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SINGULARITY OF GAUSSIAN MEASURES IN FUNCTION
SPACES WITH FACTORABLE COVARIANCE FUNCTIONS

J. YEH

Singularity of Gaussian measures 2, and ¢, on the function
space R” of real valued functions x({) on an arbitrary interval
D with factorable covariance functions r.(s, t), i.e., ri(s, ) =
u;(s)v:(t) for s < t and 7i(s, t) = vi(s)u(t) for s > ¢t,1=1,2, is
treated. Local conditions on the factor functions wu,(t) and
v,(t) which insure the singularity of /, and /. are given.

Consider the measurable space (R”, §) where R” is the space of
all real valued functions x(¢) on a fixed but unspecified interval D of
the real line and ¥ is the smallest o-field of subsets of R” with respect
to which all real valued functions Y(¢, ) = x(t) defined on R” with
parameter ¢e D are measurable. A probability measure g on (R”, §)
is called a Gaussian measure on the function space R? if the stochastic
process Y(t,x) = 2(t) on the probability space (R?, ¥, ) with the
domain of definition D is a Gaussian process. From the viewpoint of
stochastic processes if X(¢, ) is a stochastic process on an arbitrary
probability space (2,98, P) with the domain of definition D then a
probability measure g, is induced on the measurable space (R”, F) by
embedding the sample functions X(-, w), w € 2, in R?. The stochastic
process Y(t, x) = x(t) defined on the probability space (R?, &, ¢x) with
the domain of definition D is equivalent to the original process X(t, ®)
so that if X(¢, w) is a Gaussian process so is Y(¢, ). Thus a Gaussian
measure on (R?, ¥) can be defined equivalently as the probability mea-
sure p, induced on (R”, ¥) by a Gaussian process X(t, ®).

J. Feldman [3] and J. Hajek [4], [5] showed independently that
any two Gaussian measures are either equivalent or singular. In [7]
we applied Hajek’s criterion for equivalence or singularity to investi-
gate the singularity of Gaussian measures induced by Brownian motion
processes with nonstationary increments. In the present paper we
consider the singularity of Gaussian measures g, and p, on (R”, §)
for which the covariance functions 7,(s,t) of the stochastic process
Y(t, ®) = x(t) are factorable. Qur main result is the following theorem

THEOREM. Let p, and p, be Gaussian measures on (R°, §F) with
zero mean functions and factorable covariance functions ri(s,t), t =
1, 2, given by

u;(s)v;(t) szt s teD,1=1,2

1.1 i ,t ==
.1y T, 1) v(8)u;(t) s=t,s,teD,t=1,2
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where u(t) and v, (t) are nonnegative functions on D satisfying
1.2)  w,(t")vi(t) — u(t)v,(t") = 0 t,t"eD,t' <t',ti=1,2.

If there exists t,e D such that vi(t) > 0 and u,(t)[v(t)]™ are strictly
inereasing on (fy, t, + 6) for some 6 > 0, the right derivatives D+ u(t,)
and D*v(t,) of ut) and v,(t) at t, exist and

(1.3) u(t) = 0, DTuy(t)) =1 >0, 1=1,2
(1.4) v(t) =7r; >0, 1=1,2
then the condition

Ny 7 ATy

implies the simgularity of p, and ..

We remark that the above theorem can also be stated in terms of
the left derivatives of w,(t) and v;(¢). When wv,(t) are positive on D
the condition (1.2) is equivalent to the condition that u,(t)[v,(¢)]™ be
nondecreasing on D. For a symmetric function (s, t), s, t € D, defined
as in (1.1) by means of two nonnegative funections w(t) and »(t) on D
to be the covariance function of a Gaussian process it is necessary and
sufficient that for any ¢, ---,¢t,eD,t < --- < ¢, the n X n matrix
[r(te, ), k, 1 =1,2, -+, n] be nonnegative definite. The condition (1.2)
is equivalent to this condition (see p. 525, [1]). In particular for every
n X n matrix [r(¢, t),k, 1 =1,2,---,n] to be positive definite it is
necessary and sufficient that w(¢) and v(f) be positive on D and the
strict inequality in (1.2) hold. In connection with our theorems we
mention an earlier result by G. Baxter, corollary [1], which showed
that if «;(¢) and v,(¢t) have bounded second derivatives on D = [0, 1]
then for the two subsets E;, 7 = 1, 2, of R? defined by

s - frermE4) T

= [ttty — wittyoinnas)

1
0

the equalities p¢(E;) = 1,7 =1, 2, hold so that the condition
[ eyt — weicenae = | uievg®) — wooione

implies E,\ N E, = @ as well as y,(E;) = d,;.

The proof of the theorem is given in § 3. For some examples of
factorable covariance functions to which our theorem can be applied
see J. A. Beekman, pp. 805-806, [2].
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2. A lemma concerning the inversion of a class of symmetric
matrices.

LEMMA. Given real or complex numbers
Apy Qpy =00y Ay and bu bZ!..'ibn'

Let M =[m,,;,k,1=1,2,---,n] be an n X n symmetric matriz with
entries

My, = b, Jor E<1, E,1=1,2,---, 1.
Let
C;=a;b;_, — a;_b; 1=2,8,---,1m
D;=ab; ,—a;b; =34 -, n
then
det M =ab, II C;.

For the determinants M, of the minor matrices corresponding to
the entries m,, we have

M1,1 = afzbn. H Cj ’ M1,2 = albn. H Cj ’
G=3y00sm G=38,0ne, n
Ml,l = 0 fOT‘ Z = 3, e, M, Mk,k = alank-H .AH Cj y
EETEN
Mk,k+1=a'1bn'2]_—.[ CJ', Mk,l:Ofofrl:k“"z""sn’
j=2,ym
JFk+1

for k=2, .-.'n — 1, and finally
Mn,n = albn——l H Cj .
j=2 1

In particular M is invertible vf and only if a,b,, C; = 0 for j =
2, ««o,m. In this case

2.1) M = [%?J’%Mm Bl=1,2, - n] .

The proof of this lemma is lengthy and will not be given here.
We merely mention that the expression (2.1) for M~ can be verified
by direct multiplication with M.

3. Proof of the theorem. The J-divergence of two probability
measures P and @ on a measurable space (2, B) is defined to be
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dP dQ when P and Q
(8.1) J(P,Q) = EP[IOg dQ (w)] + EQ[IOg dP (w)] are equivalent
©0 otherwise

where E, and E, denote integration with respect to the probability
measures P and Q.

Let ¥ be the smallest o-field of subsets of the function space R”
with respect to which the real valued function Y(¢, x) = (t) on R” is
measurable for every teD. For ¢, ---t,eD,t, < --- <, let

Dyt (X)) = [(ty), -, x(ta)] reR?
Dipve,(B) = {we R [x(), « -+, 2(t)]e B}  Be®”

where 8" is the o-field of Borel sets in the n-dimensional Euclidean
space R*, and let

(3.2) Fiot, = (D7t (B), Be B} .

Then ..., is a o-field of subsets of R” and % is the o-field generated
by the union of all the o-fields %,....,. Given two probability measures
M1 =1,2, on (R®, ), let fi ..., = 1| Bspons,» i-€., the restrictions of
Y to the o-field %,....,. Let J = J(x, 1) and

J‘l"‘tn = J(lal'tl“'tn’ ‘uz’tl"'tn) .

According to J. Hajek [4],[5], J = sup Jy,...t, where the supremum is
taken over the collection of {¢,, --- t,}, i.e., over the collection of all
the o-fields ,,....,, and J < c implies the equivalence of p, and p,.
Furthermore if g, and p, are Gaussian then J = « implies the singu-
larity of g, and p,.

Lett, -, t, €D, t,<t, <+ve<t,<t,+ 0. For the fixed {¢,, -+ -, t,}
there is a one-to-one correspondence between the members of §; ..., and
the members of B" according to the definition (3.2). Since the measures
M, © = 1,2, are Gaussian, i.e., the stochastic process Y(¢, ) = «(t) is a
Gaussian process on each of the two probability spaces (R?, ¥, t;), we
have

(3.3) P00 (B) = i, (B),  BeBri=1,2

where @,, ..., are n-dimensional (regular or degenerate) normal distri-
butions on (R", B").

Now since v;(t) > 0 and wu;(f)[vi(t)]™* are strictly increasing on
(o, o + 0) we have

w (P )i (t) — wi(P)v:i(t"”) >0 for ', t"e(t, bt +0), ' <t,1=1,2.

Then the covariance matrices [r:(t;, ), k, 1 =1,2, -+, n],% =1, 2, of
the n-dimensional normal distributions D;,,...., are positive definite and
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consequently @;, ..., are regular with density functions given by

Dyt (8)

3.4) _ 1 1 0 s
— {(271_)" det Wi,tl-'-tn}l/z exp{ 2 (Wfi,tp..t,ngy E)}’ S S R ] 1= 1, 2

where Wi...., = [Wir, k1 =1,2,---,n] are n X n symmetric and
positive definite matrices with entries

(3.5) Wi, = wi(t)vi(t) for k<1l kl=12 -+, mi=12.
Now

(3.6) i, (B) = Snn@g,tl...tn(é)mL(dE) ,  Be®i=1,2

where m, is the Lebesgue measure on (R", B"). The regularity of
Dyy,...t, and @,, ., implies their equivalence. This in turn implies
the equivalence of ft,..., and f4,.., on account of the one-to-one
correspondence between the members of Bsy-et, and the members of
B" and the relation (3.3) between ..., and 9;,,...,. From (3.6)
and (3.4) we obtain the Radon-Nikodym derivatives

At s, @) = dD;,,...., ) = AR (3]
Altisy..r,, in,tl---tn ' Dyt (8)
(8.7) det W, \ '
i’tl“'tn 1/2 an s
“dEt_v‘V_—] X0 { G Wir, = Wil JoO) = 12

According to (3.1), (3.3) and (3.7)

Jtl---tn = E’I‘z't1 [log M(m)] + E,,, tyeeet, Iog[ ap,, tyeeety, (x)]

= P o8 GG |+ B 1o el . Zﬁsi]

In evaluating the integrals in (3.8) we quote the well known equality
that for any »n x n matrices A and B where A is symmetric and B
is positive definite

1 L g _
(49 e w46 ) exp {— (B 9m(a) = Tr)

where C = AB and Tr(C) = 3t ¢, for C = [ep,, k1 =1,2, -+, n].
Applying (3.9) to (3.8) remembering (3.7), (3.6) and (3.4)

(8.10) J,.., = %Tr[ Wihoot Wononr + Wik W, — 211 .

We proceed to evaluate the diagonal entries of the two product
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matrices in (3.10). Let us consider Wii.., W,,,..., for example. The
entries of W, .., are given by (3.5). Let M;,, be the determinant
of the minor matrix corresponding to w;,,. According to our lemma,
§2, the 1st diagonal entry of Wii... W.,,..., is given by

M1,1,1w2,1,1 _ M1,1,2w2,1,2
det W,...e,
(3'11) = [ul(tZ)vl(tn)u’2(tl)v2(tl) - ul(tl)vl(tn)uZ(tl)vZ(t2)]
JuE)vEHut)v(E) — wt)v(E} .

The k-th diagonal entry, k == 1, n, is given by

=M, s W ise + M cWo,ne — My Wa, k1
det W,,,,...,

= (&) (E ) — {w (et )0i(E) — Ua(E)0u(Err)}sa(Ei1)V(24)
F {u (e ) V(b)) — Uale)Vu(Er ) }ra(Ee)Vo(E1)
(3.12) — {u ()0 (Ee—r) — wi(ter)i(E0)}
*Un() Vet ) ][, ()0, (E ) 0 (B) 0 (Ber)
— Uy (L) EHUu (1)) — (B0 D

Finally, the n-th diagonal entry is given by

— M, 1, Wsny,n + MW,
' Px( X3 X3 sNI N s NN — _ul t v t” /u" tn—l /v tn
det W,,...... [—w ()0t usltn ) velt)

(3.13)  + w,()vi(ta ) Ua(E)Va(E) [0 (B0 (E){2s(E0)01(E)
- ?’l’l(tn——l)’vl(tn)}]~1 .

Now acecording to (1.3)

ut(t) = 7\,¢(t - t(]) + et(t - tO) Whel‘e lim 6,,; = 0, ?: = 1, 2 .

tlty
For fixed n let p be a sufficiently large positive integer so that
t,=t,+ klpe(ty,t, +06) for k=1,2, -+, m. Then

k s
u; = " (. N — i ),
(3.14) () O + &) = B={1 + o(1)}

k=12 «c,n,p—>x,1=12,

From (1.4), writing v, for D*v,(t,),

3.15) vty =1+ k ’;‘ {1+ o)} = fri{l + O(—Z—)} ,

E=1,2,+cem,p—o0,1=1,2,

If we apply (3.14) and (3.15) to (3.11), the 1st diagonal entry of
by ety Wepeyor, 18 Teduced to
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@.1g e - Uity ot + o( )}

= 2"1 4 o(1)) .
Nrip=(2 — {1 + 0(1)}{1 + o<i>} My

p
Similarly the k-th diagonal entry, k = 1, n, is reduced to

M p [ —{(k + 1) — k}(k — 1) + {(k + 1) — (£ — 1)}
MripH{k — (k — D}{(k + 1) — k}

(3.17) k— {k — (b — DML + o)} {1 + O 2~
x v ol = 2721 4 o(1))

1+ 0(1)}{1 + o(%)} My

and finally the n-th diagonal entry is reduced to

M7 —(n — 1) + nH{l + 0(1)}{1 + O(%»

(3.18) Nrip~Hn — (n — DHL + "(1)}{1 + 0(%)}

— %2""_2{1 + o(1)} .

171

From (3.16), (3.17) and (3.18)

T AWk Won ] = n%“z’—:&{l +o(l)}, p—oco.

1/’1

Similarly

T Wikt Wegoo | = n%;’:—z{l to)}, p—oo.

20 2

Substituting these estimates in (3.10) we obtain

P M7
J. . :ﬁ{]/_z_a_ 1—2}2+n01 , — 0o,
et g Ty o' @D P

Since n is fixed, no(1) -0 as p— . Thus for sufficiently large »
chosen for the given 7, no(l) is as small as we wish. Therefore

Sup Jtl"'tn = oo ,
This proves the singularity of g, and ..

BIBLIOGRAPHY

1. G. Baxter, A strong limit theorem for Gaussian processes, Proc. Amer. Math. Soc.
7 (1956), 522-527,



554 J. YEH

2. J. A. Beekman, Gaussian processes and generalized Schroedinger equations, J. Math.
Mech. 14 (1965), 789-806.

3. J. Feldman, FEquivalence and perpendicularity of Gaussian processes, Pacific J.
Math. 8 (1958), 699-708.

4. J. Hajek, A property of J-divergence of marginal probability distributions, Czechos-
lovak Math. J. 8 (1958), 460-463.

5. ——, On a property of normal distributions of an arbitrary stochastic process
(in Russian), Czechoslovak Math. J. Vol. 8 (1958), 610-618.

6. A. M. Yaglom, On the equivalence and perpendicularity of two Gaussian probability
measures in function space, Proceedings of the Symposium on Time Series Analysis,
held at Brown University, 1962, 327-346.

7. J. Yeh, Singularity of Gaussian measures on function spaces induced by Brownian
motion processes with mon-stationary increments, (to appear shortly in the Illinois J.
Math.)

Received April 3, 1969. This research was supported in part by the National
Science Foundation Grant NSF GP-8291

UNIVERSITY OF CALIFORNIA, IRVINE





