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SINGULARITY OF GAUSSIAN MEASURES IN FUNCTION
SPACES WITH FACTORABLE COVARIANCE FUNCTIONS

J. YEH

Singularity of Gaussian measures fh and μz on the function
space RD of real valued functions x(t) on an arbitrary interval
D with factorable covariance functions rz(s, t), i.e., n(s, t) —
Ui(s)Vi(t) for s < t and Ti(s, t) — Vi(s)Ui(t) for s > t, i = 1, 2, is
treated. Local conditions on the factor functions uτ(t) and
vx(t) which insure the singularity of μγ and μ2 are given.

Consider the measurable space (RD, %) where RD is the space of
all real valued functions x(t) on a fixed but unspecified interval D of
the real line and % is the smallest σ-field of subsets of RD with respect
to which all real valued functions Y(t, x) — x(t) defined on RD with
parameter t e D are measurable. A probability measure μ on (RD, %)
is called a Gaussian measure on the function space RD if the stochastic
process Y(t, x) = x(t) on the probability space (RD, %, μ) with the
domain of definition D is a Gaussian process. From the viewpoint of
stochastic processes if X(t, ω) is a stochastic process on an arbitrary
probability space (Ω, 33, P) with the domain of definition D then a
probability measure μx is induced on the measurable space (RD, g) by
embedding the sample functions X(», ω), ω e Ω, in RD. The stochastic
process Y(t, x) = x(t) defined on the probability space (RD, %, μx) with
the domain of definition D is equivalent to the original process X(t, ω)
so that if X(t, ω) is a Gaussian process so is Y(t, x). Thus a Gaussian
measure on (RD, g) can be defined equivalently as the probability mea-
sure μx induced on (RD, %) by a Gaussian process X(t, ω).

J. Feldman [3] and J. Hajek [4], [5] showed independently that
any two Gaussian measures are either equivalent or singular. In [7]
we applied Hajek's criterion for equivalence or singularity to investi-
gate the singularity of Gaussian measures induced by Brownian motion
processes with nonstationary increments. In the present paper we
consider the singularity of Gaussian measures μx and μ2 on (RD, g)
for which the covariance functions r^s, t) of the stochastic process
Y(t, x) — x(t) are factorable. Our main result is the following theorem

THEOREM. Let μι and μ2 be Gaussian measures on (RD, %) with
.zero mean functions and factorable covariance functions r^s, t), i =
1, 2, given by

r(s t) = \Ui^Vi^ * ^ «, M e A * = 1, 2
" UWUϊt) s^t,s,teD,i = 1,2
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where u{(t) and v{(t) are nonnegative functions on D satisfying

(1.2) tt^H*') - Wi(ί>i(ί") ^ 0 «', t" eD,t' < t", i = 1, 2 .

7/ ί/z r̂β exists toe D such that v{(t) > 0 cmcZ ^(^[^(O]"*1 aw strictly
increasing on (ί0, ί0 + <?) /or some <5 > 0, £Λβ rΐg/zi derivatives D+Ui(t0)
and D+Vi(t0) of u^t) and v^t) at t0 exist and

(1.3) Ui(t0) = 0, D + ^(ί 0 ) = λ< > 0 , i = 1, 2

(1.4) v4(ί0) = r« > 0 , i = 1, 2

ί/̂ βn ί/te condition

\rt Φ λ2r2

implies the singularity of μι and μ2.

We remark that the above theorem can also be stated in terms of
the left derivatives of u^t) and v^t). When v^t) are positive on D
the condition (1.2) is equivalent to the condition that ^( i) !^*)]"" 1 be
nondecreasing on D. For a symmetric function r(s, t), s,teD, defined
as in (1.1) by means of two nonnegative functions u(t) and v(t) on D
to be the covariance function of a Gaussian process it is necessary and
sufficient that for any tu "-ytneD,t1< < tn, the n x n matrix
[f(£ft> h), k, I = 1, 2, , n] be nonnegative definite. The condition (1.2)
is equivalent to this condition (see p. 525, [1]). In particular for every
n x n matrix [r(tk, tt), k, I = 1, 2, , n] to be positive definite it is
necessary and sufficient that u(t) and v(t) be positive on D and the
strict inequality in (1.2) hold. In connection with our theorems we
mention an earlier result by G. Baxter, corollary [1], which showed
that if Ui(t) and v{(t) have bounded second derivatives on D = [0, 1]
then for the two subsets Eif i = 1, 2, of RD defined by

- j WK(i) - MtM

the equalities μ^E^ = 1, i = 1, 2, hold so that the condition

) ~ uz{t)v'2{t)}dt

implies J5Ί n E2 = 0 as well as μf(2£y) = δ ί y .
The proof of the theorem is given in § 3. For some examples of

factorable covariance functions to which our theorem can be applied
see J. A. Beekman, pp. 805-806, [2].
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2* A lemma concerning the inversion of a class of symmetric

matrices*

LEMMA, Given real or complex numbers

« i , α 2 , .-, a n a n d b u 6 2 , • • • , & » .

Let M = [m^/, &, £ = 1, 2, , n] be an n x n symmetric matrix with
entries

MM = Λfcδi /or k <* I , k,l = l,2, ,n.

Let

Cj = αi6i_1 - αy-i&y i = 2, 3, , n

Dj = α^^g — dj-Jbj j = 3, 4, , n

then

det M - ax6w Π Cj .
j—2, ',n

For the determinants Mka of the minor matrices corresponding to
the entries mkΛ we have

Muι = azbn Π Cj , MU2 = aj>n Π Cj ,
3=3,•">n i — 3 , ,%

M M = 0 /or Z = 3, , n , Mkik = aJ>nDk+1 Π C, ,
y=2, ,%

Λίfc,fc+i = ^ δ , Π C^ , Jlίfc.ί = 0 for I = k + 2, . . . , n ,
i2

for k = 2, , n — 1, ami finally

Mn,n = a.δ^i Π C;

Iw particular M is invertible if and only if aί9 bny C3 Φ 0 /or j —
2, , n. In this case

(2.1) M-1 - Γ (~l)k+l Mkίl, k, I = 1, 2, ., n\ .
L detM J

The proof of this lemma is lengthy and will not be given here.
We merely mention that the expression (2.1) for Mr1 can be verified
by direct multiplication with M.

3* Proof of the theorem* The /-divergence of two probability
measures P and Q on a measurable space (Ω, S3) is defined to be
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w Γ, dP , Λ l , jp [\ dQ , Λ l w h e n P and Q

(3.1) J (P f β )= Eil°gΊQiω)\ + Eil0SΊΪPiω)\ are equivalent
Co otherwise

where EP and J&Q denote integration with respect to the probability
measures P and Q.

Let g be the smallest σ-field of subsets of the function space RD

with respect to which the real valued function Y(t, x) — x(t) on RD is
measurable for every t e D. For tlf tneDίt1 < < tn, let

where S5n is the α-field of Borel sets in the ^-dimensional Euclidean
space Rn, and let

(3.2) %h...tu = {PTt..t%(B),BeW).

Then %h>..tn is a σ-field of subsets of RD and g is the σ-field generated
by the union of all the σ-fields S«r.. ίn. Given two probability measures
/i<,i = l,2, on (i2D, g), let ^,^...^ = ^ 1 ^ . . . ^ , i.e., the restrictions of
μ{ to the σ-ίield %h...tn. Let J = J(μίt μ2) and

According to J. Hajek [4], [5], J = &wpJtί...tn where the supremum is
taken over the collection of {t19 ••• tn), i.e., over the collection of all
the α-fields gtl...tΛ, and J < co implies the equivalence of μt and /̂ 2

Furthermore if μL and JW2 are Gaussian then J — oo implies the singu-
larity of μt and μ2.

Let tly , tn e Z?, t0 < ίi < < ίn < ô + S. For the fixed {ίlf •••,«»}
there is a one-to-one correspondence between the members of %tv~tn and
the members of 93W according to the definition (3.2). Since the measures
μif i = 1,2, are Gaussian, i.e., the stochastic process Y(t, x) = x(t) is a
Gaussian process on each of the two probability spaces (RD, %,μ^, we
have

(3.3) μi(P7^tn(B)) - Φi9h...tn(B) , J5 e » , i = 1, 2

where Φittι...tn are ^-dimensional (regular or degenerate) normal distri-
butions on (Rn, SSn).

Now since ^(ί) > 0 and ^ ( ^ [ ^ ( ί ) ] " 1 are strictly increasing on
(ίo> ίo + δ) we have

uWMt') - Mt'Mt") > 0 for ί'f t" e (ί0> ί0 + δ), f < Γ, i = 1, 2 .

Then the covariance matrices [r^ί*, ί,)> fc, ϊ = 1, 2, , w], i = 1, 2, of
the ti-dimensional normal distributions Φith...tn are positive definite and
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consequently Φih-tn a r e regular with density functions given by

(3 4) = -l(^-^- 4
where Wiftv..tn = [wifktl, Jc, I = 1, 2, , n] are n x n symmetric and
positive definite matrices with entries

(3.5) witka = UiitJViiti) for k ^ I, k, I = 1, 2, , w, i = 1, 2 .

Now

(3.6) Φi,h...fJB) = )BΦltv..β)mL{dξ) , J5 e SB , i = 1, 2

where mL is the Lebesgue measure on (Rn, 93n). The regularity of
Φi,tv. tn and Φ2>h...tn implies their equivalence. This in turn implies
the equivalence of μUtv- tn and μ2,tί..-tn on account of the one-to-one
correspondence between the members of %tί...tn and the members of
33U and the relation (3.3) between μi>h...tn and Φ f , ί 2 . . . v From (3.6)
and (3.4) we obtain the Radon-Nikodym derivatives

rfM. . . ΛX) ~ ~M7~7~(i) ~ Φ'.. . <t\
(3.7)

I ΠPt I/I/. . . I. .» I 1

^Ji-.. - ^ V U?>f)f, i = l, 2 .

According to (3.1), (3.3) and (3.7)

JH-tn = E»2,tv~tn\

(3.8)

= E MV t%

In evaluating the integrals in (3.8) we quote the well known equality
that for any n x n matrices A and B where A is symmetric and B
is positive definite

(3 9) wrhϊwLiAS'ξ)exp{-iiB~lξ>ξ)hm = TriC)

where C = AB and Tr(C) = Σί=i c*,» for C = [c4(I> A, i = 1, 2, ., n].
Applying (3.9) to (3.8) remembering (3.7), (3.6) and (3.4)

(3.10) JH...tn = \τx[W7,\v..tnWMv..tn + Wl\v..tWuh...tn ~ 21] .

We proceed to evaluate the diagonal entries of the two product
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matrices in (3.10). Let us consider Wr,i1...tnWi,h...tn for example. The
entries of Wi,tl...tn are given by (3.5). Let Mitk,ι be the determinant
of the minor matrix corresponding to witka. According to our lemma,
§2, the 1st diagonal entry of Wrtϊv..tnW2>h...tn is given by

MuuιW2tUl ~ Muu2W2tU2

det Wlth...tn

(3.11) = [u^M

The &-th diagonal entry, k Φ 1, n, is given by

-Mltk_ltkw2>k_ltk + Mukikw2ΛΛ - Mitk,k+1w2>ktk+1

det Wuh...tn

(3.12)

Finally, the n-ih diagonal entry is given by

~MUn^nw2 x + Muntnw2>n,n = [-u

det Wlftl...tn

(3.13)

Now according to (1.3)

Ui(t) = λ<(ί - ί0) + e,(ί — t0) where lim ε< = 0, i = 1, 2 .
t l ί 0

For fixed n let p be a sufficiently large positive integer so that
tk = to + k/p e (ί0, ί0 + 8) for A; = 1, 2, , ̂ . Then

( J U 4 ) «Kt.) | ( X , + εd

k = 1, 2, •••, w, 2)~> oo, i = 1, 2 .

From (1.4), writing v{ for JD+v<(ίo),

(3.15)

k = 1, 2, w, 39 —* oo, % = 1, 2 .

If we apply (3.14) and (3.15) to (3.11), the 1st diagonal entry of

Wz\v'.tnW*,tv..tn is reduced to
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(3.16)

Similarly the λ>th diagonal entry, k Φ 1, n, is reduced to

λfλ2r?r2j9-3[-{(fc + 1) - k}(k - 1) + {(k + 1) - (k - 1)}

( 3 . 1 7 ) k - { k - ( k -

and finally the n-th diagonal entry is reduced to

(3.18) X\r\p-*{n - (n -

From (3.16), (3.17) and (3.18)

Tr[Wτ,\v..tnW2,h...tn) = / ? ? γ^-{ 1 + 0 ( !)} » ί>-

Similarly

Substituting these estimates in (3.10) we obtain

Since ti is fixed, wo(l) —•0 as ^ —> oo. Thus for sufficiently large p
chosen for the given n, no(l) is as small as we wish. Therefore

sup Jh...tn = °°

This proves the singularity of μι and μ2.
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