COVERINGS OF MAPPING SPACES

M. N. Dyer and A. J. Sieradski

The purpose of this paper is to give conditions on a pair of topological spaces (X, B) such that any covering $\rho: E \to B$ induces a covering map

$$\bar{\rho}: E^X \to \bar{\rho}(E^X) \subset B^X$$

where $\bar{\rho}(f) = \rho^{\circ} f$ and the mapping spaces have the compactopen topology.

This is given in Theorem 1.1. In the classical theory of (connected) coverings over a space B which is connected, locally pathwise connected and semi-locally 1-connected, it is known that to each subgroup $H \subset \pi_1(B, b_0)$ there corresponds a covering projection $\rho: E \to B$ for which

$$\rho_{\sharp}(\pi_{1}(E, e_{0})) = H$$

for some $e_0 \in \rho^{-1}(b_0)$. Section 2 gives a characterization of those subgroups $H \subset \pi_1(B^x, v)$ which correspond to a mapping covering $\rho: E^x \to B^x$ for some covering $\rho: E \to B$. Section 3 gives partial answers to several questions about mapping coverings, such as when mapping coverings are regular or universal.

1. Mapping coverings. Given a topological space X and a map $\rho: E \to B$, then $\bar{\rho}: E^{x} \to B^{x}$, $\bar{\rho}(f) = \rho \circ f$, is continuous if the function spaces of continuous maps E^{x} and B^{x} are each given the compact-open topology. In this section we prove

THEOREM 1.1. Let $\rho: E \to B$ be a covering projection for which E and B are ANR's, and let X be a compact Hausdorff space. Then $\bar{\rho}: E^x \to B^x$ is a covering projection of E^x onto $\bar{\rho}(E^x) \subset B^x$.

Actually E is automatically an ANR if B is (see § 3), so the hypothesis of (1.1) is just a condition on X and B. We begin the proof of (1.1) by considering two lemmas, the first of which is a result in Spanier [6; 2.5.10].

LEMMA 1.2. Every Hurewicz fibration with unique path lifting whose base space is locally path connected and semilocally 1-connected and whose total space is locally path connected is a covering projection onto its image.

Since we eventually want to apply this result to the map $\bar{\rho}: E^{x} \rightarrow \bar{\rho}$

 B^x we need information about the local structure of the function spaces E^x and B^x . If X is a compact metrizable space and Y is an ANR, then the function space Y^x is an ANR ([4; p. 186]) and consequently is locally contractible ([4; p. 96]). We now give a direct proof of this local contractibility of Y^x which does not require the metrizability restriction on X.

LEMMA 1.3. If X is a compact Hausdorff space and Y is an ANR, then the function space Y^x of continuous maps is locally contractible in the compact-open topology.

Proof. Let the metrizable space Y be considered as a closed subset of a convex set Z in a locally convex topological vector space L ([4; p. 81]). Since Y is an ANR there exists an open neighborhood W of Y in Z together with a retraction $r: W \to Y$, i.e., $r \mid_{Y} = 1_{Y}$.

Given a map $f \in Y^x$ and a neighborhood P of f, we may assume $P = \bigcap_{i=1}^n K(C_i, U_i)$ where $K(C_i, U_i) = \{g \in Y^x : g(C_i) \subset U_i\}$ for each member of the collection $\{C_i\}$ of compact subspaces of X and corresponding member of the collection $\{U_i\}$ of open subsets of Y. Since W is an open subset of a convex set Z in a locally convex topological vector space L, each open covering $\alpha_i = \{r^{-1}(U_i), r^{-1}(Y - f(C_i))\}$ of W admits an open refinement β_i consisting of convex sets. For each $x \in X$ and index i, let $V_{x,i}$ be a member of the covering β_i which contains f(x). Form the convex set $V_x = \bigcap_{i=1}^n V_{x,i}$ for each $x \in X$ and choose by the regularity of X a closed neighborhood $A_x \subset f^{-1}(V_x)$ of x. By the compactness of X, select points x_1, \dots, x_m of X so that $\{A_j = A_{x_j}; j = 1, \dots, m\}$ is a collection of closed sets which cover X; then let $V_j = V_{x_j}$ an $V_{j,i} = V_{x_j,i}$. Note that

(1.4)
$$C_i \cap A_i \neq \emptyset$$
 implies $V_i \cap Y \subset U_i$.

This follows from the facts that $f(A_j) \subset V_j \cap Y$ and that V_j is contained in $V_{j,i}$, a member of the covering β_i which refines α_i .

We define an open neighborhood of

$$f\in Y^{\scriptscriptstyle X}$$
 by $K= igcap_{j=1}^m K(A_j,\ V_j\cap\ Y)$.

Our first claim for K is that it lies in P, i.e., that for $g \in K$, $g(C_i) \subset U_i(i = 1, \dots, n)$. Since $\{A_j\}_{j=1}^m$ is a cover of X, we need merely to show that $g(C_i \cap A_j) \subset U_i$ for all i, j. If $C_i \cap A_j = \emptyset$, the result holds trivially; if $C_i \cap A_j \neq \emptyset$, it follows from the relations

$$g(C_i \cap A_j) \subset g(A_j) \subset V_j \cap Y \subset U_i$$
 ,

the last being due to (1.4).

Our second claim on K is that it is contractible rel f in P. Because Y is contained in Z, a convex subset of a topological vector space, we can define a continuous function $H: Y^X \times I \times X \to Z$ by H(g, t, x) = tf(x) + (1-t)g(x). Since on the member A_j of the covering $\{A_j\}_{j=1}^m$ both f and $g \in K$ take values in the convex subset $V_j \subset W$, it follows that $H(K \times I \times X) \subset W$ and therefore the composition $r^{\circ}H$: $K \times I \times X \to W \to Y$ is well defined. The associated map $h: K \times I \to$ Y^x given by h(g, t)(x) = r(H(g, t, x)) takes values in $P \subset Y^x$ since $r(H(K \times I \times (C_i \cap A_j))) \subset r(H(K \times I \times A_j)) \subset r(V_j)$ and the latter is contained in $r(r^{-1}(U_i)) = U_i$ when $C_i \cap A_j \neq \emptyset$. Thus $h: K \times I \to P$ is a homotopy rel f from the inclusion $K \subset P$ to the constant map $K \to f \in P$. This shows that Y^x is locally contractible.

Proof of Theorem 1.1. We first show that if $\rho: E \to B$ is a covering projection and X is a compact Hausdorff space, then $\bar{\rho}: E^{x} \to B^{x}$ (and hence $\bar{\rho}: E^{x} \to \bar{\rho}(E^{x})$) is a Hurewicz fibration with unique path lifting. For a homotopy $h_{i}: Z \to B^{x}$ of a map $h_{0}: Z \to B^{x}$ which lifts to a map $g_{0}: Z \to E^{x}$, the associated map $h'_{i}: Z \times X \to B$ is a homotopy of the associate $h'_{0}: Z \times X \to B$ which lifts to $g'_{0}: Z \times X \to E$. Since $\rho: E \to B$ is a Hurewicz fibration, the homotopy h'_{i} lifts to a homotopy $g'_{i}: Z \times X \to E$ of g'_{0} , and therefore the associate $g_{i}: Z \to E^{x} \to B^{x}$ is a homotopy of g_{0} which is a lifting of h_{i} . This shows that $\bar{\rho}: E^{x} \to B^{x}$ is a Hurewicz fibration.

If $\omega, \gamma: I \to E^x$ are paths in E^x which cover the same path $\alpha: I \to B^x$ and $\omega(0) = \gamma(0)$, then their associates $\omega', \gamma': I \times X \to E$ agree on the subspace $0 \times X$ of $I \times X$ and they are liftings of the associate $\alpha': I \times X \to B$. Since a covering map has the unique lifting property for connected spaces, the fact that $0 \times X$ meets each component of $I \times X$ implies that $\omega' = \gamma'$ and hence $\omega = \gamma$. This shows that $\bar{\rho}: E^x \to B^x$ has unique path lifting.

In view of Lemma 1.2 the proof that $\bar{\rho}: E^x \to \bar{\rho}(E^x)$ is a covering projection is complete once it is shown that E^x and $\bar{\rho}(E^x)$ are locally path connected and $\bar{\rho}(E^x)$ is semilocally 1-connected. Since E^x is locally contractible by (1.3) the condition on E^x is trivial; since B^x is also locally contractible the conditions on $\bar{\rho}(E^x) \subset B^x$ follows from the fact that the image of a Hurewicz fibration is the union of path components of the base space.

There are two convenient corollaries of Theorem 1.1. In the first, the notation $(Y^x)_f$ is used for the path component of the function space Y^x containing $f: X \to Y$.

COROLLARY 1.5. If, in addition to the hypotheses of (1.1), $v': X \rightarrow E$ is a lifting of $v: X \rightarrow B$, then $\bar{\rho}: (E^{X})_{v'} \rightarrow (B^{X})_{v}$ is a covering

projection.

COROLLARY 1.6. If, in addition to the hypotheses of (1.1), X is locally path connected and Hom $(\pi_1(X, x_0), \pi_1(B, b_0)) = 0$ for every $x_0 \in X$, $b_0 \in B$, then $\overline{\rho} \colon E^X \to B^X$ is a covering projection.

Corollary 1.5 is immediate. In (1.6) we are asserting that the additional hypotheses imply the surjectivity of $\bar{\rho}: E^{X} \to B^{X}$. Since $\rho: E \to B$ is a covering projection a necessary and sufficient condition that a map $f: (Y, y_{0}) \to (B, b_{0})$ with connected locally path connected domain have a lifting $(Y, y_{0}) \to (E, e_{0})$ is that in $\pi_{1}(B, b_{0}), f_{\sharp}\pi_{1}(Y, y_{0}) \subset \rho_{\sharp}\pi_{1}(E, e_{0})$. Thus the hypothesis Hom $(\pi_{1}(X, x_{0}), \pi_{1}(B, b_{0})) = 0$, for every $x_{0} \in X, b_{0} \in B$, implies that a map $f: X \to B$ has a lifting on each (path) component of X. Because the components of a locally path connected space are open and closed, liftings on the components of X determine a lifting on all of X. Thus $\bar{\rho}$ is surjective.

2. Subgroups of $\pi_1(B^x, v)$ realizable by mapping coverings. In this section X will always represent a connected finite CW complex of dim $\leq n, B$ a path connected simple ANR, and $v: X \to B$ a selected map. For convenience in stating the main theorem of this section, we define $K_B = \ker \{r_{\varepsilon}: \pi_1(B^x, v) \to \pi_1(B^{x^\circ}, r(v))\}$, where $r: B^x \to B^{x_0}$ is the map induced by restriction to the 0-skeleton X° of X, and we define $e_{x_0}: B^x \to B$ to be the evaluation map $e_{x_0}(f) = f(x_0)$ at $x_0 \in X^\circ$.

If $\rho: E \to B$ is a covering projection, it follows that E is an ANR (see § 3) so that by (1.5) $\bar{\rho}: (E^{X})_{v'} \to (B^{X})_{v}$ is a covering projection for each lifting $v': X \to E$ of $v: X \to B$. We say a subgroup $G \subset \pi_1(B^X, v)$ can be *realized by a mapping covering* if there exists a covering projection $\rho: E \to B$ with fundamental group $(e_{x_0})_{\sharp}(G)$ (that is, $\rho_{\sharp}\pi_1(E, e_0) =$ $(e_{x_0})_{\sharp}(G)$) and a lifting $v': X \to E$ of $v: X \to B$ such that the covering projection $\bar{\rho}: (E^X)_{v'} \to (B^X)_v$ has fundamental group G (that is, $\bar{\rho}_{\sharp}\pi_1(E^X, v') =$ $G \subset \pi_1(B^X, v)$). When $v: X \to B$ is homotopic to the constant map, it follows from [2; 6.1] that the condition on the fundamental group of $\bar{\rho}$.

THEOREM 2.1. A subgroup $G \subset \pi_1(B^x, v)$ can be realized by a mapping covering if and only if $G \supset K_B$ and $e_{x_0\sharp}(G) \supset v_{\sharp}(\pi_1(X, x_0))$.

COROLLARY 2.2. When X is simply connected, a subgroup $G \subset \pi_1(B^x, v)$ can be realized by a mapping covering if and only if it contains K_B .

COROLLARY 2.3. Let $\pi_1(B) = 0$ for $1 < i \leq n$. Then a subgroup $G \subset \pi_1(B^x, v)$ can be realized by a mapping covering if and only if $G \supset K_B = H^n(X; \pi_{n+1}(B))$ and $(e_{x_0})_{\sharp}(G) \supset v_{\sharp}(\pi_1(X, x_0))$.

EXAMPLE. Let $X = S^2$, $E = S^3$, $B = P^3$, the 3-dimensional real projective space. P^3 is a topological group $(SO(3)) \Rightarrow P^3$ is simple. Let $\rho: S^3 \to P^3$ be the antipodal identification map. The hypothesis of 2.2 and 2.3 are satisfied for n = 2. Thus the only subgroups of $\pi_1(P^{3S^2}, v)$ realized by a mapping covering are those containing $K_B =$ $H^2(S^2, \pi_3(P^3)) \approx Z$.

Let $c: S^2 \to P^3$ be the constant map to $p_0 \in P^3$. It follows easily from the spectral sequence in [3] and Theorem 6.1 of [2] that the sequence below is split exact

$$0 \longrightarrow H^{2}(S^{2}: \pi_{3}(P^{3})) \longrightarrow \pi_{1}(P^{3S^{2}}, c) \xrightarrow{\gamma_{\sharp}} \pi_{1}(P^{3}, c) \longrightarrow 0$$

where $H^2(S^2; \pi_3(P^3)) \approx K_{p^3}$ and r_{\sharp} is induced by the restriction map r. P^3 is a topological group $\Rightarrow P^{3S^2}$ is a topological group $\Rightarrow \pi_1(P^{3S^2}, c)$ is abelian $\Rightarrow \pi_1(P^{3S^2}, c) \approx Z \bigoplus Z_2$.

Thus the only subgroups of $\pi_1(P^{3S^2}, c)$ which are realizable by a mapping covering are $Z \bigoplus \{0\}$ and $Z \bigoplus Z_2$ which correspond to $\bar{\rho}: S^{3S^2} \to P^{3S^2}$ and $I: P^{3S^2} \to P^{3S^2}$.

We give the proof of (2.1) after a few preliminary propositions. The first involves exact couples of Federer [3] and is easily proved from the data given there.

PROPOSITION 2.4. Let $\rho: W \to Z$ be a map between path connected simple spaces. Then ρ induces a map

$$\rho^i \colon \mathscr{C}^i(X, W, f) \longrightarrow \mathscr{C}^i(X, Z, \rho \circ f)$$

of the ith Federer exact couples.. Furthermore, there is a commutative diagram

$$\begin{array}{ccc} E^{2}_{p,q}(W) & \stackrel{\rho^{2}}{\longrightarrow} & E^{2}_{p,q}(Z) \\ & & & \downarrow \\ & & & \downarrow \\ & & & \downarrow \\ H^{q}(X; \pi_{p+q}(W)) \xrightarrow{(\rho_{\sharp})^{*}} & H^{q}(X; \pi_{p+p}(Z)) \end{array}$$

where γ is an isomorphism onto if p > 0 and into if p = 0.

PROPOSITION 2.5. Let $\rho: W \to Z$ be a covering projection between path connected simple spaces. Then for the map

$$\rho^i : \mathscr{C}^i(X, W, f) \longrightarrow \mathscr{C}^i(X, Z, \rho \circ f)$$

of the i-th Federer exact couple,

$$\rho^{i}: E^{i}_{p,q}(W) \longrightarrow E^{i}_{p,q}(Z) \qquad (i \ge 2)$$

is an isomorphism for all (p, q) satisfying either (a) if $p \ge 1$, then

p+q>1 or (b) if p=0, then $q\geq i$.

Proof. We proceed by induction on $i \ge 2$. Since $p: W \to Z$ is a covering projection, $\rho_{\sharp}: \pi_j(W) \to \pi_j(Z)$ is an isomorphism for $j \ge 2$ and a monomorphism for j = 1. Then in the commutative diagram of (2.4) $\gamma_{W'}, \gamma_Z$, and $(\rho_{\sharp})^*$ are isomorphisms for $p + q \ge 2$, $p \ge 1$, hence ρ^2 is an isomorphism here. For $p = 0, q \ge 2, \gamma_W, \gamma_Z$ are injective and $(\rho_{\sharp})^*$ is bijective; consequently ρ^2 is injective. That ρ^2 is also surjective when $p = 0, q \ge 2$ follows from the definition of $\mathscr{C}^{-1}(X)$ in [3] and the following statement which has the same proof as that of [6, 7.6.22].

(2.6) Let $q \ge 2$ and let $h: X^q \to Z$ be given such that $h | X^{q-1} = p \circ f | X^{q-1}$. Then since $\rho_{\sharp}: \pi_{q-1}(W) \to \pi_{q-1}(Z)$ is injective and $\rho_{\sharp}: \pi_q(W) \to \pi_q(Z)$ is surjective, there exists $h': X^q \to E$ such that

$$h' \mid X^{q-1} = f \mid X^{q-1}$$
 and $\rho \circ h' \cong h(\operatorname{rel} X^{q-1})$.

We now assume that (2.5) holds for $i = k - 1 \ge 2$, i.e., ρ^{k-1} is an isomorphism if (a) $p \ge 1$ and p + q > 1, or (b) p = 0 and $q \ge k - 1$. If $p \ge 1$ and p + q > 1, $(q \ge 0)$, then in

$$E_{p,q}^{k}(W) = \frac{\ker \{d: E_{p,q}^{k-1}(W) \longrightarrow E_{p-1,q+k-1}^{k-1}(W)\}}{\operatorname{im} \{d: E_{p+1,q-k+1}^{k-1}(W) \longrightarrow E_{p,q}^{k-1}(W)\}}$$
$$E_{p,q}^{k}(Z) = \frac{\ker \{d: E_{p,q}^{k-1}(Z) \longrightarrow E_{p-1,q+k-1}^{k-1}(Z)\}}{\operatorname{im} \{d: E_{p+1,q-k+1}^{k-1}(Z) \longrightarrow E_{p,q}^{k-1}(Z)\}}$$

we have $E_{p,q}^{k-1}(W) \approx E_{p,q}^{k-1}(Z)$ by case (a) of the induction hypothesis; $E_{p-1,q+k-1}^{k-1}(W) \approx E_{p-1,q+k-1}^{k-1}(Z)$ when $p \ge 2$ by case (a) and when p = 1by case (b); and $E_{p+1,q-k+1}^{k-1}(W) \approx E_{p+1,q-k+1}^{k-1}(Z)$ because if q < k - 1 then both are zero, and if $q \ge k - 1$ then case (a) of the induction hypothesis applies. Thus case (a) of (2.5) holds for ρ^k .

To show that case (b) of (2.5) holds for ρ^k suppose that index p = 0. Here we must show that

$$egin{aligned} &E_{0,q}^k(W) = E_{0,q}^{k-1}(W) / ext{im} \left\{ d \colon E_{1,q-k+1}^{k-1}(W) \longrightarrow E_{0,q}^{k-1}(W)
ight. \ & \left.
ight.$$

is an isomorphism for $q \ge k$. This is obvious since then $E_{0,q}^{k-1}(W) \approx E_{0,q}^{k-1}(Z)$ by case (b) of the induction hypothesis and $E_{1,q-k+1}^{k-1}(W) \approx E_{1,q-k+1}^{k-1}(Z)$ by case (a).

Before giving the proof of Theorem 2.1, we prove two lemmas.

LEMMA 2.7. If $\rho: E \to B$ is a covering projection with E a path connected simple space and $v': X \to E$ is a lifting of $v: X \to B$, then there is a commutative ladder

$$\begin{array}{cccc} 0 & \longrightarrow & K_E & \longrightarrow & \pi_1(E^X, \ v') & \stackrel{e_{x_0}}{\longrightarrow} & E_{1,0}^{\infty}(E) & \longrightarrow & 0 \\ & & & & & & \\ \phi & & & & & & \\ \psi & & & & & & \\ 0 & \longrightarrow & K_B & \longrightarrow & \pi_1(B^X, \ v) & \stackrel{e_{x_0}}{\longrightarrow} & E_{1,0}^{\infty}(B) & \longrightarrow & 0 \end{array}$$

in which the rows are exact and ϕ is an isomorphism.

Proof. By a theorem on page 351 of [3], the images of

$$r_{\sharp}:\pi_{1}(E^{X}, v') \longrightarrow \pi_{1}(E^{X^{0}}, r(v')), r_{\sharp}:\pi_{1}(B^{X}, v) \longrightarrow \pi_{1}(B^{X^{0}}, r(v))$$

can be identified with the subgroups

$$egin{aligned} E_{1,0}^\infty(E) \subset E_{1,0}^2(E) &= H^{\scriptscriptstyle 0}(X,\,\pi_1(E)) = \pi_1(E), \ E_{1,0}^\infty(B) \subset E_{1,0}^2(B) &= H^{\scriptscriptstyle 0}(X,\,\pi_1(B)) = \pi_1(B). \end{aligned}$$

by means of diagonal homomorphisms:

The identification process is natural in E, B and so there is a commutative ladder as indicated.

To show that ϕ is an isomorphism we consider the following normal chains (see [3, p. 351]) for $\pi_1(E^x, v'), \pi_1(B^x, v)$ and maps induced by $\bar{\rho}$

$$(2.8) \begin{array}{cccc} \pi_{1}(E^{X}, v') \xrightarrow{\rho_{2}} \pi_{1}(B^{X}, v) \\ & \cup & & \cup \\ H_{0} & \longrightarrow & G_{0} \\ & \cup & & \cup \\ H_{1} & \longrightarrow & G_{1} \\ & \cup & & \cup \\ H_{1} & \longrightarrow & G_{1} \\ & \cup & & \cup \\ H_{n-1} & \longrightarrow & G_{n-1} \\ & \cup & & \cup \\ 0 & & 0 \end{array}$$

given by

$$\begin{aligned} H_i &= \ker \left\{ r_{\sharp} \colon \pi_1(E^{\chi}, v') \longrightarrow \pi_1(E^{\chi i}, r(v')) \right\} \\ G_i &= \ker \left\{ r_{\sharp} \colon \pi_1(B^{\chi}, v) \longrightarrow \pi_1(B^{\chi i}, r(v)) \right\} \end{aligned} \qquad (i = 0, 1, \dots, n) \ . \end{aligned}$$

Thus we must show $K_E = H_0 \approx G_0 = K_B$. By [3, p. 351], there are isomorphisms

(2.9)
$$\frac{H_i}{H_{i+1}} \approx E_{1,i+1}^{\infty}(E), \frac{G_i}{G_{i+1}} \approx E_{1,i+1}^{\infty}(B) \quad (i = 0, \dots, n-1)$$

which can be shown to be compatible with the homomorphisms induced by $\bar{\rho}$. Since $E_{i,i}^{\infty}(E) = E_{i,i}^{k}(E)$ and $E_{i,i}^{\infty}(B) = E_{i,i}^{k}(B)$ for $k > \max(i, \dim X - i)$, Proposition (2.5) implies that

$$\rho^{\infty}: E^{\infty}_{\iota,i}(E) \longrightarrow E^{\infty}_{\iota,i}(B)$$

is an isomorphism for $i \ge 1$. Via induction and the five lemma, these isomorphisms together with those of (2.9) imply that all but the top homomorphism of the ladder (2.8) are isomorphisms.

LEMMA 2.10. Let $\rho: E \to B$ be a covering projection with E a path connected (simple) space. If in the commutative diagram

$$egin{array}{lll} E^{\infty}_{1,6}(E) \subset E^2_{1,0}(E) &\stackrel{ au}{pprox} & H^{\scriptscriptstyle 0}(X,\pi_1(E)) = \pi_1(E) \
ho_{\infty} & iggleq & igglelow & igglelow$$

 $\rho_{\mathfrak{s}}(\pi_1(E)) \subset E^{\infty}_{1,0}(B), \text{ then } E^{\infty}_{1,0}(E) = \pi_1(E).$

Proof. We will show by induction on $k \ge 2$ that $E_{1,0}^k(E) = E_{1,0}^2(E)$, or equivalently, that $d_E^k : E_{1,0}^k(E) \to E_{0,k}^k(E)$ is zero. By (2.4) there is a commutative diagram

$$egin{aligned} \pi_1(E) &pprox E_{1,0}^2(E) \supset E_{1,0}^k(E) & \longrightarrow & E_{0,k}^k(E) \
ho_{\pm} & igcap_{1,0} & igcap_{1,0}^k & igcap_{0,k}^k & \mu_{0,k}^k \ \pi_1(B) &pprox & E_{1,0}^2(B) \supset E_{1,0}^k(B) & \longrightarrow & E_{0,k}^k(B) \end{aligned}$$

in which $\rho_{0,k}^{k}$ is an isomorphism for $k \geq 2$ by (2.5) and $\rho_{1,0}^{k}$ is a monomorphism for $k \geq 2$ because ρ_{\sharp} is a monomorphism. In order to prove d_{E}^{k} is zero for $k \geq 2$, we need only show ker $d_{B}^{k} \supset \operatorname{im} \rho_{1,0}^{k}$ for $k \geq 2$. We proceed by induction on $k \geq 2$. For k = 2, the statement follows from the relations

$$\ker d_{\scriptscriptstyle B}^{\scriptscriptstyle 2} \supset E^{\scriptscriptstyle \infty}_{\scriptscriptstyle 1,6}(B) \supset
ho_{\scriptscriptstyle \sharp}(\pi_{\scriptscriptstyle 1}(E)) = \operatorname{im}
ho_{\scriptscriptstyle 1,0}^{\scriptscriptstyle 2}$$
 .

If we assume ker $d_B^j \supset \operatorname{in} \rho_{1,0}^j$ for $j < k, k \ge 2$, then $E_{1,0}^2(E) = E_{1,0}^k(E)$ and hence $\rho_{\mathfrak{s}}(\pi_1(E)) = \operatorname{im} \rho_{1,0}^k$. Then we have the relation

$$\ker d^k_B \supset E^{\infty}_{1,0}(B) \supset \rho_{\sharp}(\pi_1(E)) = \operatorname{im} \rho^k_{1,0}$$

which completes the proof by induction.

Proof of Theorem 2.1. Suppose that $G \subset \pi_1(B^X, v)$ can be realized

332

by a mapping covering, i.e., there exists a covering projection $\rho: E \to B$ and a lifting $v': X \to E$ of $v: X \to B$ such that $\bar{\rho}_{\sharp}(\pi_1(E^x, v') = G$ and $\rho_{\sharp}(\pi_1(E, v'(x_0)) = (e_{x_0})_{\sharp}(G)$. Since we may assume that E is path connected and simple, Lemma 2.7 is applicable. If follows from commutativity of the diagram given there and the surjectivity of ϕ that

$$ar{
ho}_{*}(\pi_{\scriptscriptstyle 1}(E^{\scriptscriptstyle X},\,v'))\supsetar{
ho}_{*}(K_{\scriptscriptstyle E})=K_{\scriptscriptstyle B},\, ext{i.e.},\,G\supset K_{\scriptscriptstyle B}$$
 .

Furthermore, we have relations

$$(e_{x_0})_{\sharp}(G) =
ho_{\sharp}(\pi_1(E, v'(x_0)) \supset v_{\sharp}(\pi_1(X, x_0))$$
 .

Conversely, suppose given $G \supset K_B$ and $G' = (e_{x_0})_{\sharp}(G) \supset v_{\sharp}(\pi_1(X, x_0))$. Using the subgroup $G' \subset E^{\infty}_{1,0}(B) \subset \pi_1(B, v(x_0))$, it is possible to construct a covering projection $\rho: E \to B$ with E a path connected simple space such that $\rho_{\sharp}(\pi_1(E, e_0)) = G'$. Since $v_{\sharp}(\pi_1(X, x_0)) \subset G' \subset \rho_{\sharp}(\pi_1(E, e_0))$, there exists a lifting $v': (X, x_0) \to (E, e_0)$ of $v: X \to B$. Then by Lemma (2.7) there is a commutative diagram

$$\begin{array}{cccc} 0 & \longrightarrow & K_E & \longrightarrow & \pi_1(E^X, \, v') \xrightarrow{(e_{x_0})_{\sharp}} E^{\infty}_{1,0}(E) & \longrightarrow & 0 \\ & & & & & \downarrow \\ \phi & & & & \downarrow \\ \rho_{\#} & & & \downarrow \\ 0 & \longrightarrow & K_B & \longrightarrow & \pi_1(B^X, \, v) \xrightarrow{(e_{x_0})_{\sharp}} E^{\infty}_{1,0}(B) & \longrightarrow & 0 \end{array}$$

in which ϕ is an isomorphism and im $\rho^{\infty} = G' = (e_{x_0})_{\sharp}(G)$ since $E_{1,0}^{\infty}(E) = \pi_1(E)$ by Lemma (2.10). It follows from some diagram chasing that $\bar{\rho}_{\sharp}(\pi_1(E^{X}, v')) = G$.

3. Miscellaneous questions. Many questions arise concerning mapping coverings. In this section we consider certain ones and give partial answers.

(a) Is a covering space of an ANR an ANR?

(b) If G is a properly discontinuous group of homeomorphisms acting on an ANR E, is E/G, the orbit space of G, an ANR?

(c) If $\rho: E \to B$ is a covering, what is card $(\bar{\rho}^{-1}(f)), f \in \bar{\rho}(E^{X})$?

(d) If $\rho: E \to B$ is regular, then is $\overline{\rho}: E^X \to B^X$?

(e) When does a fiber $\overline{\rho}^{-1}(f)$ lie in a single path component of E^{x} , i.e., when are all the lifts of f homotopic?

(f) When is $\bar{\rho}: E^x \to B^x$ universal?

For convenience, throughout this section we assume that B is an ANR and X is a compact Hausdorff space.

(a) Since a covering space of an ANR is locally homeomorphic to an ANR, it is an ANR provided it is metrizable (see [4], III, 7.9 and 8.7). So Question (a) now reduces to a consideration of metrizability.

THEOREM 3.1. If $\rho: E \to B$ is a covering with B metrizable, then E is metrizable. The proof utilizes the characterization of T_0 spaces which are metrizable due to A. H. Stone (see [1], page 196).

COROLLARY 3.2. Every covering of an ANR is an ANR.

(b) Since $\bar{\rho}: E \to E/G$ is a covering projection, the question, as in (a), reduces to one of metrizability.

THEOREM 3.3. If a finite group of homeomorphisms G acts on a metric space E without fixed points, then E/G is metrizable.

This again follows from Stone's characterization.

COROLLARY 3.4. G finite, acting without fixed points on an ANR $E \Rightarrow E/G$ is an ANR.

(c) If X is connected and locally pathwise connected, then $f: (X, x_0) \to (B, b_0)$ has a (unique) lift to $f^*: (X, x_0) \to (E, e_0)$, when $e_0 \in \rho^{-1}(b_0)$, if $f_{\sharp}(\pi_1(X, x_0)) \subset \rho_{\sharp}(\pi_1(E, e_0))$. If E is path connected and nonempty, the cardinality of $\bar{\rho}^{-1}(f)(f \in \bar{\rho}(E^X))$ reduces to the following question: How many conjugate subgroups of $\rho_{\sharp}(\pi_1(E, e_0))$ contain $f_{\sharp}(\pi_1(X, x_0))$?

THEOREM 3.5. Let $\rho: E \to B$ be a regular covering such that E is connected. For any $f \in \overline{\rho}(E^x)$, card $\overline{\rho}^{-1}(f) = \operatorname{card} \rho^{-1}(b_0)$, $b_0 \in B$.

Proof. E, B ANR \rightarrow E, B are locally pathwise connected. E is connected \rightarrow E, B are path connected. ρ is regular \rightarrow that the group G of covering transformations $\approx \pi_1(B, \rho(e_0))/\rho_{\sharp}(\pi_1(E, e_0)) \leftrightarrow \rho^{-1}(b_0)$. Then $f \in \bar{\rho}(E^{\chi}) \Rightarrow \exists f^* \colon X \rightarrow E \ni f = \rho \circ f^*$. Then

 $\rho^{-1}(f) = \{g \circ f^* \mid g \in G\} \longleftrightarrow \rho^{-1}(b_0)$

because G acts transitively on $\rho^{-1}(b_0)$ and any lift of f is determined uniquely by the image of a single point.

With the same hypotheses as 3.5, we can show that any two path components of E^{x} lying over $(B^{x})_{v}$ are homeomorphic. Specifically,

COROLLARY 3.6. If v', v'' are any two lifts of $v: X \to B$, then $(E^{X})_{v'} \approx (E^{X})_{v''}$.

Proof. ρ regular $\Rightarrow \exists$ a covering transformation $v: E \to E \ni r_0 v' = v''$. Then $\bar{r}: E^x \to E^x$ is a covering transformation of $E^x \ni \bar{r}(v') = v''$. Thus $\bar{r}: (E^x)v' \approx (E^x)v''$.

For example, let $X = S^2 = E$ and $B = P^2$, the real projective

plane. Let $a: S^2 \to S^2$ denote the antipodal map, $i: S^2 \to S^2$, the identity. $i \not\cong a$ because deg (i) = 1 and deg (a) = -1. $\therefore (S^{2^{S^2}})_i \neq (S^{2^{S^2}})_a$ but if $\rho: S^2 \to P^2$ is the antipodal identification, then $\rho \circ a = \rho \circ i = \rho: S^2 \to P^2$. Thus $(S^{2^{S^2}})_a \approx (S^{2^{S^2}})_i$ as components of $S^{2^{S^2}}$ lying over $(P^{2^{S^2}})_{\rho}$.

(d) The answer is probably no in general, although the authors have not been able to construct a counterexample. We prove the following

THEOREM 3.7. Let $\rho: E \to B$ be a covering such that E, B are simple, path-connected ANR's. Let X be a finite CW complex. Then the covering projection

 $\bar{\rho}: E^{X} \longrightarrow B^{X}$

is a regular covering onto $\bar{\rho}(E^{X})$.

Proof. As in §2, the following is a commutative ladder of exact sequences $\ni \bar{\rho}_*$ and ρ^{∞} are injective:

$$0 \longrightarrow K \bigvee_{\pi_{1}(B^{X}, v)} \xrightarrow{f'} E_{1,0}^{\infty}(E) \bigvee_{\rho_{\infty}} 0$$
$$\xrightarrow{\pi_{1}(B^{X}, v)} \xrightarrow{f} E_{1,0}^{\infty}(B) \bigvee_{\sigma_{\infty}} 0$$

where

$$egin{array}{lll} E_{1,0}^\infty(E)\subset \pi_1(E,\,v'(x_0))\ &
ho_\inftyigg| & igg|
ho_{\mathfrak{s}}\ & L_{1,0}^\infty(B)\subset \pi_1(B,\,v(x_0)) \end{array}$$

commutes.

E, *B* are simple $\Rightarrow E_{1,0}^{\infty}(E)$, $E_{1,0}^{\infty}(B)$ are abelian. We will show that $\bar{\rho}_{\sharp}(\pi_1(E^X, v'))$ is a normal subgroup of $\pi_1(B^X, v)$ for any $v, v' \ni \rho \circ v' = v$. Choose $x \in \bar{\rho}_{\sharp}(\pi_1(E^X))$, $b \in \pi_1(B^X)$. Then $f(bxb^{-1}) = f(b)f(x)f(b)^{-1} = f(x)$ since $E_{1,0}^{\infty}(B)$ is abelian $\Rightarrow bxb^{-1}x^{-1} = k \in K \Rightarrow bxb^{-1} = kx \in \bar{\rho}_{\sharp}(\pi_1(E^X))$.

$$\therefore ar{
ho}_{\sharp}(\pi_{\scriptscriptstyle 1}(E^{\scriptscriptstyle X},\,v')) \triangleleft \pi_{\scriptscriptstyle 1}(B^{\scriptscriptstyle X},\,v) \quad ext{for any} \quad v,\,v' \ni p \circ v' = v \;.$$

Theorem 12 on page 74 of $[6] \Rightarrow \bar{\rho} \mid_{(E^X)_{v'}} : (E^X)_{v'} \to (B^X)_v$ is a regular covering for each $v' \in \bar{\rho}^{-1}(v)$. Fix $v' \in \bar{\rho}^{-1}(v)$. Suppose $v'' \in \bar{\rho}^{-1}(v)$ but $(E^X)_{v'} \neq (E^X)_{v''}$. Then by 3.6 \exists a homeomorphism

$$\overline{r}: (E^X)_{v'} \to (E^X)_{v''} \ni \overline{r}(v') = v'' \text{ and } \overline{\rho} \circ \overline{r} = \overline{\rho} \text{ .}$$

Hence a loop at v in B^x lifts to a loop at v' if and only if it lifts to a loop at v''. Therefore $\bar{\rho}: E^x \to \bar{\rho}(E^x)$ is a regular covering.

(e) We quote a result essentially due to Serre, [5], Proposition 3, page 479.

PROPOSITION 3.8. If G is a path-connected, locally path connected, and semilocally 1-connected H-space, then each covering transformation on any connected covering space E of G is homotopic to the identity map $i: E \to E$.

COROLLARY 3.9. If $\rho: E \to B$ is a covering $\ni B$ is an H-space, then $\bar{\rho}^{-1}((B^{\chi})_{v})$ is path-connected.

(f) This question only makes sense when we are considering $(B^x)_v$. Let us ask: When is $(E^x)_{v'}$ a universal covering over $(B_x)_v$, where $\rho \circ v' = v$?

THEOREM 3.10. If X is a CW complex of dim $\leq n$ and E is an *n*-connected space, then $\pi_1(E^x, v) = 0$ for all $v \in E^x$.

The proof follows easily from Federer's spectral sequence [3].

BIBLIOGRAPHY

1. J. Dugundi, Topology, Allyn and Bacon, 1966.

- 2. M. Dyer, Two term conditions in π -exact couples, Canad. J. Math. **19** (1967), 1263-1288.
- 3. H. Federer, A study of function spaces by spectral sequences Trans. Amer. Math. Soc. 82 (1956), 340-361.
- 4. S. -T. Hu, Theory of retracts, Wayne State Univ. Press, 1965.
- 5. J. -P. Serre, Homologie singuliere des espaces fibres, Ann. of Math. 54 (1951), 425-505.
- 6. E. Spanier, Algebraic topology, McGraw-Hill, 1966.

Received January 14, 1969. This research was performed while the authors were supported by a summer research grant at the University of Oregon.

UNIVERSITY OF OREGON EUGENE, OREGON