EXISTENCE OF A SPECTRUM FOR NONLINEAR TRANSFORMATIONS

J. W. Neuberger

Denote by S a complex (nondegenerate) Banach space. Suppose that T is a transformation from a subset of S to S. A complex number λ is said to be in the resolvent of T if $(\lambda I-T)^{-1}$ exists, has domain S and is Fréchet differentiable (i.e., if p is in S there is a unique continuous linear transformation $F=\left[(\lambda I-T)^{-1}\right]^{\prime}(p)$ from S to S so that

$$
\left.\lim _{q \rightarrow p}\|q-p\|^{-1}\left\|(\lambda I-T)^{-1} q-(\lambda I-T)^{-1} p-F(q-p)\right\|=0\right)
$$

and locally Lipschitzean everywhere on S. A complex number is said to be in the spectrum of T if it is not in the resolvent of T.

Suppose in addition that the domain of T contains an open subset of S on which T is Lipschitzean.

Theorem. T has a (nonempty) spectrum.

If T is a continuous linear transformation from S to S, then the notion of resolvent and spectrum given here coincides with the usual one ([1], p. 209, for example). Such a transformation T is, of course, Lipschitzean on all of S and hence the above theorem gives as a corollary the familiar result that a continuous linear transformation on a complex Banach space has a spectrum.

The set of all complex numbers is denoted by C.

Lemma. Suppose that $d>0, p$ is in S, Q is a transformation from a subset of S to S, D is an open set containing p which is a subset of the domain Q, Q is Lipschitzean on D and $(I-c Q)^{-1}$ exists and has domain S if c is in C and $|c|<d$. Then,

$$
\lim _{c \rightarrow 0}(I-c Q)^{-1} p=p
$$

Proof. Denote by M a positive number so that $\|Q r-Q s\| \leqq$ $M\|r-s\|$ if r and s are in D. Suppose $\varepsilon>0$. Denote by δ a number so that $0<\delta<\min (\varepsilon, 1 / 2)$ and $\{q \in S:\|q-p\| \leqq \delta\}$ is a subset of D. Denote by δ^{\prime} a positive number so that $\delta^{\prime}(\max (M,\|Q p\|))<\delta / 2$. Denote by c a member of C so that $|c|<\min \left(\delta^{\prime}, d\right)$. Denote $(I-c Q)^{-1} p$ by q, denote p by q_{0} and $p+c Q q_{n-1}$ by $q_{n}, n=1,2, \cdots$.

Then, $\left\|q_{1}-q_{0}\right\|=\left\|p+c Q q_{0}-q_{0}\right\|=|c|\left\|Q q_{0}\right\|<\delta / 2$. Suppose that k is a positive integer so that

$$
\left\|q_{m}-q_{m-1}\right\|<(\delta / 2)^{m}, m=1,2, \cdots, k .
$$

Then $\left\|q_{m}-p\right\| \leqq \sum_{j=0}^{m-1}\left\|q_{j+1}-q_{j}\right\| \leqq \sum_{j=0}^{m-1}(\delta / 2)^{j+1}<\delta, m=0,1, \cdots, k$ and hence

$$
\begin{aligned}
& \left\|q_{k+1}-q_{k}\right\|=\left\|c Q q_{k}-c Q q_{k-1}\right\| \\
& \quad \leqq|c| M\left\|q_{k}-q_{k-1}\right\| \\
& \quad \leqq|c| M(\delta / 2)^{k} \leqq(\delta / 2)^{k+1}
\end{aligned}
$$

Hence $\left\|q_{n}-q_{n-1}\right\| \leqq(\delta / 2)^{n}, n=1,2, \cdots$ and therefore q_{1}, q_{2}, \cdots converges to a point r of S. Note that $\left\|q_{n+1}-p\right\| \leqq \sum_{j=0}^{n}(\delta / 2)^{j+1}<\delta, n=$ $1,2, \cdots$ so that $\|r-p\| \leqq \delta$ and hence r is in D. But $\|r-(p+c Q r)\|=$ $\left\|\left(r-q_{n+1}\right)+\left(p+c Q q_{n}\right)-(p+c Q r)\right\| \leqq\left\|r-q_{n+1}\right\|+|c|\left\|Q q_{n}-Q r\right\| \leqq$ $\left\|r-q_{n+1}\right\|+|c| M\left\|q_{n}-r\right\| \rightarrow 0$ as $n \rightarrow \infty$. Hence $r=p+c Q r$, i.e., $(I-c Q) r=p$, i.e., $r=(I-c Q)^{-1} p=q$. Hence, $\left\|(I-c Q)^{-1} p-p\right\| \leqq$ $\delta<\varepsilon$. This proves the lemma.

Proof of theorem. Suppose the statement of the theorem is false. Then T has an inverse since if not, 0 would be in the spectrum of T. Denote by D an open set on which T is defined and is Lipschitzean. Denote by p a point of D different from $-T(0)$.

Define $f(\lambda)$ to be $(\lambda I-T)^{-1} p$ for all λ in C. Suppose b is in C. If q is in S and different from p denote

$$
\left.(1 /\|q-p\|)\left\{[b I-T)^{-1} q-(b I-T)^{-1} p\right]-\left[(b I-T)^{-1}\right]^{\prime}(p)(q-p)\right\}
$$

by $L(q)$. Denote by $L(p)$ the zero element of S and note that $\lim _{p \rightarrow p} L(q)=L(p)$ since $(b I-T)^{-1}$ is Fréchet differentiable at p. Denote $(b I-T)^{-1}$ by Q. If λ is in C, then

$$
(\lambda I-T)=\left[I-(b-\lambda)(b I-T)^{-1}\right](b I-T)
$$

and, since both $(\lambda I-T)^{-1}$ and $(b I-T)^{-1}$ exist and have domain S, it follows that $\left[I-(b-\lambda)(b I-T)^{-1}\right]^{-1}=[I-(b-\lambda) Q]^{-1}$ has the same properties and $(\lambda I-T)^{-1}=Q[I-(b-\lambda) Q]^{-1}$.

Hence, if λ is in C,

$$
\begin{aligned}
f(\lambda)-f(b)= & Q[I-(b-\lambda) Q]^{-1} p-Q p \\
= & Q^{\prime}(p)\left[[I-(b-\lambda) Q]^{-1} p-p\right] \\
& +\left\|[I-(b-\lambda) Q]^{-1} p-p\right\| L\left([I-(b-\lambda) Q]^{-1} p\right) .
\end{aligned}
$$

But $[I-(b-\lambda) Q]^{-1} p-p=(b-\lambda) Q[I-(b-\lambda) Q]^{-1} p$ so

$$
\begin{aligned}
(\lambda-b)^{-1} & {[f(\lambda)-f(b)] } \\
= & -Q^{\prime}(p) Q[I-(b-\lambda) Q]^{-1} p \\
& \quad+(|b-\lambda| /(\lambda-b))\left\|Q[I-(b-\lambda) Q]^{-1} p\right\| \\
& \times L\left([I-(b-\lambda) Q]^{-1} p\right) \rightarrow-Q^{\prime}(p) Q p
\end{aligned}
$$

as $\lambda \rightarrow b$ since $\lim _{\lambda \rightarrow b}[I-(b-\lambda) Q]^{-1} p=p$. Hence,

$$
f^{\prime}(b)=-\left[(b I-T)^{-1}\right]^{\prime}(p)(b I-T)^{-1} p .
$$

Now $\lim _{c \rightarrow 0}(I-c T)^{-1} p=p$. Denote by δ a positive number so that if $|c| \leqq \delta$, then $\left\|(I-c T)^{-1} p\right\| \leqq\|p\|+1$. Then if λ is in C and $|\lambda| \geqq 1 / \delta,\|f(\lambda)\|=\left\|(\lambda I-T)^{-1} p\right\|=|1 / \lambda|\left\|(I-(1 / \lambda) T)^{-1} p\right\| \leqq$ $\delta(\|p\|+1)$. Hence f is bounded. So, by Liouville's theorem ([1], p. 129, for example), f is constant, i.e., there is a point q in S such that if λ is in $C,(\lambda I-T)^{-1} p=f(\lambda)=q$, and so $\lambda q=p+T q$. Hence it must be that $q=0$, i.e., $p=-T(0)$, a contradiction. This establishes the theorem.

The author considers it likely that the statement of the theorem is true if the condition (in the definition of resolvent) that $(\lambda I-T)^{-1}$ be locally Lipschitzean is dropped.

Reference

1. K. Yosida, Functional analysis, Academic Press, New York, 1965.

Received December 12, 1968. The author is an Alfred P. Sloan Research Fellow.
Emory University

