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WEAKLY HYPERCENTRAL SUBGROUPS OF
FINITE GROUPS

DONALD C. DYKES

In this article the study of generalized Frattini subgroups
of finite groups, developed by J. C. Beidleman and T. K. Seo,
is continued. We call a proper normal subgroup H of a finite
group G, a special generalized Frattini subgroup of G provided
that G = NG(A) for each normal subgroup L of G and each Hall
subgroup A of L such that G = HNG(A). Z. Janko proved that
a subnormal subgroup K of a finite group G is π-closed, π is
a set of primes, whenever K/(Knφ(G)) is π-closed, where
φ(G) denotes the Frattini subgroup of G. We prove that a
subnormal subgroup K of a finite group G is π-closed when-
ever KI(Kf)H) is π-closed where H is a special generalized
Frattini subgroup of G. From this result we prove that a
proper normal subgroup H of a finite group G is a special
generalized Frattini subgroup of G if and only if i f is a
weakly hypercentral subgroup of G.

The properties of weakly hypercentral subgroups were developed
by R. Baer. We obtain some of Baer's results in a different manner
by using special generalized Frattini subgroups, and we also extend
some of the properties of φ(G) to the class of generalized Frattini
subgroups.

Some examples of special generalized Frattini subgroups of a
finite group G are the Frattini subgroup Φ(G), the center Z(G) of a
nonabelian group G, and the intersection L(G) of all self-normalizing
maximal subgroups of a nonnilpotent group G.

2* Notation*

G will always denote a finite group.
I GI denotes the order of G.
G: H\ is the index of the subgroup H in G.

Hx = x~ιHx where x e G and H ^ G.
Z(G) is the center of G.
Z*(G) is the hypercenter of G (i.e., the terminal member of the

upper central series of G).
G' denotes the commutator subgroup of G.
D(G) denotes the hypercommutator of G (i.e., the terminal mem-

ber of the lower central series of G).
NG(H) denotes the normalizer of H in G.
φ(G) is the Frattini subgroup of G.
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If π is a set of primes, then πf is the set of primes not in π.
If n is a positive integer and if π is a set of primes, then n is

a 7r-number provided that each prime divisor of n is in π.
The element x of G is a π-element if and only if (x | is a

7Γ-number.
G is a π-group provided that each of its elements is a π-element.
G is π-closed if the totality of ττ-elements in G forms a subgroup

of G.
If H^ G, then i ϊ is a Hall π-subgroup of G(£Γ e Hall,(G)) if H

is a 7r-group and if |-ff| and \G:H\ are relatively prime.
If H ̂  G, then i ϊ is a Hall subgroup of G provided that | if |

and \G:H\ are relatively prime.
L(G) is the intersection of all self-normalizing maximal subgroups

of G; set L(G) = G if G is nilpotent.

3* Special generalized Frattini subgroups* The concept of a
generalized Frattini subgroup was developed in [3]. Recall that a
proper normal subgroup H of a group G is called a generalized
Frattini subgroup of G if and only if G = NG{P) for each normal sub-
group L of G and each Sylow p-subgroup P of L, p is a prime, such
that G = HNG(P). We denote the collection of all generalized Frattini
subgroups of G by g.f. (G).

DEFINITION 3.1. A proper normal subgroup H of a group G is
called a special generalized Frattini subgroup of G provided that
G = NG(A) for each normal subgroup L of G and each Hall subgroup
i of L such that G = HNG(A). We denote the collection of all
special generalized Frattini subgroups of G by s.g.f. (G).

Note that it follows immediately that if He s.g.f. (G), then
ifeg.f. (G). If ifeg.f. (G), then it is not necessary for H to be
in s.g.f. (G). In order to see this we give the following example
which will also prove useful to us in other contexts.

EXAMPLE 3.2. (See 9.2.14 of [6] and Example 3.3 of [3]). Let
H = P x K where P is the Klein four-group and K is cyclic of order
7. Let G be the relative holomorph of H by an automorphism of H
of order 3 which acts as an automorphism of order 3 on P and on
K. Then | G | = 84, and G = PKQ where Q e Syl3 (G) is such that
Nσ(Q) = Q. Also P and K are normal in G. We note that both
P and K are maximal generalized Frattini subgroups of G. Their
product PK is not a generalized Frattini subgroup of G. Since KQ
is a Hall subgroup of G which is not normal in G, it follows that
P is not a special generalized Frattini subgroup of G.
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If θ is a homomorphism of G onto PQ with kernel K such that
θ restricted to P is the identity on P, then P e g.f. (G), but Pθ $ g.f. (Gθ).
This shows that a homomorphism does not necessarily preserve gener-
alized Frattini subgroups even if its kernel is a generalized Frattini
subgroup.

We note that if G is a nilpotent group, then every proper normal
subgroup of G is a special generalized Frattini subgroup of G.

THEOREM 3.3. Let Heg.ΐ. (G), let L be a normal subgroup of
G, and A be a nilpotent Hall π-subgroup of L such that G — HNG(A).
Then A is a normal subgroup of G.

Proof. Let peπ and P be the unique Sylow p-subgroup of A.
Since A is a Hall subgroup of L, it follows that PeSylp(L). Since
NG(A) ^ NG(P), we see that G = HNG(P). Thus P is normal in G.
Therefore, each Sylow subgroup of A is normal in G, and so A is
normal in G.

Theorem 3.3 cannot be improved by requiring A to be only
supersolvable instead of nilpotent. To see this let G be the group
of order 84 of Example 3.2. Then P is a generalized Frattini sub-
group of G, and KQ is a supersolvable Hall subgroup of G such that
G - PNG(KQ), but G Φ NG(KQ).

We now prove a few basic theorems about special generalized
Frattini subgroups.

THEOREM 3.4. Let if e s.g.f. (G). Then
( i ) H is nilpotent,
(ii) If K is a normal subgroup of G that is contained in if,

then Ke s.g.f. (G),
(iii) ίfy(G) e s.g.f. (G),
(iv) // HZ(G) < G, then HZ(G) e s.g.f. (G).

Proof. ( i ) Let P e Sylp (if) where p is a prime. Then G =
HNG(P), so P is normal in G. Thus H is nilpotent.

(ii) Let K be a normal subgroup of G contained in H. Let L
be a normal subgroup of G and A e Hall* (L) such that G = KNG(A).
Then G = iϊΛ^A) which implies G = JV*(A). Thus Ke s.g.f. (G).

(iii) (̂G) is the set of nongenerators of G, hence Hφ(G) e s.g.f. (G).
(iv) Since iί(G) ^ #G(A) for any subgroup A of G, (iv) follows

easily.

COROLLARY 3.5. ( i ) Φ(G) e s.g.f. (G).
(ii) If G is nonabelian, then Z(G)es.g.f. (G).
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Recall that a group G is said to be π-closed, π is a set of primes,
provided that the set of π-elements in G forms a subgroup of G.
The following properties are equivalent for the group G: the group
G is π-closed; G has a normal Hall π-subgroup; G has a unique
maximal ττ-subgroup. It is easy to show that subgroups and homo-
morphic images of π-closed groups are also τr-closed.

If H is a normal subgroup of G such that H is a π-group and
G/H is π-closed, then clearly G is π-closed. If, however, H and
G/H are π-closed, then it is not necessary for G to be π-closed.
Even if Heg.f.(G) and G/H is π-closed, G may not be π-closed.
For let G be the group of order 84 of Example 3.2. If π = {3, 7} and
PeSyl2(G), then Peg.f. (G) and G/P is a π-group. However, G is
not π-closed. We are thus led to make the following definition.

DEFINITION 3.6. The proper normal subgroup H of G is said to
satisfy property (Nx), π is a set of primes, if and only if for any
normal subgroup K of G containing H such that K/H is π-closed,
then K is π-closed.

THEOREM 3.7. If Hes.g.ΐ. (G), then H satisfies property (Nπ)
for any set of primes π.

Proof. Let iϊes.g.f. (G), and let K be a normal subgroup of G
that contains H such that K/H is π-closed, where π is a set of
primes. Then K/H has a unique Hall π-subgroup L/H which implies
that L is a normal subgroup of G. Since H is nilpotent, it has a
unique Hall π'-subgroup A. Then A is a normal subgroup of G and
A € Hall*, (L) since \L: A\ = \L: H\\H: A\ is a π-number. Thus A
has a complement B in L by the Schur-Zessenhaus Theorem (see
Theorem 9.3 of [6]).

We now show that B is a normal Hall π-subgroup of K. Since
AeHall*, (L), we see that I? e Hall* (L). Now A is solvable, so any
two complements of A in L are conjugate in L (see Theorem 9.3.9
of [6]). It follows that G = LNG (B). Therefore, G = ABNG (B) =
ANG(B) = NG(B), since A e s . g . f . ( G ) . Now \K:B\ = \K:L\\L:B\

is a π'-number. Thus B is a normal Hall π-subgroup of K which
implies that K is π-closed. Therefore, H satisfies property (Nπ) for
each set of primes π. This completes the proof.

THEOREM 3.8. Let Hes.g.ΐ. (G) and K be a subnormal subgroup
of G such that K/(Hf]K) is π-closed. Then K is π-closed.

Proof. HK/H is a π-closed subnormal subgroup of G/H. Let
M/H be a maximal π-closed subnormal subgroup of G/H which
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contains HKjH. Z. Janko proves in [5, p. 247] that a maximal
π-closed subnormal subgroup of G is normal in G. Thus M is a
normal subgroup of G which is τr-closed by Theorem 3.7. Since K is
a subgroup of M, K is τr-closed.

DEFINITION 3.9. The proper normal subgroup H of a group G is
said to satisfy property (N'π), π is a set of primes, if and only if,
for each subnormal subgroup K of G containing H such that K/H
is 7r-closed, then K is τr-closed.

DEFINITION 3.10. (See Baer, [1].) The normal subgroup H of a
finite group G is a weakly hypercentral subgroup of G, if it has the
following property:

(W) If H is contained in the normal subgroup K of G, if x and
y are elements of H and K respectively, and if \x\ is relatively
prime to | y | and to | K: H\, then xy = yx.

THEOREM 3.11. The following statements are equivalent for the
proper normal subgroup H of the group G:

( i ) iϊes.g.f. (G).
(ii) H satisfies property (N^) for any set of primes π.
(iii) H satisfies property (iVΓ) for any set of primes π.
(iv) H is a weakly hypercentral subgroup of G.

Proof, (i) implies (ii) by Theorem 3.8. It is clear that (ii)
implies (iii). We now show that (iii) implies (i). Let L be a normal
subgroup of G, and let AeHall^ (L), π is a set of primes, such that
G = HNG(A). Then HA is a normal subgroup of G and HA/H is a
π-group. Since H satisfies property (Nκ), HA is π-closed. Then
HA Π L is π -closed and A e Hall* (HA (Ί L). Therefore, A is a normal
subgroup of G and so ίfes.g.f. (G). Thus (i), (ii), and (iii) are
equivalent statements.

If H is a weakly hypercentral subgroup of G, then H satisfies
property (Nκ) for each set of primes π by Corollary 1 of [1, p. 637].

Now suppose that H satisfies the first three equivalent state-
ments. R. Baer has shown in [1, p. 636] that H is weakly hyper-
central in G if and only if H is nilpotent and if H is contained in
the normal subgroup K of G, then the totality of τr-elements in K
is a subgroup of K where π is the set of prime divisors of \K: H\.
Since He s.g.f. (G), we have that H is nilpotent. Now let K be a
normal subgroup of G containing H and let π denote the set of
primes dividing \K: H\. Then K/H is a 7Γ-group and so K is ττ-closed.
Hence by Baer's characterization, we see that H is a weakly hyper-
central subgroup of G. This completes the proof.
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COROLLARY 3.12. Let He s.g.f. (G) and let K be a proper normal
subgroup of G which contains H. Then Ke s.g.f. (G) if and only
if K/He s.g.f. (G/H).

Proof. Suppose that Ke s.g.f. (G), and L/H is a normal subgroup
of G/H which contains K/H such that L/H/K/H is π-closed, where
7Γ is a set of primes. Then L is a normal subgroup of G such that
L/K is π-closed. By Theorem 3.11, L is 7r-closed and so L/H is
π-closed. Thus K/He s.g.f. (G/H) by Theorem 3.11.

Conversely, suppose that K/He s.g.f. (G/H). Let L be a normal
subgroup of G which contains K such that L/K is π-closed, where
π is a set of primes. Then L/H/K/H is π-closed which implies that
L/H is π-closed. Thus L is π-closed and so Ke s.g.f. (G) by Theorem
3.11. This completes the proof.

The previous corollary was proved in a different manner in [1,
p. 638].

COROLLARY 3.13. If G is a nonnilpotent group, then L(G) and
the hyper center Z*(G) are special generalized Frattini subgroups
of G.

Proof. It can be shown that L(G)/ψ(G) = Z(G/ψ(G)). Thus
L(G)/ψ(G) e s.g.f. (G/Φ(G)) and φ(G) e s.g.f. (G). Hence L(G) e s.g.f. (G)
by Corollary 3.12. Since Z*(G) ̂  L(G), it follows that Z*(G) e s.g.f. (G).

COROLLARY 3.14. Let He s.g.f. (G) cmώ ϊeί K be a subnormal
subgroup of G which properly contains H. Then Hes.g.f. (K).

Proof. Let L be a normal subgroup of K which contains H such
that L/H is π-closed, where π is a set of primes. Then L is a sub-
normal subgroup of G such that L/iί is π-closed. Since H satisfies
property (N'Γ) with respect to G, we see that L is π-closed. Thus
H satisfies property (Nπ) with respect to K> and so He s.g.f.

DEFINITION 3.15. A group G is said to be a π-dissolved group,
π is a set of prime, if and only if the set of all π-elements of G is
a solvable subgroup of G.

THEOREM 3.16. // He s.g.f. (G) and K is a subnormal subgroup
of G containing H such that K/H is π-dissolved, then K is π-
dissolved.

Proof. Let He s.g.f. (G) and let K be a subnormal subgroup of
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G such that K/H is π -dissolved. By Theorem 3.8, K is τr-closed.
Let A be the subgroup consisting of all τr-elements in K. Then
AΓ\H and AH/H are solvable; whence A is solvable. Thus K is
7r-dissolved, and the proof is complete.

Since φ(G) e s.g.f. (G), we get the following result due to R. Baer
[2, p. 135].

COROLLARY 3.17. A group G is π-dissolved if and only if
G/φ(G) is π-dissolved.

We note that the results of this section enable us to prove in a
different manner some of the results of R. Baer in [1]. For example,
Baer proves that if H is a weakly hypercentral subgroup of G, then
Hφ{G) is also weakly hypercentral (see p. 644 of [1]). This follows
by our methods from Theorem 3.4 (iii) and Theorem 3.11. From
this we see that φ(G) ̂  H for each maximal weakly hypercentral
subgroup H of G. Baer defines the weak hypercenter HW(G) to be
the intersection of all maximal weakly hypercentral subgroups of G.
Thus φ(G) ̂  HW{G) by the above remarks. A slightly stronger result
is the following.

THEOREM 3.18. If G is a group, then L(G) ^ HW(G).

Proof. If G is nilpotent, then the result is clear. If G is
nonnilpotent, then L(G)/φ(G) = Z(G/φ(G)) g K/φ(G) for any maximal
weakly hypercentral subgroup K of G. This follows from Theorem
3.4 and Corollary 3.12. Thus L(G) ^ K which implies L(G) ^ HW(G).

4* Products of weakly hypercentral subgroups* We recall
that the product of two generalized Frattini subgroups may not be
a generalized Frattini subgroup, even if their orders are relatively
prime (see Example 3.2). If, however, we require one of the sub-
groups to be weakly hypercentral and the other to be generalized
Frattini of relatively prime order, then the product is a generalized
Frattini subgroup. We first prove the following lemma.

LEMMA 4.1. Let K be a weakly hypercentral subgroup of G,
and let H be a normal subgroup of G. If \H\ and \ K\ are rela-
tively prime, then KH/H is a weakly hypercentral subgroup of G/H.

Proof. We show that KH/H satisfies the definition of weakly
hypercentral subgroup. Let M/H be a normal subgroup of G/H
which contains KH/H. Let kHeKH/H and mHeM/H where keK
and meM, be such that their orders are relatively prime and | kH |
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is relatively prime to \M/H: KH/H\. It suffices to show that kH
and mH commute.

Now there exists mιeM such that \m1\ is divisible only by the
primes that divide | mH | and such that mjl = mH. Hence j m11
and I k | are relative prime. It also follows that \k\ is relatively
prime to \M:K\. Since K is a weakly hypercentral subgroup of G,
we see that mjc = kmγ. Therefore mH and kH commute and the
proof is complete.

THEOREM 4.2. Let K be a weakly hypercentral subgroup of G
and H be a subgroup of G such that \ H \ and \ K \ are relatively
prime and HK is a proper subgroup of G. If Heg.ΐ. (G), then
HKeg.ΐ. (G). If H is weakly hypercentral, then HK is weakly
hypercentral.

Proof. If Heg.ΐ. (G), then HK/H is a weakly hypercentral
subgroup of G/H by Lemma 4.1. Thus HK/Heg.ΐ. (G/H). By
Theorem 3.4 of [3], HKeg.ΐ. (G). If H is weakly hypercentral, HK
is weakly hypercentral by Lemma 4.1 and Corollary 3.12.

EXAMPLE 4.3. (Baer [1, p. 640].) In the previous theorem, we
cannot delete the requirement that \H\ and \K\ are relatively prime.
Let p be an odd prime and Jp denote the cyclic group of order p.
Let T be the automorphism of Jp x Jp that sends each element into
its inverse. Let G be the relative holomorph of Jp x Jp by <Γ>.
Then every cyclic subgroup of Jp x Jp is a weakly hypercentral
subgroup of G, but Jp x Jp is not generalized Frattini.

THEOREM 4.4. Let K be a weakly hypercentral subgroup of G
and Heg.ΐ. (G). // either H or K is a Hall subgroup of G, and if
HK is proper in G, then HKeg.ΐ. (G).

Proof. Let j>i, •••,#» be the primes that divide \H\, and let
q19 •••,?,. be the primes that divide \K\. If \H\ is relatively prime
to \K\, then the result follows from Theorem 4.2. Hence we may
suppose that pί = qu , pk = qk are the only primes that divide
both \H\ and \K\. For each i between 1 and k, let P{ be the Sylow
p rsubgroup of H and Q{ be the Sylow gΓsubgroup of K.

Now suppose that H is a Hall subgroup of G. Then Qt <; P {

for i = 1, , k. Now let Q3 be the Sylow gΓsubgroup of K for
j — k + 1, , r. Since K is nilpotent, Qk+1 Qr is normal in G and
is thus a weakly hypercentral subgroup of G. Hence HK —
H(Qk+1 Qr) is a generalized Frattini subgroup of G by Theorem 4.2.

If K is a Hall subgroup of G, then we can prove in a similar
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manner that HKeg.f. (G). This completes the proof.
We note that if H and K are weakly hypercentral subgroups of

G, one of which is a Hall subgroup of G, then it can be shown that
HK is a weakly hypercentral subgroup of G. The proof is analogous
to the proof of Theorem 4.4.

If the group G possesses a unique minimal normal subgroup M,
and if G/M possesses a normal subgroup, not 1, whose order is prime
to the order of M, then R. Baer [2, p. 118] proved that φ(G) = 1.
We now show that in such a group, the only weakly hypercentral
subgroup is the identity.

THEOREM 4.5. // the group G possesses a unique minimal
normal subgroup M and if G/M possesses a normal subgroup, not 1,
whose order is prime to the order of M, then the only weakly
hypercentral subgroup of G is the identity subgroup. In particular,
Φ(G) = 1.

Proof. Suppose that H is a nontrivial weakly hypercentral sub-
group of G* Since M is the unique minimal normal subgroup of G,
we see that M rg H. Let K/M be a nontrivial normal subgroup of
G/M whose order is prime to the order of M. Then M is a normal
Hall subgroup of K, and M is solvable. Thus M has a complement
S in K by the Schur-Zassenhaus theorem (see Theorem 9.3.6 of [6]).
Also any two complements of M in K are conjugate in K. It follows
that G = MNG(S). Since M ^ H, we see that Mes.g.f. (G), and so
G = NG(S). Thus K= M x S and M^ S, whence M = 1 which is
impossible. This completes the proof.

It is clear that by replacing π by {p} in the theorems of §'s 3
and 4, we get corresponding theorems for generalized Frattini sub-
groups. For example, N. Ito in [4] proves that a subnormal sub-
group K of G is nilpotent if and only if its commutator subgroup
Kf is contained in φ(G). By Theorem 3.8, one can show that a sub-
normal subgroup K of G is nilpotent provided that Kr <* H for some
Heg.f. (G). Also one can easily see that a subgroup H is a
generalized Frattini subgroup of G if and only if H is a normal
nilpotent subgroup of G with the property that F(G/H) — F(G)/H,
where F(G) denotes the Fitting subgroup of G.
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