

For x e <£f(B), b e J3, x6* = x(b + 6*) e «£*(£). By (I) and the fact
that J5* is a left ideal, we have (£&*)[α*(xδ*)]2 = θ for all α e i .
Thus, xb*A is nil of bounded index 3, and so α δ* = θ. As 5* is a
left ideal, m&* = θ for all α e i . This means x*6 = (δ*α;)* = θ* = θ.
Therefore, ^f(B) is self-ad joint and hence is a two-sided ideal.

L E M M A 3. £f(B) Γ\B = (θ).

J*?(B) being two-sided implies that ^f(B)f]B is a nilpotent
right ideal and so is (θ), A being a semiprime ring.

It now follows immediately that.

LEMMA 4. UΓ\ £?(B) = (θ).

One observes that bSb* and uSu are in 5 Π U for all k 5 and
U. We make use of these facts to prove.

THEOREM 5. Sfiβ) = ^f(B nS) = ^f(B n U) = Sf(U).

The proper order of set inclusions for the first three of these
sets are obvious. Thus the theorem is proved if we show £f(U) £ J*f(B)
and ^ ( δ n U)^J^(U).

Let x e £?(U) and b e B then xbxbx = a;δα;(6a; + x*δ*) — a?(δα?α;*6*) =
^. Therefore, J*f(U)b is a nil left ideal of index 3, leading to the
conclusion that £f{U)S £f{B).

Similary, if x e ^(B Π U) and u e U then

= x[u(x + »*)%]»% — x^(ίc*^a;)^ = θ ,

which shows that ^{B n U)aj^(U).
We draw as an immediate consequence,

COROLLARY 6. (

Now, define

DEFINITION 7. Z7j = {s e S | (s, tt)^ = ^ for all u e U}.

We wish to conclude that

THEOREM 8. Uj is a Jordan ideal of S and Uj = £f(U) Π S.
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Let seUj,ueU t h e n (s, u)j = θ = (s, u2)j. T h e left equali ty

yields su = — us and so 2sw2 = 0, or by hypothesis on A, su2 = 0.

Thus,

Now, let se Uj,ueB f) U, and aeA. Noting that suasu =

s(u, a)jsu we conclude that

(sua)3 = s[(u, a)js(u, a)j]sua = θ .

Thererfore, s e ^?{B Π U) = £?(U). Thus, Uj S ^^(17) Π S.

However, ^ ( [ / ) n S g ί/j is immediate. As the equality holds

we conclude that Uj is a Jordan ideal.

Two immediate corollaries are important for later theorems.

COROLLARY 9. / / U,τ = (θ), then £f(U) = (θ).

As J5?(U) is self-ad joint, the hypothesis implies J*f(U) S K and

so the desired conclusion.

COROLLARY 10. T = {t e S \ (t, s)j e U for all se S} is a Jordan

ideal and Tτ = U,r = (B Π S)j.

It follows immediately that T is a Jordan ideal of £ and that

TjS(BΠ S)j. By Theorem 8,

n s = s^(B ns)ns = (Bn sh.
Let re(B f] S)., and t e T then

(r, t)j e(BΓίS)jΓiUS£?(U)nU= (θ) .

Thus, r e Tj and the corollary is proved.

2* Topological rings with property (Y)Φ In [1] we defined

these rings. Because of the results of the previous section, we now

modify that definition by removing the condition of proper involution

and by defining the annihilator condition for Jordan ideals based

wholly on elements in S.

DEFINITION 11. A semiprime topological ring A with involution

(x—>.τ*) is called a topological ring with property (Y) if, and only if,

(1) A = 2A, any net {2xa} —> θ implies {xa} —> θ, and A3 is dense

in A (the latter is true if the socle is dense in A)

( 2 ) the involution is continuous

(3) Uj — (θ), for a closed Jordan ideal U of S, if, and only if,

U=S.
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A part of our previous definition had £f(U) = (θ) if, and only if,,
U = S for closed Jordan ideals U of S. We now see that Theorem
8 and Corollary 9 yield this equivalent formulation. By Corollary 6,
£f(S) = (θ) in a semiprime ring. Hence, we see that the restriction
(3) really asserts that for proper closed Jordan ideals U, Uj Φ (θ).

Although we have introduced the notion of a topological ring
with property (Y), our next theorem is stated for less restrictive A
since this form of the theorem is used in the next section.

THEOREM 12. Let A be a semiprime topological ring with con-
tinuous involution, 2A = A, any net {2xa} —>θ implies {xa} —*θ, and
Jjj — (θ) for a closed Jordan ideal, U, of S if, and only if, U = S.
Let I be a self-adjoint ideal of A with £?(I) = (θ). Then A3 S J.

Let V be the additive subgroup of S generated by the elements
x + x* where xe I. As (x + x*, s)j = (x, s)j + (x*, s)j we have V as.
a Jordan ideal of S. Clearly, I C Bv = {b \ ba + α*δ* e V}. Thus,

= £f(Bv) S £f(I) = (θ). Hence, S = VQTfϊ~S S L This
means that a + α* and αα* are in J for all aeA. Therefore,
a(a + α*) e J, concluding that α2 e ϊ for all α e i . Therefore, Az g 7.

As a corollary we have

COROLLARY 13. Let A a topological ring with property (Y). Let
I be a closed, self-adjoint two-sided ideal of A with JSf(I) = (#)••
Then, I = A.

THEOREM 14. Let U be a closed Jordan ideal of S in a topo-
logical ring with property (Y) then β © J*f(B) = H is two-sided and
hence, dense in A.

H is a right ideal. We wish to show that it is a left ideal and
also self-adjoint. Then, Theorem 12 will apply.

Let W = (£f(B) Π S) φ B f] S. Now, xeWj implies xe(Bf] S)j.
Thus by Corollary 10 and Theorem 8, x e ^f(B) Π S and so x2 = θ*
Therefore, Wj is a nil Jordan ideal and by Theorem 1, ^f(W) = (0).
Thus, T7 = S. As W Q H f] S, we conclude that H Π S = S. There-
fore, α2 = (α + α*)α — α*αe H for all α G i , Linearizing this we have
for all a and c in A

ac + ca e S .

Hence, if α e i , δ 6 ΰ then there exists a net δα + dα —>α6 + δα with
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baeB, dae^f(B). Thus,

(ba - ba) + da —• ab

and so ab e H. As Jίf(B) is two-sided, we conclude that H is a left
ideal. However, we have just observed that a2e 3 for all aeA. By
the hypothesis on A we can conclude, as before, that A = H.

The density of H in Theorem 14 leads to the same sequence of
theorems as Theorems 3, 4, and 5 of [1]. We summarize these results
as

THEOREM 15. Let U be a closed Jordan ideal of S in a topological
ring A with property (Y) then

(i) B is a self-adjoint two-sided ideal of A with U S B.
(ii) C = U + [{(u, a)L \ue U, ae A}] is a closed two-sided ideal

of A and C Π S = U.

COROLLARY 16. A = Sφ[S,S] + So K.

Let U = S in Theorem 15, then C has the form of the right
side. By Corollary 6, £f(S) = (θ) and hence ^f(S + [S, S] + SoK) =
(θ). Corollary 13 then implies the conclusion.

COROLLARY 17. A = S 0 S ° K.

We see that (S°S)j = (θ) and from this that SoS is dense in S.
A generator of [S, S] has the form st — ts where s and t are in

S. As t e So S we can find a net #α = Σ?=i (X^ ^ J —* * with

Now,

sya y(xS )' 06 to ^

Consider a summand,

[s, (ua, va)j] = [s, ua] o va + ua o [s, va]

and note that the right side is in SoK. Therefore, [S, S] £ SoK.

We follow the outline of [4] in showing a decomposition for
topological rings with property (Y) which have dense socles (such
rings have AB dense in A). Let eA be a minimal right ideal, then
e*A also have this property. Let / be the intersection of all closed
self-ad joint two-sided ideals containing eA. Now, eel and so e* e I,
therefore, A(e + e*)A Q I, and so equality holds. Let L be a non-
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zero closed self-ad joint ideal of A contained in / then I = L. This
follows since either eA Π L = (θ) or eA Π L = eA. The latter yields
immediately L = I. While eA[\L — (θ) implies that e and hence
e* eJ*?(L). Thus, / g £f(L) and this leads to a contradiction. Now

since e and β* belong to the socle, ζ, then I = A(e + e*)A S ζ Π / .
Now A is a semiprime ring so the socle of I, ζ7, is ζ Π /. There-
fore, I has dense socle.

This argument forms the basis of the following theorem.

THEOREM 18. If A is a topological ring with property (Y) and
dense socle, then A is a topological direct sum of two-sided ideals I
each of which is an involutionally simple and closed ring with dense
socle. Moreover, the symmetric elements in I form a simple closed
Jordan ideal.

We have shown that each / is a closed self-adjoint ideal and in-
volutionally minimal closed in A. Now, in a semiprime ring it is
known that every nonzero ideal of I contains a nonzero ideal of A,
and therefore, I is involutionally closed simple as a ring. The density
of the socle together with the minimal property of I guarantees the
direct topological sum. We need only see that U = {s e I\ s* = s},
the set of symmetric elements of 7, is simple Jordan. Let G Φ (θ)
be a closed Jordan ideal of U. As U0 Uj is dense in S then G°S =
Go(U + Uj) S G°f/g G. That is, G is a closed Jordan ideal of A.
Letting E be the closure of the subgroup generated by

{(α, g)L\aeA, geG},

we conclude from Theorem 15 that G + E is an involutionally closed,
nonzero ideal of /. Thus, G = U completing the argument.

Finally, in this section we exhibit a topological ring with property
(Y) which is not an annihilator ring. Consider the ring of polynomials
in noncommuting indeterminates over C, the complex numbers, modulo
the ideal generated by xy — yx + 1. This ring is known to be a
simple ring, of characteristic 0, with identity and involution which,
furthermore, is an integral domain (not a division ring). The ring
with discrete topology becomes a topological ring with property (Y)
as S, because of simplicity, is a simple Jordan ideal. It is not an
annihilator ring since it is an integral domain.

It should be noted that Theorem 15 holds for the annihilator rings
of [1] as well.

S-Dual rings* Following in the vein of dual rings, as defined in
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[3], we define a ring A to be an S-dual ring if, and only if, A is a
semiprime topological ring with the following property:

( i ) A = 2A, any net {2xa} —> 0 implies {xa} —• 0
(ii) A has continuous involution;
(iii) (UJ)J = U for a closed Jordan ideal U of S.

We note quickly that Sj = (0) by Corollary 6 and Theorem 8.
Thus, (SJ)J = S and so if Az is dense in A then we see S-dual im-
plies property (Y).

THEOREM 19. Let A be an S-dual ring and U be a closed Jordan
ideal of S. Then, B is a two-sided self-adjoint ideal and A3 is con-
tained in B +

By Corollary 10, U = B n S. One readily observes that V =
{b + 6* I b e B} is a Jordan ideal of S. Let x e Uj. Then, by Theo-
rems 5 and 8, x e £?{B). For b e B, xb* = (6a;)* e(BΠ £f(B))* = (θ).
Thus, xeVj or ί/^g Vj. As, U S F, we conclude that F = Ϊ7.
Thus, for all 6 e J5, b + 6* 6 U7 S ΰ , and so, 6* e β. Thus, B is self-
adjoint and hence a two-sided ideal. H = δ φ ^f(B) then has the
property that Sf(H) = (β). Applying Theorem 12 we have the desired
conclusion.

COROLLARY 20. Lei A be an S-dual ring. Then every closed
Jordan ideal, U, of S is the intersection of S with a closed two-sided
ideal, /, of A.

The proof is immediate upon setting / = B in Theorem 19.

Idempotents related to Jordan ideals*

THEOREM 21. Let A be a semiprime ring, let U be a Jordan
ideal of S. Then either Uaζa (the annihilator of the socle) or U
contains an idempotent.

Let U Φ (θ). If e is a minimal idempotent then eB = eA or eB =
(θ). If the latter is true for all e then δ g ζ a . Also, ζ S Sfiβ) =
^f(U) and therefore [/gζα . Assume that ΰ g ζ 2 then it is well
known that B contains a minimal idempotent e. Now, if e is sym-
metric then (e, (l/2)e)j = ee U and the proof is complete. Thus, as-
sume e is not in S, then e*B = e*A (else e* e J*f{B) and as the latter
is self-ad joint, e e £f(B) Π B = (0)) as this ideal is minimal. Also,
(β + e*)eeB and so e*βeS. Thus, either e*eA = β*A or e*e = 0.
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Case 1. e*eA = e*A. This implies that e*e Φ θ. Let

T = {ί e β*A I e*βί = 0} . Then, I = e M o r Γ = (0).

Subcase 1. If Γ = e*A, then e*βe** = 0. Now suppose ee*A Φ (θ),
then ee*A — eA and so (θ) = e*eA = e*A, a contradiction. Therefore,
ee* = θ. Summarizing we have e and e*e e 5, ee* = 0. Thus,

(II) (β + e*e, β)7 = β + e* + 2e*e e J7

and the square

(III) (e + β* + 2β*β)2 = β + 3<?*e + β* + 2β*β € Z7 .

Thus, subtracting (III) from twice (II) we have that the symmetric
idempotent e + e* — e*β e Z7.

Subcase 2. Γ = (β) or e*ee*A — e*A. Thus, there exists z e e*A
such that e*ez = e*e and so that for all y e e*A, zy = y. In particular,

z e * = e* or, applying the involution, e = ez*. It now follows that
e*e(z — zz*) = <?. Thus, « — zz* e T, and hence z is a symmetric idem-
potent. As e*A = e*βA and e*β eB we have 2;eB. But, then s =
(jg, (l/2)z)j G C7". The desired conclusion.

Case 2. β*βA = (θ) which means that e*β = θ. Now, as noted
e* ί =5 (̂J5) so β*S = e*A. Hence, there exists a beB such that e* =
e*6. Now, (β + β*)&ei? and as ebeB we conclude e*eB. We are
now in the same position to argue on β* as we did previously on e,
and we conclude that the theorem is proved unless it is also the case
that ee* = θ. We immediately see that under these conditions e + e* e B
and is symmetric idempotent. To complete the argument we note
that

e* = (e + e*, —(e + e*)) e U .
\ 2 /j

COROLLARY 22. Let A be a semiprime ring, let ζα = (θ), then
every nonzero Jordan ideal of S contains an idempotent.

The author wishes to thank the referee for his suggestions re-
lative to the shortening of several arguments in this paper.
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