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THE CONTENT OF SOME EXTREME SIMPLEXES

DAVID SLEPIAN

Formulae are presented that give the content of a simplex
in Euclidean %-space: (i) in terms of the lengths of and the
angles between the vectors from a fixed point to the vertices
of the simplex; (ii) in terms of the lengths of and the angles
between the perpendiculars from a fixed point to the bounding
faces of the simplex. We then determine the largest simplex
whose vertices are given distances from a fixed point and we
determine the smallest simplex whose faces are given distances
from a fixed point. As special cases we find that the regular
simplex is the largest simplex contained in a given sphere
and is also the smallest simplex containing a given sphere.

l Introduction and results* The ^-dimensional simplex Sn in
Euclidean w-space is the general term in the sequence of figures So,
Su S2, Ss known respectively otherwise as point, line segment,
triangle, tetrahedron, . Sn is determined by n + 1 points, Ply

P2, * ,Pw+i, — its vertices —, which we assume do not lie in any
(n — l)-dimensional hyperplane. Taken n at a time, these vertices
determine (n — l)-dimensional hyperplanes Hly H2, , Hn+1, where Hi
contains all vertices except P{. We choose the normal of Hi so that
Pi lies on the negative side of H^ Sn can be regarded as the inter-
section of these n + 1 nonpositive half spaces; it can also be regarded
as the convex hull of its vertices.

Let Q be an arbitrary point. For i = 1, 2, , n + 1, let d{ > 0
be the distance from Q to P4 and let e< > 0 be the distance from Q
to Hi. Let a,i be the unit vector in the direction from Q to Pi and
let bi be the unit vector from Q along the perpendicular to H{. Let
r i ά = di-cij, s i 3 = bi b 3 ; i , j = 1 , 2 , •••, n + 1 .

In this paper, we first show that the content, Vn, of Sn is given by

n\ Vn = Σ 1 1 1/2 w-H

( 2 )
nβ

π
for n = 1, 2, , where Riά is the cofactor of riά in the (n + 1) x
(n + 1) matrix r = (r^ ) and Si3- is the cofactor of sid in s = (s^ ).
Next we determine the largest simplex with given d values and the
smallest simplex containing Q with given e values. We find

( 3 ) nl F m a x = θ-112 U (θ + dlY12, r\ά = — — ,
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tt+1

A) n\ Vmin = nnψ~112 Π '

i, j — 1,2, , n + 1 where # and ψ are respectively the unique positive
roots of

( 5 )
i θ + d\

and

( 6 ) tΣ-
1 ψ + βi

and where the r' y are the maximizing values of riά and the s\ά are
the minimizing values of sid. Q lies inside the simplex given by (3).

If not all the d{ are the same, (5) has a negative real root of
smallest absolute value. The simplex (3) corresponding to this root
is the largest simplex with given d values having Q on the negative
side of exactly one bounding face. Similarly if not all the β< are the
same, (6) has a negative real root of smallest absolute value. The
simplex given by (4) corresponding to this root is the smallest simplex
with given e values having Q on the positive side of exactly one
bounding face.

A special case of these results states that: (a) the largest simplex
contained in a given sphere is a regular simplex; (b) the smallest
simplex containing a given sphere is a regular simplex.

2* Derivation of volume formula (I)* Let (xu x2, •••,#„) be
the coordinates of a general point in Euclidean w-space referred to
rectangular coordinate axes. We denote by r the vector from the
origin to this general point. Consider the simplex whose vertices are
the origin and the termini of the n vectors yγ, y2, , yn from the
origin. The simplex is described by

( 7 ) r = Σ ξiffi

1

(8) ? f < " 1

The volume of the simplex is given by

( 9 ) V=[ d x ^ - \ d x n = [ dζ, \dζn \J\
)sn J JR J

where R is the f-region defined by (8) and J is the Jacobian of the
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transformation (7). If y{ = (yiί9 yi2, , yin), i = 1, 2, •••,?&, then (7)

is explicitly #< = Σ ?i2/*> whence

Vln

Vnl * ' ' Unn

which is independent of the ξ's. The integral in (9) is readily evaluated
to give the formula

n\ V = \J\ .

To obtain the content of a simplex not located at the origin, we
translate the coordinates along the vector xn+1. Set yt = x{ — xn+1, i =
1,2, *',n. Then the content of a simplex with vertices given by
the termini of xi9 i = 1, , n + 1, is

n! V =

(10)

a well-known formula [1, p. 124]. Here the double line denotes abso-
lute value of a determinant. The equality shown in (10) can easily
be established by subtracting the last row of the second determinant
shown from each of the first n rows and evaluating the result by
the cofactor expansion of the last column.

Squaring (10) we find [n\ V]2 = || Xi-x3- + 11| where the determinant
is obtained by multiplying the last matrix of (10) by its transpose and
we exhibit the element in the i th row and j th column of the result.
Introducing the notation of § 1, we set Xi Xj = d^^^ with Q located
at the origin. We have then

(ID n\ V=

Now the i t h row of || ri5 + I/did3-1| is the sum of the two rows
(ni, , fίn+i) and 1/diil/d^ l/d2, , l/dn+1). The determinant can thus
be written as the sum of the 2n+1 determinants obtained by taking
for each row either a row of the matrix (riά) or a row of the matrix
(1/didj). But any determinant having two or more rows taken from
(I/didj) vanishes, and | riά \ also vanishes since the n + 1 ^-vectors a{
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are linearly dependent. The determinant | riά + 1/c^ | can therefore
be expressed as the sum of n + 1 determinants, the k th term being
\riό\ with row k replaced by l/d^l/d^ l/d2, , l/dn,rl). Expanding
this determinant by the k th row gives ]£,. iJfci(l/cZfc)(l/e£j ) and formula
(1) then follows directly.

3* Derivation of volume formula (2)* Consider the volume,
Vn, of the region Sn defined by

(12) r bi = £ bijX,- ^ e{1 i = 1, 2, - - , n + 1 .

Let

(13) b =

and let Biό be the cofactor of bί5 in 6. Set bf/ — Bji/\b\, i, j = 1,
2, - -, n. Define new variables ^ , yn by

Σ T -t

so that

In the new variables, the inequalities (12) are

y t £ e i t i = 1 , 2 , ••-,%

(14) / Λ
x j \ / J "w + 1 i^i/c li/A; = ^w + 1

If we now regard the y's as rectangular coordinates, we see that (14)
defines a simplex Si in this new space. If Si has ^-volume Vi, then

(15) Vn=Vi/\b\

since dxι do;,, = dyL - - dyn/\ b |. We proceed by finding F r '.
The bounding hyperplanes of Si are

Hγ\ y γ — ex

(16) : : \

Hn: yn = en

(17) HΛ+ι: Σ ( Σ K+nbτ/)y,c = β»+1 .
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The vertex PnH of this simplex, given by Hι Π H2 Π Π Hn1 has
coordinates

(18) •* Λ + l \βll ^2>

Consider the vertex Pi given by JHΊ Π Π #»_I Π Hi+ι Π Γ) JEΓΛ+1,

ί = 1, 2, , w. For the j th coordinate of P^ we find

(19) y{j = ed, j Φ i, i, j , = 1, 2, -., n

from (16). The i th coordinate /̂̂  is found from (17) as the solution of

Vu Σ K+ubJi1 + Σ Σ K+ubTkβk = β«-fi

or

(20)

Now let

y« Σ KruBu + Σ Σ K+ι,Buek = I 6

(21)

and write C?;i for the cofactor of ci5 in c. Equation (20) now becomes

or

Thus

(22)
(^i n + l

-, i = 1, 2,

Formulas (18), (19) and (22) provide us with the coordinates of
the vertices of Sή Using the first equality of (10) with the substi-
t u t i o n x i S = y i j Ί i,j = l,2,---,n, x n + ι j = ea, j = 1, 2, , n , w e find

nl V! - diag

Π ^ί n + l

From (15), then

(23) n\ V,, =

1 1 ^jn+l
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Next we note from (21), by multiplying c by its transpose, that
I c |2 = I si3 + e<ey | where as before s{j = &*•&,-. An argument analogous-
to that given after equation (11) then shows that | c |2 = X S^e,-
with Siy the cofactor of s i5 in (s o ). Finally, we see from (21) that
Cy»+i| is (apart from sign) the determinant of the n x n matrix

whose rows are the 6 vectors, bό being omitted. Multiplying this
matrix by its transpose gives | Cjn+ι \2 = Sj3. This quantity is positive
since we assume every n of the δ's are independent and hence, as a
matrix SjΊ is positive definite. Formula (2) then follows by substitution
in (23).

4* The largest simplex whose i th vertex is distant c£, from
a given point* We choose the origin as the special point Q and
denote by α ^ the vector from Q to the vertex P^ Here a{ — (aiL,
ctί2i i ^in) is a unit vector. Equation (10) then gives

d,
w-f-l

(24)

The vectors α, are linearly dependent. We write

(25) = Σ

The determinant D displayed in (24) can now be expressed easily in
other terms. Multiply the j th row of D by aά and subtract from
the last row, j = 1, 2, •••, w. Because of (25), all elements of the
last row except the diagonal entry are zero. On expanding by this
last row, we then find

(26)

where

D = | α | Γ _ L _
L dn+1

a =

\anι - annl

We h a v e also \a\2 = \p w h e r e

(27) p - (pi3.) =
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and as before a^a5 — ri3 . Finally, defining

(28) x t = dn+1/di, i = 1,2, **,n

equation (24) becomes

(29) î ΪL=|/o|

1

The condition that an+1 is a unit vector becomes from (25)

(30) Π ft/W = 1

We now seek to maximize (29), subject to (30), over all values of
alf a2, -"yan and over all symmetric nxn nonsingular matrices p
having

(31) pa = 1, i = 1, 2, . . . , t t .

Introducing the Lagrange multiplier λ, we seek the stationary values of

J=\p |1/2Γl - Σ apλ - X Σ Pi&aj .
L i J i,j

We have

(32) - f L = - \ p \ l l 2 x i - 2 X Σ p i J a J = 0,i = l , 2 , * ,n

dJ = i-PJί IP Γ/211 - Σ Wi] - λ α ^ - o,
(33) dpa 2

i φ j , ί , j = 1,2, ° - , n .

Multiply (32) by a{ and sum. By (30) one finds

(34) 2λ = +\p\ί!2/u

where we have written

(35) u= - -^ .

Σ

Equations (32) and (33) then become

(36) Σ PiJaJ = —v>Xi, i = 1, 2 , - >,n

( 3 7 ) pγ> = OLiOCj, i Φ j , ί,j = 1, 2 , . . , n

1 + u
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Our task now is to solve the non-linear system (31), (35), (36), (37) for
the α's and piβ.

Multiply (36) by a{ to obtain

= a\ + (1 + u) Σ Pupil

= a\ + (1 + u)[l - pΰ1]

Here (31) was used to obtain the second line and (37) was used to
obtain the third line. We have then

(38) p£ = 1 + — — [a\ + ua{%%\ .

1 + 16

From (36) we also have

<*< = - w Σ ^a?,-, i = 1, 2, , w .
3

We now use (37) and (38) to replace pzf in this sum. There results

-aju = pΰ% + Σ Pϊj

(39)

lal + uaM] + Γ
v, 1 + u L u

To obtain the last line we have employed (35). The quadratic terms
in cti cancel in (39) and the equation yields

(40) cci = - κ± ^ " ^ , i = 1,2,
1 + ux\

Therefore

V &'•$• = — (1 + u)
i 1 + nx\

u

by (35). The parameter u must therefore satisfy

(41) Σ , , a ! L , = ,,/<

1 ,

We now write (38) in the form
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(42) pΰ1 = — ! — [α? + ft], i = 1, 2, . . . , n

1 + u

where

(43) qi = 1 + v, + ueXiXi, i = 1, 2, , n .

It is easy to invert the matrix lo~1 whose elements are given by (37)
and (42). One finds

(44) I p-11 = n * , . [1 + Σ «?/&] Π ft
(1 + U)

(45)
ίίll + Σ α5/?y]

(46) ftί. = α + ̂ ) ^
ftί , ^ j , ^ j i > 2 , ,

l + Σ «yM- ffί^i

Using (40), (41) and (43) in these expressions, one verifies that ρu = 1
and finds

(47) p i j = — u X i X j , i Φ j , i , j = 1 , 2 , ••-,%.

We note that from (25)

(48)
= ^ — uxJ —— — aixi\ u

Here we have used (47) to obtain the second line, (35) to obtain the
third line and (40) to obtain the final line. From (44), using (40),
(41) and (43), one finds

(49) \p\ = — ^ — Π (1 + ml) .

1 + u i

We now symmetrize the formulae thus far obtained by introducing

(50) θ = ud2

n+1 .

With the help of (28), (41) becomes
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Equations (47) and (48) can be written jointly as

(52) r'iS = — J — , ί Φ j , i , j = 1,2, .- ,
didj

Finally, (29), (35) and (49) give us

To complete our demonstration of (3) and (5), we must show that Θ
must be chosen as the unique positive root of (51).

Let us suppose that the distances dt are all distinct and that
0 < dx < d2 < < dn+1. The modifications of our argument necessary
when several d's are identical are easily made. It is readily seen
from (51) that θ is the root of a polynomial of degree n + 1 whose
n + 1 roots are real and can be labelled so that

θι > 0 > -d\ > θ2 > -d\ > > θn+1 > -d2

n+ι .

We shall show that the roots 03, ΘA, , θn+ι do not correspond to a real-
izable simplex. Let H(θ) = θ~ι Π w + 1 iβ + d\) so that nl V = \ H{θ) |1/2.
We shall also show that H(θλ) > H(θ2) > 0 which will then complete the
proof.

Consider the (n + 1) x (n + 1) matrix r whose elements are given
by (52) and τu = 1, i = 1, 2, , n + 1. The elements τi5 = a^a5 of
this matrix are scalar products of the optimal α's and since for arbitrary
real numbers 7*,

Σ Ύ ίϊ I2 — ^Γ Ύ /l "V Ύ fί • — "V T• •Ύ Ύ > 0
i>3

it follows that r must be nonnegative definite. The determinant of
r and all the principal minors of r must then also be nonnegative.
One readily finds

An expression for the principal minor of r obtained by deleting rows
and columns j\, j2, , j\ is given by (53) by omitting the terms and
factors involving ddl, dh, , djr

Suppose now θ = θz. Since θ% is a root of (51),

n + l
0 1 Ω SΓ^

since 3̂/(̂ 3 + d)) > 0. The principal minor of r obtained by deleting
the first row and column has value
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[ n + ί 1 "1 n + 1 β I J2

We have seen that the bracketed expression is positive. Of the
factors, θ3 + d\ is negative, and all others positive. Rn is therefore
negative and we must reject the root θz.

In a similar manner one sees that for θ = θk, k > 2 the principal
minor obtained by deleting rows and columns 1,2, ., k — 2 is negative.
We complete the proof by showing 11(6,) > H(62) > 0. Since θλ > 0
while 0 > -d\ > θ2 > -d\ •••

so

or

Now

θλ + d > 02 + dS > 0 for i ^ 2

so that

We close this section with the remark that the origin and Pd lie
on the same side of Hό if and only if (θ + d))/θ is positive. We omit
the direct demonstration of this fact here. Corresponding to the root
#! > 0 of (51) we obtain a simplex containing the special point Q.
For the root θ2, satisfying —dl>θ2> —d2

2, we see that Q lies outside
the simplex, since (θ, + dl)/θ2 < 0 for example.

5* The smallest simplex whose i th bounding plane is distant
βi from a given interior point* We choose the origin as the given
interior point. Let 6̂  be the unit vector from the origin along the
perpendicular to boundary H^ i = 1, 2, , n + 1. The volume of the
simplex is given by (23) with c defined in (21). Now the vectors h{

are linearly dependent. We write

(54) bn+ί = Σ £ A
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in analogy with (25). Making an obvious association between | c \ and
the determinant in (24), we find from (26) that

c I = I b

where b is the n x n matrix given in (13). We note that \Cjn^\ =
a51 b ||, j = 1, , n while Cn+ln+1 = | b |. Equation (23) then gives us

(55)

where

V:-i ~ Σ 0yί

1/2 Πft

σ = (σid) = j

where as before si3 = b^bj. Finally, defining

(56) y i = e i / e n + 1 , i = 1 , •••, n

(55) becomes

(57) ϋiili. = - 1 X J H jij 3

j σ | 1 / 2

The condition that bn+ι is a unit vector becomes from (54)

n

(58) Σ σijβiβj = 1
1

We now seek to minimize (57), subject to (58), over all values of
βn •••> β» and all symmetric n x n nonsingular matrices σ having

(59) σit = 1, i = 1, 2, -..,w.

Introducing the Lagrange multiplier μ, we seek the stationary values of

K = n log [1 - Σ βsVA ~ \ log I σ \ - Σ log ft - μ Σ ^ift/S, .

-i_ _ 2μ Σ ^i f t = 0, i - 1, 2, . -, n ,
Hi

3ά = 0, i Φ j, i, j = 1, 2, , n .

We

(60)

(61)

have

UJΛ.

1 - Σ /Sji

2
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Multiply (60) by & and sum. By (58) one finds

(62) 2μ = = - — - —

where we have set

(63) v= --\n-l + ±βj

n L i

Equations (60) and (61) then become

(64) Σ σuβ,. = Vί + ±±^-, i = 1, 2, . . . , n
i Pi

(65) σTϊ = — ^ — A & , i φ j , i, j = 1, 2, , n.
1 + v

Our task now is to solve the nonlinear system (59), (63), (64), (65) for
the /3's and σiό.

Multiply (64) by & to obtain

βiVi + 1 + v = β\ + Σ σaβiβs

= β\ + (l + v) Σ σ^j/

= βΐ + (l + v)(l - σ£)

whence

(66) σn1 = —ί— [β\ - βiVi] .
1 + v

From (64)

Replace σj - by values given in (65) and (66). Use (63). There results

n _ __ (1 + v)Vi - _ -j o

^ + vl

Multiply by ^ and sum. Insert the result in (63). One finds that
v must satisfy

_ 1 _ 1
2-i v + 2/5- v(l + v)

The analogy between (37) and (65) and between (42) and (66) permits
us to use (44), (45) and (46) directly to obtain
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vf[(v

V)

σ- - -

The substitution

v = ψ/e2

n+1

now yields (4) and (6). We omit the details.
In analogy with (5), the roots of (6) are all real and can be

labelled so that ψ1 > 0 > —e\>ψ2> —e\> > ψn+1 > — e*+1, if
βi < β2 < β*+i Only ψ1 and ψ2 correspond to realizable simplexes
and the content corresponding to ψx is greater than the content of
the simplex corresponding to the root ψ2. It is not difficult to show
that P3 and the origin lie on the same side of H3 if and only if
ψ + e) > 0. For the solution corresponding to ψly then, Q lies within
the simplex; for the solution corresponding to ψ2, Q and the simplex
lie on opposite sides of H^

REFERENCE

1. D. M. Y. Sommerville, An Introduction to the geometry of N dimensions, Dutton
& Co., New York, 1930.

Received February 14, 1969.

BELL TELEPHONE LABORATORIES, INC.

MURRAY HILL, NEW JERSEY




