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THE CONTENT OF SOME EXTREME SIMPLEXES

DAVID SLEPIAN

Formulae are presented that give the content of a simplex
in Euclidean n-space: (i) in terms of the lengths of and the
angles between the vectors from a fixed point to the vertices
of the simplex; (ii) in terms of the lengths of and the angles
between the perpendiculars from a fixed point to the bounding
faces of the simplex, We then determine the largest simplex
whose vertices are given distances from a fixed point and we
determine the smallest simplex whose faces are given distances
from a fixed point. As special cases we find that the regular
simplex is the largest simplex contained in a given sphere
and is also the smallest simplex containing a given sphere.

1. Introduction and results. The n-dimensional simplex S, in
Euclidean n-space is the general term in the sequence of figures S,,

S, S; S, .-+ known respectively otherwise as point, line segment,
triangle, tetrahedron, ---. S, is determined by = + 1 points, P,
P, ..., P,,, — its vertices —, which we assume do not lie in any

(n — 1)-dimensional hyperplane. Taken 7 at a time, these vertices
determine (n — 1)-dimensional hyperplanes H,, H,, ---, H,.,, where H,
contains all vertices except P,. We choose the normal of H; so that
P; lies on the negative side of H,. S, can be regarded as the inter-
section of these » + 1 nonpositive half spaces; it can also be regarded
as the convex hull of its vertices.

Let Q be an arbitrary point. For 7 =1,2, ---,n + 1, let d, >0
be the distance from @ to P; and let ¢; > 0 be the distance from Q
to H;. Let a; be the unit vector in the direction from @ to P, and
let b; be the unit vector from @ along the perpendicular to H;. Let

T,ij:ai‘aj, S“’:bi‘b]‘, i,jzl, 2, "',%+ 1.
In this paper, we first show that the content, V,, of S, is given by
1 1 et
(1) SR |
n/2 [nd1
(2) =13 Si;e€; II Si
9 1
for n = 1,2, .-+, where R;; is the cofactor of #;; in the (n + 1) x

(n + 1) matrix » = (r;;) and S;; is the cofactor of s;; in s = (s;;).
Next we determine the largest simplex with given d values and the
smallest simplex containing @ with given ¢ values. We find

n+
(3) M Vi = 6L (0 + e, vty = ——0
i dd;
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n+1 ,11/\
(4) W Vi = 0B I (Y + €)', sl; = — ’
1,5=1,2,.--,n + 1 where 6 and + are respectively the unique positive
roots of
(5) o —L =1

©o0+d
and
(6) ) Y S|

Tyt

and where the 7}, are the maximizing values of 7;; and the s; are
the minimizing values of s;;. @ lies inside the simplex given by (3).

If not all the d; are the same, (5) has a negative real root of
smallest absolute value. The simplex (3) corresponding to this root
is the largest simplex with given d values having @ on the negative
side of exactly one bounding face. Similarly if not all the e; are the
same, (6) has a negative real root of smallest absolute value. The
simplex given by (4) corresponding to this root is the smallest simplex
with given e values having @ on the positive side of exactly one
bounding face.

A special case of these results states that: (a) the largest simplex
contained in a given sphere is a regular simplex; (b) the smallest
simplex containing a given sphere is a regular simplex.

2. Derivation of volume formula (1). Let (x, @, ---,2,) be
the coordinates of a general point in Euclidean n-space referred to
rectangular coordinate axes. We denote by r the vector from the
origin to this general point. Consider the simplex whose vertices are
the origin and the termini of the » vectors y,, ¥, -+-,y, from the
origin. The simplex is described by

(7) T-_—Z;Eiyi
Se=1
(8) T
51%095220’ ’E’ILEO

The volume of the simplex is given by
(9) V:S dxl---gdm%:gdsl---SdSnIJl
Sn R

where R is the &-region defined by (8) and J is the Jacobian of the
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transformation (7). If y, = W, Yizy ***5 Yin), * = 1,2, -+ -, n, then (7)
is explicitly z; = > §;¥;;, whence
Yu * Yin
=1 :
ynl e y’nn

which is independent of the &’s. The integral in (9) is readily evaluated
to give the formula

nlV=|J]|.

To obtain the content of a simplex not located at the origin, we
translate the coordinates along the vector x,,,. Sety,=x;, — xX,,1 =
1,2, ---,n. Then the content of a simplex with vertices given by
the termini of x;, 2 =1, --+,n + 1, is

iy — Xptr1** X — Lugr g
nVvV=|- .
Lpr = Vut11*°°* Tpp — Vuti g
(10)
L1y s Lypg 1
= ’
xn-l-l [ xn+1 n 1

a well-known formula [1, p.124]. Here the double line denotes abso-
lute value of a determinant. The equality shown in (10) can easily
be established by subtracting the last row of the second determinant
shown from each of the first # rows and evaluating the result by
the cofactor expansion of the last column.

Squaring (10) we find [#! V]* = || x;-x; + 1|| where the determinant
is obtained by multiplying the last matrix of (10) by its transpose and
we exhibit the element in the ¢ th row and 7 th column of the result.
Introducing the notation of §1, we set x;.-x; = d;d;r;; with @ located
at the origin. We have then

1/2 n+-1

L V"1 a, .

Ti; +
dd;

1) n!'V=|ddmr;+ 1|["*=

Now the ¢th row of [|»,; + 1/d.d;|| is the sum of the two rows
(Piy *+*, Tinyy) and 1/d,(1/d,, 1/d,, ++-,1/d,.,). The determinant can thus
be written as the sum of the 2"*' determinants obtained by taking
for each row either a row of the matrix (»;;) or a row of the matrix
(1/d.d;). But any determinant having two or more rows taken from
(1/d;d;) vanishes, and |r;;| also vanishes since the n + 1 m-vectors a;
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are linearly dependent. The determinant |r;; + 1/d,d;| can therefore
be expressed as the sum of n 4+ 1 determinants, the %k th term being
|r;| with row k replaced by 1/d.(1/d, 1/d,, ---,1/d,.,). Expanding
this determinant by the kth row gives >; R,;(1/d,)(1/d;) and formula
(1) then follows directly.

3. Derivation of volume formula (2). Consider the volume,
V., of the region S, defined by

(12) reb, =3 bya; < e,i=1,2 -, n+1,
j=1
Let
bu e bm
(18) b=1:
an cee bnn
and let B;; be the cofactor of b;, in b. Set b = B,;/|bl], 7,7 =1,
2, +++,m. Define new variables y, ---, v, by
Y; = ibijxjyi: 1) e, M
Jj=1
so that
r; = ibz—]]y‘”i: 1, "‘,77/-

In the new variables, the inequalities (12) are
yiéeiyi: 1’27 e, M

> (Z b, :ba—kl>yk =€,

k

(14)

If we now regard the y’s as rectangular coordinates, we see that (14)
defines a simplex S, in this new space. If S; has y-volume V, then

(15) Vo= V.lb]

since dwx, --- dx, = dy, -+ dy,/|b|. We proceed by finding V.
The bounding hyperplanes of S, are

le Y, =€
(16) T
H,: y,=e,

an Hyoit 35 (3006 JU = €
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The vertex P,,, of this simplex, given by H,N H,N --- N H,, has
coordinates

(18) Pn»‘x-1: (elv €y * vy 6n) .

Congsider the vertex P; given by H.N---NH_NH,..N---NH,.,
¢=1,2, .-, n. For the jth coordinate of P, we find

(19) yij:ej,j#—_?:,i,j,:1,2,"',7?/
from (16). The ¢ th coordinate y;; is found from (17) as the solution of

Yii ; b,iib 4 5 3 basibider = e,

=i
or
(20) Yis ZL] b,... By + %Zf‘ by Bue, = |ble, .
Now let

b, b, e
(21) ¢ = = (¢:;)

bn+11 tet bn—Hn en-}—l
and write C;; for the cofactor of ¢;; in c. Equation (20) now becomes

_yiicin+l - I; Ck n+1€k = Cn+1 n+1€n1
4

or

—Y:iCipr = kg Crine,=lc| —Ci,-r0; .
Thus
(22) Yii = € — el i =1,2,+-c,n .

int+l

Formulas (18), (19) and (22) provide us with the coordinates of
the vertices of S!. Using the first equality of (10) with the substi-

tation @,; =y, 1,7 =1,2, <+, m,2,.,;, =€;,5 =1,2, .-+, n, we find
v - i (M el - el e —le| >}: el _
" V'L ]ag Cln%l C:anl Cnn"'l “
Hcin-i-l
From (15), then
(23) W v, = _ el

H Cj n+1
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Next we note from (21), by multiplying ¢ by its transpose, that
el = |s;; + e;e;| where as before s;; = b;-b;. An argument analogous
to that given after equation (11) then shows that [c|® = 3 S;,ee;
with S;; the cofactor of s;; in (s;;). Finally, we see from (21) that
|Cjne| is (apart from sign) the determinant of the n X n matrix
whose rows are the b vectors, b; being omitted. Multiplying this
matrix by its transpose gives |C;,., | = S;;» This quantity is positive
since we assume every » of the b’s are independent and hence, as a
matrix S;; is positive definite. Formula (2) then follows by substitution
in (23).

4. The largest simplex whose ¢ th vertex is distant d; from
a given point. We choose the origin as the special point @ and
denote by a,d; the vector from @ to the vertex P;,. Here «a; = (a;,
Gz +**y ;) 1S @ unit vector. Equation (10) then gives

Gy ooea, L
1 dl
(24) nl V=11 d, :
1
an;llawA—ln 1
. dn+1

The vectors a; are linearly dependent. We write
(25) Wiy = 2,050

The determinant D displayed in (24) can now be expressed easily in
other terms. Multiply the jth row of D by «,; and subtract from
the last row, 7 =1,2, .--, n. Because of (25), all elements of the
last row except the diagonal entry are zero. On expanding by this
last row, we then find

@ D=l 73]
where
a, a,
a = < :
Gy oo a,
We have also |« = |p]| where
e 1,
(27) 0 = (0:;) = ( :
P e,
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and as before a;-a; = r;;. Finally, defining
(28) T =dy/d,1=1,2,---,1n

equation (24) becomes

(29) n'V, _ Lo

n

IT d;

1

- $ee]

The condition that a,;, is a unit vector becomes from (25)

(30) IT o = 1.

801

We now seek to maximize (29), subject to (30), over all values of
a, a,, -+, a, and over all symmetric n X n» nonsingular matrices p

having

(31) On=11=12,---,7n.

Introducing the Lagrange multiplier A, we seek the stationary values of

J=p 11/2[1 - Zlnl aﬂ’j] — A ; 005 «

We have
32 of _ Wy 9 —0,i=1,2
( ) oa. _—|10\ X; — )V;Pnaj* y V=L, 4, -, N
oJ 1 . .
= =05 o[l - > ax] — va; = 0,
O T LAl S L L)

’i?ﬁj.,'?;,j:l,Z,"",’l’b.
Multiply (32) by «; and sum. By (30) one finds
(34) 2v = +| o ["Flu

where we have written

(35) w=—-—_1 .
Zxajxj

Equations (32) and (33) then become

(36) S Pt = —uwn i =1,2, -, 7
=
(37) p?jlz__.}_aiaj,iij,i,j:lyz,...y/n.
14+ u
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Our task now is to solve the non-linear system (31), (35), (36), (37) for
the a’s and p;;.
Multiply (36) by «; to obtain
— UL = D 0,044
J
= ai + > 0,04
JF

=ai+ (1 + u) ; 0:;07%

=a;+ (1 +w)[l - 7] .
Here (31) was used to obtain the second line and (37) was used to
obtain the third line. We have then

1
+ u

(38) oit =14+ [a} + uay] .

From (36) we also have
;= —uD,05%,1=1,2,---,n.
We now use (37) and (38) to replace p;; in this sum. There results
—alu = 0T + > 05
7

L5
AT
+u A

X.
(39) 1+wu [ ! 1

X, (29 1
1+u [ ] 1+u u

To obtain the last line we have employed (35). The quadratic terms
in «; cancel in (39) and the equation yields

A+ wa,

40 a; = y
(40) 1 + ua}

1=12 -+, m.

Therefore
Z ( )El' 1+ uat
1

by (35). The parameter w must therefore satisfy

u xk _ 1
T 1+ uat w(l 4+ w)

(41)

We now write (38) in the form
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1

42 o= & +ql,i=12, ---,
42) 0 1+u[ ¢l 7 n
where

(43) G=1+u—+uwg,i=12 ---,n.

It is easy to invert the matrix o~ whose elements are given by (37)
and (42). One finds

S . Y.l T1 ¢
(44) o7 = T+ [+ > ai/g:] I1 ¢

) aroltssae]
loiz' = e — - gy Ly 0ty
a:[1 + > aj/qy] ’ "

(46) 0= - AW @ 1o .

L+ > aile;  a.4;

Using (40), (41) and (43) in these expressions, one verifies that o;; = 1
and finds

47) 0i; = —UXX; T+ F, 0,7 =1,2, -+, m .

We note that from (25)

n
o _ _
Tas1i = Quyi* G = Z. A;0;;

(48) 7
u

= —u/xi .

Here we have used (47) to obtain the second line, (35) to obtain the
third line and (40) to obtain the final line. From (44), using (40),
(41) and (43), one finds

w
14+ u

(49) ol = 1@+ uad) .

We now symmetrize the formulae thus far obtained by introducing
(50) 0 = udiﬂ .
With the help of (28), (41) becomes

1
0+ d

=1.

1) 0 y:
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Equations (47) and (48) can be written jointly as

17 . .
52 r,=——— %54, =1,2, -, n + 1.
(52) y i vFE 1,07

Finally, (29), (35) and (49) give us
n V=011 |0 + din

To complete our demonstration of (3) and (5), we must show that @
must be chosen as the unique positive root of (51).

Let us suppose that the distances d; are all distinect and that
0<d <dy,< -+ <d,.;.. Themodifications of our argument necessary
when several d’s are identical are easily made. It is readily seen
from (51) that ¢ is the root of a polynomial of degree # + 1 whose
n -+ 1 roots are real and can be labelled so that

0, >0> —d?>0,> —di> e >0,.,> —d>,.

We shall show that the roots 6, 4,, -- -, 8,,., do not correspond to a real-
izable simplex. Let H(0) = 67 JI*** (6 + d?) so that =! V = | H() |*2.
We shall also show that H(6,) > H(f,) > 0 which will then complete the
proof.

Consider the (n + 1) X (» + 1) matrix » whose elements are given
by (52) and 7; =1,7=1,2,.---,n + 1. The elements »;; = a;-a; of
this matrix are scalar products of the optimal a’s and since for arbitrary
real numbers 7;,

| 2 va; P = v 3 va;, = X 07 7; = 0
2%

it follows that » must be nonnegative definite. The determinant of
+ and all the principal minors of » must then also be nonnegative.
One readily finds

n+1 1 ]n+1 0 __I__ dz
* = 1 —_ 6 = .
(53) N R L

An expression for the principal minor of » obtained by deleting rows
and columns 75, 7,, -+, 7; 18 given by (53) by omitting the terms and
factors involving d;, d;, « -+, d;,.

Suppose now 6 = #,. Since 64, is a root of (51),

0-1-0S_1 1 45 1
I N

since 6,/(0; + d2) > 0. The principal minor of » obtained by deleting
the first row and column has value
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n+1 1 n+41 0 + dz
R, = [1 — 9 ] st 4
$ 3 0, +azls a2

We have seen that the bracketed expression is positive. Of the
factors, 6, + d? is negative, and all others positive. R, is therefore
negative and we must reject the root 4.

In a similar manner one sees that for 6 = 6,, k > 2 the principal
minor obtained by deleting rows and columns 1, 2, .-+, k — 2is negative.
We complete the proof by showing H(4,) > H(6,) > 0. Since 6, > 0
while 0 > —d> > 60, > —d:-..

d? d?
o G
0, b,
S0
1+ % 514 @
1 02
or
0, + d? 0, + d?
1 1 I>O.
o 6
Now
6, +d>>0,+d> >0 for =2
so that

HO) = DL 0+ @) > B 0.+ dy) = HB) > 0.
2 2

1 2

We close this section with the remark that the origin and P; lie
on the same side of H; if and only if (4 + d2)/0 is positive. We omit
the direct demonstration of this fact here. Corresponding to the root
6, >0 of (561) we obtain a simplex containing the special point Q.
For the root 4,, satisfying —d? > 6, > —dZ, we see that Q lies outside
the simplex, since (4, + d)/6, < 0 for example.

5. The smallest simplex whose ¢ th bounding plane is distant
¢; from a given interior point. We choose the origin as the given
interior point. Let b; be the unit vector from the origin along the
perpendicular to boundary H;, 7 = 1,2, .--,n + 1. The volume of the
simplex is given by (23) with ¢ defined in (21). Now the vectors b,
are linearly dependent. We write

(54) by = 3 b,
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in analogy with (25). Making an obvious association between |¢| and
the determinant in (24), we find from (26) that

el =1bl[en — S p50/]

where b is the n X n matrix given in (13). We note that |C;,.,| =
la;|b]l,7 =1, ---,n while C,.,,., = |b|. Equation (23) then gives us

I b }n I:en+1 - é Bjej—l €nr1 — Z%‘A Bje]' "
(55) n! 'V, = | =" N
BPTLA, o 2|11 8
where
Suuoc S
o= (0;) =
Snl ) Snn

where as before s;; = b;-b;. Finally, defining

(56) Y; = ei/en—{—u 1= 1y e, M

(55) becomes

(57) nl'v, _ 1 - > Bwyil" .
€01 IO. ]1/2 1’11 B}‘

The condition that b,., is a unit vector becomes from (54)
(58) le 0,;8:8; =1.

We now seek to minimize (57), subject to (58), over all values of
B, +++, B, and all symmetric # X »n nonsingular matrices ¢ having

(59) o,=11=1,2,---,m.

Introducing the Lagrange multiplier z¢, we seek the stationary values of

K:m@u—zmm—%mmw—zmwrwzm@@.

We have
60) = i - '—2 O'U,6’~:O,’L=1,2,"',’l’b,
( 8185 1—-2>8y; B "2 !
(61) oK :_lgﬁx_#&.gj:o,iij,@',j:l,zy...,n.
00 2

i
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Multiply (60) by B; and sum. By (58) one finds

(62) 2 = — " S
1—- 3> 89, 1+

where we have set

(63) v

Il

—%[’n -1+ ib’jyj] .

Equations (60) and (61) then become

(64) Z%@Zyﬁr1;vyi=1,2,---,%
7 i
(65) 0 = X BB i £ A =1,2 e, .
1+

Our task now is to solve the nonlinear system (59), (63), (64), (65) for
the #’s and o;;.
Multiply (64) by 5; to obtain

By, +1+4+v=p8+ ;UUIB«:BJ'
JF
=B+ 1+ ) 3 007
i
=B+ 1+ A - o7

whence

(66) o7 = 1 18— Bul.
1+

From (64)

Bi:ia;jl[yj + 1;”].

Replace o7;' by values given in (65) and (66). Use (63). There results

/8':___—____(1"}‘?)):[/7;,,5:1’2’_

; : cem .
v+ Y;

Multiply by %; and sum. Insert the result in (63). One finds that
v must satisfy

11

Zv+y§- ol +w)

The analogy between (37) and (65) and between (42) and (66) permits
us to use (44), (45) and (46) directly to obtain
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1T + 93

ol = .
(v + D IT v
0ij = — L
YiY;
The substitution
v = "/’/eiﬂ

now yields (4) and (6). We omit the details.

In analogy with (5), the roots of (6) are all real and can be
labelled so that 4, > 0> —el >y > —€ > «ov > 4,y > —e€hyy, if
e, < e+ < e,. Only 4, and 4, correspond to realizable simplexes
and the content corresponding to +, is greater than the content of
the simplex corresponding to the root +,. It is not difficult to show
that P; and the origin lie on the same side of H; if and only if
v + €2 > 0. For the solution corresponding to +,, then, @ lies within
the simplex; for the solution corresponding to ., @ and the simplex
lie on opposite sides of H..
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