ON ULAM'S CONJECTURE FOR SEPARABLE GRAPHS

J. A. Bondy

Abstract

Ulam's conjecture, that every graph of order greater than two is determined up to isomorphism by its collection of maximal subgraphs, is verified for the case of separable graphs which have no pendant vertices. Partial results are then obtained for the case of graphs with pendant vertices.

Unless otherwise stated, the graphs dealt with in this paper will be finite and undirected, and may have loops and multiple edges. Any definitions and notation not given below can be found in Berge [1].

A part G^{1} of a graph G is a subset of the vertices and edges of G. The end-vertices of edges in G^{1} need not themselves be in G^{1}. If G^{1} is a part of $G, G-G^{1}$ denotes that partial subgraph of G which is obtained by deleting G^{1} and all edges of G which are joined to vertices of G^{1}. Now let S be some distinguished set of parts of a graph, and let $S(X)=\left\{X^{i}\right\}$ be the labelled set of these parts in the graph X. We call two graphs G, H-equivalent if $|\boldsymbol{S}(G)|=|\boldsymbol{S}(H)|=$ $M(<\infty)$ and, possibly after relabelling, $G-G^{i} \cong H-H^{i}(1 \leqq i \leqq M)$. G^{i}, H^{i} will be referred to as corresponding parts.

In [8] Ulam proposed the following conjecture.
Conjecture A. Vertex-equivalent graphs of order greater than two are isomorphic.

Kelly [7] verified this conjecture for trees and, by exhaustion, for all graphs up to order seven. A related conjecture, intuitively simpler but also as yet unsolved, was suggested by Harary [4].

Conjecture B. Edge-equivalent graphs with more than three edges are isomorphic.

Harary and Palmer [5] strengthened Kelly's theorem by showing that pendant vertex-equivalent trees are isomorphic, and hence proved as corollaries both Conjectures A and B for trees. In [2] the author took this one stage further and showed that peripheral vertex-equivalent trees are isomorphic. For directed graphs, Harary and Palmer [5, 6] have proved that vertex-equivalent weak tournaments of order greater than four are isomorphic, that edge-equivalent tournaments are isomorphic, and that pendant vertex-equivalent directed trees with at least three pendant vertices are isomorphic. In [7] Kelly also stated
that Conjecture A holds for disconnected graphs. A proof is given by Harary in [4]. We here examine this conjecture for graphs of connectivity one.
2. Separable graphs with no pendant vertices. Throughout this section G, H will be taken to be vertex-equivalent graphs of order N.

A cut-vertex of a graph is a vertex whose removal disconnects the graph. A connected graph is separable if it contains a cut-vertex. A block is a maximal connected subgraph that is not separable. A pendant vertex is a vertex joined to just one other vertex.

Theorem 1. Vertex-equivalent separable graphs with no pendant vertices are isomorphic.

We first need two lemmas.
Lemma 1.1. (Kelly [7].) Let Y be any graph of order less than N. Suppose there are α distinct subgraphs of G isomorphic to Y and that vertex u_{i} of G is in α_{i} of these subgraphs; that there are β distinct subgraphs of H isomorphic to Y and that vertex v_{i} (where v_{i} is the vertex corresponding to u_{i}) is in β_{i} of these subgraphs. Then

$$
\alpha=\beta, \text { and } \alpha_{i}=\beta_{i}(1 \leqq i \leqq N)
$$

Lemma 1.1 remains true if 'subgraph' is replaced by 'partial subgraph' throughout. We shall refer to this version as Lemma 1.1 (a).

Note. It is an easy consequence of Lemma 1.1 that corresponding vertices have the same number of loops and are of the same degree; it is also clear that G and H have the same number of pendant vertices.

Lemma 1.2. Suppose G has blocks $B_{1}, B_{2}, \cdots, B_{m}$ (where $m>1$) and H has blocks $C_{1}, C_{2}, \cdots, C_{n}$. Then $m=n$, and the blocks can be relabelled so that $B_{i} \cong C_{i}(1 \leqq i \leqq n)$.

Proof. Let B_{i} have order b_{i} and C_{i} have order c_{i}. We may assume that $b_{1} \geqq b_{2} \geqq \cdots \geqq b_{m}$ and $c_{1} \geqq c_{2} \geqq \cdots \geqq c_{n}$. The proof will be by induction. Suppose we have already shown that $B_{1} \cong C_{1}, B_{2} \cong$ $C_{2}, \cdots, B_{k} \cong C_{k}$. Since G and H have the same order, $k=m$ if and only if $k=n$, and in that case $G \cong H$. Otherwise $k<\min (m, n)$ and we may suppose that $b_{k+1} \geqq c_{k+1}$. In Lemma 1.1 take Y to be isomorphic to B_{k+1}. If Y occurs γ times in $\bigcup_{1}^{k} B_{i}$, then Y also occurs γ times in $\bigcup_{1}^{k} C_{i}$. Now Y occurs at least $\gamma+1$ times in G, since $Y \cong B_{k+1}$.

Hence Y occurs at least once in $\mathbf{U}_{k+1}^{n} C_{i}$. Therefore Y is isomorphic to a subgraph of C_{j} for some $j>k$. But
order of $Y=$ order of $B_{k+1}=b_{k+1} \geqq c_{k+1} \geqq c_{j}=$ order of C_{j}
and hence $Y \cong C_{j}$. Without loss of generality we may take $j=k+1$. Hence, $B_{k+1} \cong C_{k+1}$. Induction is started by the same argument, with $k=0$. Therefore, $m=n$ and $B_{i} \cong C_{i}$ for all i.

Proof of Theorem 1. Let B_{1} be a 'pendant' block of G (that is, a block containing just one cut-vertex of G) such that no pendant block of G or H has order less than b_{1}, the order of B_{1}. (The assumption that B_{1} is in G results in no loss of generality.) Let u be the cut-vertex joining B_{1} to the rest of G. Write $G_{1}=G-\left(B_{1}-u\right)$ and denote by G_{1}^{s} the graph obtained from G_{1} by adding s isolated vertices and joining each to u by one edge. Then G_{1}^{1} is a proper partial subgraph of G and hence, by Lemma 1.1 (a), there is a partial subgraph H_{1}^{1} of H isomorphic to G_{i}^{1}, i.e., $\psi\left(G_{\mathrm{i}}^{1}\right)=H_{\mathrm{l}}^{1}, \psi(u)=v$, say. (Note: u and v are not necessarily corresponding vertices.) Let H_{1} be the graph obtained from H_{\downarrow}^{\vdash} by deleting its pendant vertex. Then it is clear that $H_{1}=\psi\left(G_{1}\right)$ and, by Lemma 1.2, H_{1} has one block fewer than H, that block, C_{1} say, being isomorphic to B_{1}. Now H is obtained from H_{i} by adding $b_{1}-2$ vertices and some edges. Since no pendant block of H has order less than that of B_{1}, and since H has no pendant vertices, it is easy to see that those edges can only be incident with v, p (the pendant vertex of H_{1}) and the $b_{1}-2$ new vertices. Thus v is a cut-vertex of H and it follows that the subgraph of H on v, p, and these $b_{1}-2$ new vertices is isomorphic to C_{1}. It now remains to show that there is an isomorphism of B_{1} and C_{1} mapping u onto v. Denote by B_{1}^{1} the graph obtained from B_{1} by adding an isolated vertex and joining it to u by one edge. Define C_{1}^{1} analogously. It will suffice to prove that $B_{1}^{!} \cong C_{i}^{i}$.

By Lemma 1.1, G and H have the same number of cut-vertices of the same degree, and hence u and v have the same degree, say $r+s+2 t$, where t is the common number of loops at u and v. Suppose that, apart from loops, r edges of G_{1} and s edges of B_{1} are joined to u. Then it is clear that r edges of H_{1}, and hence s edges of C_{1}, are joined to v. If B_{1}^{2} occurs α times in G_{i}^{s}, it occurs $\alpha+r$ times in G. But then B_{1}^{1} occurs α times in H_{1}^{s} (since $G_{1}^{s} \cong H_{1}^{s}$) and $\alpha+r$ times in H (by Lemma 1.1). This implies that $B_{1}^{1} \cong C_{1}^{\perp}$ and hence $G \cong H$.
3. Graphs with pendant vertices. The trunk $T(G)$ of a graph G is that subgraph of G which remains after repeated removal of pendant vertices. A limb L of G is a nontrivial maximal connected
subgraph of G having just one vertex in common with $T(G)$. This vertex is called the root of $L . G$ is the union of its trunk and limbs. The situation is illustrated in Figure 1.

Note. It is clear that these definitions only have meaning for graphs containing cycles of length greater than two.

Figure 1.
Suppose G and H are vertex-equivalent graphs. We omit the case when G and H have two blocks, one of which is of order two. This seems to be very difficult to deal with, and is not amenable to the methods used here. If G has only one pendant vertex, on a limb of order greater than two, then H also has these properties and $G \cong H$. For let u be the pendant vertex of G, and suppose that there are l loops and m other edges incident with u. Then G is obtained from $G-u$ by adding an isolated vertex with l loops, and joining it by m multiple edges to the unique pendant vertex of $G-u$. If vertex v of H corresponds to u, then H can be reconstructed from $H-v$ in the same way. Now suppose that G and H have exactly two pendant vertices such that (i) each maximal subgraph of G obtained by the deletion of a pendant vertex has just one limb, of order two; (ii) there is a maximal subgraph of G containing two isolated vertices. Then, by an argument similar to that used above, we again have $G \cong H$. These cases will be excluded from the following discussion.

For the rest of this section we make the weaker assumption that G, H are pendant vertex-equivalent connected graphs. Since Harary and Palmer's theorem for trees extends quite easily to graphs with cycles of length at most two, we consider here only graphs having cycles of length greater than two. It is immediate that G and H have isomorphic trunks. We now look at their limbs. $\theta, \phi, \phi^{\prime}$, respectively will denote isomorphisms of $G-u_{1}$ onto $H-v_{1}, G-u_{2}$ onto $H-v_{2}$ and $G-u_{2}^{\prime}$ onto $H-v_{2}^{\prime}$, where $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)$, and ($u_{2}^{\prime}, v_{2}^{\prime}$) are pairs
of corresponding pendant vertices, and $v_{2}^{\prime}=\theta\left(u_{2}\right)$.
Lemma 2.1. Let G and H have limbs $K_{1}, K_{2}, \cdots, K_{m}$, and L_{1}, L_{2}, \cdots, L_{n}, respectively, where K_{i} has order k_{i} and L_{i} has order l_{i}. Assume that $k_{1} \leqq k_{2} \leqq \cdots \leqq k_{m}$, and that $l_{1} \leqq l_{2} \leqq \cdots \leqq l_{n}$. Then $m=n$ and $k_{i}=l_{i}(1 \leqq i \leqq n)$.

Proof. Suppose that $k_{i}=l_{i}(1 \leqq i<r)$ but that $k_{r} \neq l_{r}$, say $k_{r}<l_{r}$. Let $u_{1} \in K_{r}$. If $k_{r}>2$, the combined order of the r smallest limbs in $G-u_{1}$ is $\sum_{i=1}^{r} k_{i}-1$, and the combined order of the r smallest limbs in $H-v_{1}$ is at least $\sum_{i=1}^{r} l_{i}-1>\sum_{i=1}^{r} k_{i}-1$. This contradicts the fact that $\theta\left(G-u_{1}\right)=H-v_{1}$. Therefore $k_{r}=2$ and $l_{r}>2$. Now there is a pendant vertex u_{2} in some $K_{i}(1 \leqq i \leqq r)$ such that $v_{2} \notin L_{j}$ for all $j<r$. Then $G-u_{2}$ has $m-1$ limbs and $H-v_{2}$ has n limbs. Therefore $m=n+1$ and this implies that $l_{i}>2(1 \leqq i \leqq n)$ and that $k_{i}=2(1 \leqq i \leqq n+1)$. Since G and H clearly have the same order

$$
n+1 \sum_{1}^{n+1}\left(k_{i}-1\right)=\sum_{1}^{n}\left(l_{i}-1\right) \geqq 2 n
$$

and therefore $n=1$ and $l_{1}=3$. But this is precisely the case excluded at the beginning of this section.

In the light of Lemma 2.1 we now assume that G and H have limbs $\left\{K_{i}\right\}_{1}^{n}$ and $\left\{L_{i}\right\}_{1}^{n}$ respectively, arranged so that $k_{1} \leqq k_{2} \leqq \cdots \leqq k_{n}$, where k_{i} is the (common) order of K_{i} and L_{i}; also that K_{i} has root a_{i} in $T(G)$ and that L_{i} has root b_{i} in $T(H)$. The notation $(U, u) \cong$ (V, v) (or $\alpha(U, u)=(V, v)$) will be used to denote that graphs U and V are isomorphic under an isomorphism (α) mapping vertex $u \in U$ onto vertex $v \in V$.

Theorem 2. The limbs of G and H can be arranged so that $\left(K_{i}, a_{i}\right) \cong\left(L_{i}, b_{i}\right)(1 \leqq i \leqq n)$.

Proof. (a) $n \geqq 2$. Let $u_{1} \in K_{1}, u_{2} \in K_{2}$. Then $G-u_{1}$ has limbs of order $k_{1}-1, k_{2}, \cdots, k_{n}$, and hence so has $H-v_{1}$. We may therefore assume that $v_{1} \in L_{1}$. Then $\theta\left(G-u_{1}\right)=H-v_{1} \Rightarrow$

$$
\begin{equation*}
\theta\left(K_{i}, a_{i}\right)=\left(L_{i}, b_{i}\right) \quad(2 \leqq i \leqq n) \tag{1}
\end{equation*}
$$

There are now three subcases:
(i) $k_{2}>k_{1}+1$. Then $\phi\left(G-\dot{u}_{2}\right)=H-v_{2} \Rightarrow \phi\left(K_{1}, a_{1}\right)=\left(L_{1}, b_{1}\right)$.
(ii) $k_{2}=k_{1}+1$. From (1), $\theta\left(u_{2}\right)=v_{2}^{\prime} \in L_{2}$ and hence $\theta\left(K_{2}-u_{2}, a_{2}\right)$ $=\left(L_{2}-v_{2}^{\prime}, b_{2}\right) . \quad \phi\left(G-u_{2}\right)=H-v_{2} \Rightarrow$ either $\quad \phi\left(K_{1}, a_{1}\right)=\left(L_{1}, b_{1}\right) \quad$ or $\phi\left(K_{2}-u_{2}, a_{2}\right)=\left(L_{1}, b_{1}\right) . \phi^{\prime}\left(G-u_{2}^{\prime}\right)=H-v_{2}^{\prime} \Rightarrow \operatorname{either} \phi^{\prime}\left(K_{1}, a_{1}\right)=\left(L_{1}, b_{1}\right)$ or $\phi^{\prime}\left(K_{1}, a_{1}\right)=\left(L_{2}-v_{2}^{\prime}, b_{2}\right)$. Therefore at least one of $\phi, \phi^{\prime}, \phi \theta^{-1} \phi^{\prime}$ (product of isomorphisms) maps (K_{1}, a_{1}) onto (L_{1}, b_{1}).
(iii) $k_{2}=k_{1}$. Suppose $v_{2} \in L_{t}$. Then $\quad \phi\left(G-u_{2}\right)=H-v_{2} \Rightarrow$ $\left\{\dot{\rho}\left(K_{i}, a_{i}\right)\right\}_{i \neq 2}=\left\{\left(L_{i}, b_{i}\right)\right\}_{i \neq t}$. Put $\phi_{r}=\dot{\phi}\left(\theta^{-1} \dot{\varphi}\right)^{r}$. We shall show that, for some r, either

$$
\begin{equation*}
\phi_{r}\left(K_{1}, a_{1}\right)=\left(L_{1}, b_{1}\right) \text { or } \dot{\phi}_{r}\left(K_{1}, a_{1}\right)=\left(L_{2}, b_{2}\right) . \tag{2}
\end{equation*}
$$

For assume otherwise. Then $\phi_{r}\left(K_{1}, a_{1}\right)$ is well-defined for all r and we may put $\dot{\phi}_{r}\left(K_{1}, a_{1}\right)=\left(L_{j_{r}}, b_{j_{r}}\right)$, where $j_{r}>2$. Thus

$$
\begin{equation*}
\theta^{-1} \dot{\phi}_{r}\left(K_{1}, a_{1}\right)=\theta^{-1}\left(L_{\partial_{r}}, b_{j_{r}}\right)=\left(K_{j_{r}}, a_{\jmath_{r}}\right) . \tag{3}
\end{equation*}
$$

Since n is finite there are integers $p, q,(p<q)$ such that $\left(L_{j_{p}}, b_{j_{\rho}}\right)=$ $\left(L_{j_{q}}, b_{j_{q}}\right)$. Then $\dot{\rho}_{p}\left(K_{1}, a_{1}\right)=\phi_{q}\left(K_{1}, a_{1}\right)$, i.e., $\theta^{-1} \dot{\phi}_{q-p-1}\left(K_{1}, a_{1}\right)=\left(K_{1}, a_{1}\right)$, contradicting (3). Hence (2) follows. From (1) $v_{2}^{\prime} \in L_{2}$ and, by an analogous argument to the above, $\phi^{\prime}\left(G-u_{2}^{\prime}\right)=H-v_{z}^{\prime} \Longrightarrow$ either $\dot{\phi}_{s}^{\prime}\left(K_{1}, a_{1}\right)=$ $\left(L_{1}, b_{1}\right)$ or $\phi_{s}^{\prime}\left(K_{2}, a_{2}\right)=\left(L_{1}, b_{1}\right)$ for some s, where $\phi_{s}^{\prime}=\phi^{\prime}\left(\theta^{-1} \phi^{\prime}\right)^{s}$. Therefore for some r, s, at least one of $\phi_{r}, \dot{\varphi}_{s}^{\prime}, \dot{\phi}_{s}^{\prime} \theta^{-1} \dot{\varphi}_{r} \operatorname{maps}\left(K_{1}, a_{1}\right)$ onto $\left(L_{1}, b_{1}\right)$. (i), (ii) and (iii) together imply that an isomorphism θ_{1} exists such that

$$
\theta_{1}\left(K_{1}, a_{1}\right)=\left(L_{1}, b_{1}\right) .
$$

This completes the proof of part (a).
(b) $n=1$. If a_{1} is not pendant in K_{1}, apply the methods of Lemma 2.1 and part (a) of this proof to the sublimbs of K_{1} and L_{1} branching from a_{1} and b_{1} respectively. Otherwise let a_{1}^{\prime} be the first vertex along K_{1} from a_{1} that is joined to more than two other vertices of K_{1} (such a vertex exists since G has at least two pendant vertices). Similarly let b_{1}^{\prime} be the first vertex along L_{1} from b_{1} that is joined to more than two other vertices of L_{1}. It is not difficult to see that the subgraph of K_{\downarrow} lying between a_{1} and a_{1}^{\prime} is isomorphic to the subgraph of L_{1} lying between b_{1} and b_{1}^{\prime}. Now apply the methods of Lemma 2.1 and part (a) of this proof to the sublimbs of K_{1} and L_{1} which branch outwards from a_{1}^{\prime} and b_{1}^{\prime} respectively.

Corollary 2.1. If $k_{1}>2$, then $G \cong H$.
Proof. Let $u_{1} \in K_{1}$. We may assume that $v_{1} \in L_{1}$. Then $\theta: G-u_{1} \rightarrow$ $H-v_{1}$ induces an isomorphism of $T(G)$ and $T(H)$ mapping a_{i} onto $b_{i}(1 \leqq i \leqq n)$, possibly after some relabelling. In addition it is clear that $\theta\left(K_{i}, a_{i}\right)=\left(L_{i}, b_{i}\right)(2 \leqq i \leqq n)$, and hence also, by Theorem 2, that $\left(K_{1}, a_{1}\right) \cong\left(L_{1}, b_{1}\right) . \quad$ Therefore $G \cong H$.

In the same way one can prove:
Corollary 2.2. If, for some $i, k_{i+1}-k_{\imath}>1$, then $G \cong H$.

When there are limbs of order two, one has in general (that is, except for the situation in Corollary 2.2) to deal with a problem concerning the automorphism group of the trunk. Some progress in this direction has been made by Greenwell and Hemminger [3]. However, we have one result which by-passes this difficulty.

Corollary 2.3. If the trunk of G is a complete subgraph then $G \cong H$.

Proof. By Theorem $2\left(K_{i}, a_{i}\right) \cong\left(L_{i}, b_{i}\right)(1 \leqq i \leqq n)$. Since $T(G)$ and $T(H)$ are complete, this isomorphism can be extended to an isomorphism of G and H by mapping the vertices of $T(G)$ which are not in the set $\left\{a_{i}\right\}_{1}^{n}$ onto distinct vertices of $T(H)$ not in the set $\left\{b_{i}\right\}_{1}^{n}$.

We conclude by proposing a conjecture analogous to Conjectures A and B.

Conjecture C. Pendant vertex-equivalent graphs with at least k pendant vertices are isomorphic (k to be determined).

For this conjecture to be true we must obviously have $k>2$. I am indebted to Dr. Peter M. Neumann for pointing out a counterexample when $k=3$. Figure 2 pictures the two non-isomorphic pendant vertex equivalent graphs.

Figure 2.
Dr. Neumann informs me that he has also found a counter-example when $k=4$.

References

1. C. Berge, Theory of graphs, Dunod, Paris, 1958; reprinted: Methuen, London, 1962.
2. J. A. Bondy, On Kelly's congruence theorem for trees, Proc. Cambridge Philos. Soc. 65 (1969), 387-397.
3. D. L. Greenwell and R. L. Hemminger, Reconstructing graphs.
4. F. Harary, On the reconstruction of a graph from a collection of subgraphs, in Theory of graphs and its applications, proceedings of the symposium held in Smolenice, 1963, 47-52.
5. F. Harary and E. Palmer, The reconstruction of a tree from its maximal subtrees, Canad. J. Math. 18 (1966), 803-810.
6. F. Harary and E. Palmer, On the problem of reconstructing a tournament from subtournaments, Monatsh. Math. 71 (1967), 14-23.
7. P. J. Kelly, A congruence theorem for trees, Pacific J. Math. 7 (1957), 961-968.
8. S. M. Ulam, A Collection of mathematical problems, Wiley, New York, 1960.

Received February 10, 1969.
University of Waterloo
Waterloo, Ontario

